Files
llm-arch-research/llm/tests/datasets/test_streaming_text_dataset.py

50 lines
1.8 KiB
Python
Raw Permalink Normal View History

import torch
import pytest
from llm.datasets.streaming_text_dataset import StreamingTextDataset
class DummyTokenizer:
def __init__(self, vocab_size=100):
self.vocab_size = vocab_size
def encode(self, text, **kwargs):
return [len(w) % self.vocab_size for w in text.strip().split()]
def test_streaming_textdataset_basic_shape():
texts = ["hello world", "big transformers are fun", "LLM test string"]
tokenizer = DummyTokenizer(50)
block_size = 7
ds = StreamingTextDataset(texts, tokenizer, block_size)
assert len(ds) == 3
for i in range(len(ds)):
item = ds[i]
assert isinstance(item, dict)
assert "input_ids" in item
assert item["input_ids"].shape == (block_size,)
assert "labels" in item
assert item["labels"].shape == (block_size,)
def test_streaming_textdataset_padding_and_truncation():
texts = ["short", "one two three four five six seven eight nine ten"]
tokenizer = DummyTokenizer(40)
block_size = 4
ds = StreamingTextDataset(texts, tokenizer, block_size)
# короткое предложение padded
assert (ds[0]["input_ids"].shape[0] == block_size)
# длинное предложение truncated
assert (ds[1]["input_ids"].shape[0] == block_size)
def test_streaming_textdataset_index_error():
texts = ["sample"]
tokenizer = DummyTokenizer(10)
ds = StreamingTextDataset(texts, tokenizer, block_size=5)
with pytest.raises(IndexError):
_ = ds[1]
def test_streaming_textdataset_content_matching():
texts = ["foo bar baz", "abc def"]
tokenizer = DummyTokenizer(99)
block_size = 5
ds = StreamingTextDataset(texts, tokenizer, block_size)
# Проверка, что input_ids и labels совпадают точно
for i in range(len(ds)):
assert torch.equal(ds[i]["input_ids"], ds[i]["labels"])