Files
llm-arch-research/llm/tests/core/test_gelu.py

47 lines
1.5 KiB
Python
Raw Normal View History

import torch
import pytest
from llm.core.gelu import GELU
def test_gelu_shapes_and_dtype():
gelu = GELU()
x = torch.randn(4, 16, 8)
y = gelu(x)
assert y.shape == x.shape
assert y.dtype == x.dtype
def test_gelu_known_values():
gelu = GELU()
x = torch.tensor([-3.0, 0.0, 3.0])
y = gelu(x)
# Сравнение с PyTorch F.gelu (которая использует точный алгоритм)
y_ref = torch.nn.functional.gelu(x)
diff = (y - y_ref).abs().max().item()
assert diff < 5e-3, f"Max difference {diff} exceeds threshold"
def test_gelu_is_smooth_and_monotonic():
gelu = GELU()
x = torch.linspace(-5, 5, 100)
y = gelu(x)
dy = y[1:] - y[:-1]
# Проверяем, что функция GELU хотя бы локально монотонна на большинстве промежутков
assert (dy.mean() > 0 or dy.mean() < 0)
def test_gelu_gradients():
gelu = GELU()
x = torch.randn(3, 5, requires_grad=True)
y = gelu(x)
loss = y.sum()
loss.backward()
assert x.grad is not None
assert x.grad.shape == x.shape
def test_gelu_large_vs_small():
gelu = GELU()
x_pos = torch.tensor([100.0])
x_neg = torch.tensor([-100.0])
y_pos = gelu(x_pos)
y_neg = gelu(x_neg)
# Для больших положительных GELU(x) ~ x, для больших отрицательных ~0
assert torch.allclose(y_pos, x_pos, rtol=1e-4, atol=1e-4)
assert torch.allclose(y_neg, torch.zeros_like(x_neg), rtol=1e-4, atol=1e-4)