Files
llm-arch-research/llm/tests/core/test_silu.py

43 lines
1.1 KiB
Python
Raw Permalink Normal View History

import torch
import pytest
from llm.core.silu import SiLU
def test_silu_shape_and_dtype():
silu = SiLU()
x = torch.randn(3, 10, 8)
y = silu(x)
assert y.shape == x.shape
assert y.dtype == x.dtype
def test_silu_known_values():
silu = SiLU()
x = torch.tensor([-2.0, 0.0, 2.0])
y = silu(x)
# PyTorch эталон
y_ref = torch.nn.functional.silu(x)
assert torch.allclose(y, y_ref, atol=1e-6)
def test_silu_large_vs_small():
silu = SiLU()
x_pos = torch.tensor([100.0])
x_neg = torch.tensor([-100.0])
y_pos = silu(x_pos)
y_neg = silu(x_neg)
assert torch.allclose(y_pos, x_pos, rtol=1e-4, atol=1e-4) # SiLU(x) ~ x для больших x>0
assert torch.allclose(y_neg, torch.zeros_like(x_neg), rtol=1e-4, atol=1e-4) # SiLU(x) ~ 0 для x<0
def test_silu_gradients():
silu = SiLU()
x = torch.randn(4, 4, requires_grad=True)
y = silu(x)
loss = y.sum()
loss.backward()
assert x.grad is not None
assert x.grad.shape == x.shape
def test_silu_broadcast():
silu = SiLU()
x = torch.randn(3, 1, 16)
y = silu(x)
assert y.shape == x.shape