doc(datasets): update docstrings and tests

This commit is contained in:
Sergey Penkovsky
2025-10-17 10:49:45 +03:00
parent 38c271ca3c
commit 613d784565
10 changed files with 563 additions and 177 deletions

View File

@@ -0,0 +1,49 @@
import torch
import pytest
from llm.datasets.streaming_text_dataset import StreamingTextDataset
class DummyTokenizer:
def __init__(self, vocab_size=100):
self.vocab_size = vocab_size
def encode(self, text, **kwargs):
return [len(w) % self.vocab_size for w in text.strip().split()]
def test_streaming_textdataset_basic_shape():
texts = ["hello world", "big transformers are fun", "LLM test string"]
tokenizer = DummyTokenizer(50)
block_size = 7
ds = StreamingTextDataset(texts, tokenizer, block_size)
assert len(ds) == 3
for i in range(len(ds)):
item = ds[i]
assert isinstance(item, dict)
assert "input_ids" in item
assert item["input_ids"].shape == (block_size,)
assert "labels" in item
assert item["labels"].shape == (block_size,)
def test_streaming_textdataset_padding_and_truncation():
texts = ["short", "one two three four five six seven eight nine ten"]
tokenizer = DummyTokenizer(40)
block_size = 4
ds = StreamingTextDataset(texts, tokenizer, block_size)
# короткое предложение padded
assert (ds[0]["input_ids"].shape[0] == block_size)
# длинное предложение truncated
assert (ds[1]["input_ids"].shape[0] == block_size)
def test_streaming_textdataset_index_error():
texts = ["sample"]
tokenizer = DummyTokenizer(10)
ds = StreamingTextDataset(texts, tokenizer, block_size=5)
with pytest.raises(IndexError):
_ = ds[1]
def test_streaming_textdataset_content_matching():
texts = ["foo bar baz", "abc def"]
tokenizer = DummyTokenizer(99)
block_size = 5
ds = StreamingTextDataset(texts, tokenizer, block_size)
# Проверка, что input_ids и labels совпадают точно
for i in range(len(ds)):
assert torch.equal(ds[i]["input_ids"], ds[i]["labels"])

View File

@@ -0,0 +1,49 @@
import torch
import pytest
from llm.datasets.text_dataset import TextDataset
class DummyTokenizer:
def __init__(self, vocab_size=100):
self.vocab_size = vocab_size
def encode(self, text, **kwargs):
return [len(w) % self.vocab_size for w in text.strip().split()]
def test_textdataset_shape_and_basic():
texts = ["hello world", "this is a test", "Transformer model"]
tokenizer = DummyTokenizer(50)
block_size = 6
dataset = TextDataset(texts, tokenizer, block_size=block_size)
for i in range(len(dataset)):
x = dataset[i]
assert isinstance(x, dict)
assert "input_ids" in x
assert isinstance(x["input_ids"], torch.Tensor)
assert x["input_ids"].shape == (block_size,)
def test_textdataset_truncation_and_padding():
texts = ["one two three four five six seven", "short"]
tokenizer = DummyTokenizer(100)
block_size = 5
dataset = TextDataset(texts, tokenizer, block_size=block_size)
assert isinstance(dataset[0], dict)
assert dataset[0]["input_ids"].shape[0] == 5
assert dataset[1]["input_ids"].shape[0] == 5
def test_textdataset_index_error():
texts = ["a", "b"]
tokenizer = DummyTokenizer(10)
dataset = TextDataset(texts, tokenizer, block_size=3)
with pytest.raises(IndexError):
_ = dataset[2]
def test_textdataset_encoding():
texts = ["привет", "мир"]
tokenizer = DummyTokenizer(20)
block_size = 4
dataset = TextDataset(texts, tokenizer, block_size=block_size)
assert len(dataset) == 2
x = dataset[0]
assert isinstance(x, dict)
assert "input_ids" in x
assert isinstance(x["input_ids"], torch.Tensor)
assert x["input_ids"].shape == (block_size,)

View File

@@ -0,0 +1,62 @@
import torch
import pytest
from llm.datasets.text_with_special_tokens_dataset import TextWithSpecialTokensDataset
class DummyTokenizer:
def __init__(self):
self.bos_token_id = 101
self.eos_token_id = 102
self.pad_token_id = 0
def encode(self, text, add_special_tokens=False, add_bos_token=False, add_eos_token=False):
ids = [ord(c) % 50 for c in text.strip()]
if add_bos_token:
ids = [self.bos_token_id] + ids
if add_eos_token:
ids = ids + [self.eos_token_id]
return ids
def test_specialtokens_basic_bos_eos():
texts = ["abc", "d"]
tokenizer = DummyTokenizer()
block_size = 6
ds = TextWithSpecialTokensDataset(texts, tokenizer, block_size=block_size, add_bos=True, add_eos=True)
for i in range(len(ds)):
item = ds[i]
assert isinstance(item, dict)
assert "input_ids" in item
assert item["input_ids"].shape == (block_size,)
assert item["input_ids"][0] == tokenizer.bos_token_id
assert item["input_ids"][item["input_ids"].ne(tokenizer.pad_token_id).sum() - 1] == tokenizer.eos_token_id
def test_specialtokens_padding_and_truncation():
texts = ["qwertyuiop", "z"]
tokenizer = DummyTokenizer()
block_size = 5
ds = TextWithSpecialTokensDataset(texts, tokenizer, block_size=block_size, add_bos=True)
assert ds[0]["input_ids"].shape[0] == block_size
assert ds[1]["input_ids"][-1] == tokenizer.pad_token_id
def test_specialtokens_no_bos_eos():
texts = ["xyz"]
tokenizer = DummyTokenizer()
block_size = 6
ds = TextWithSpecialTokensDataset(texts, tokenizer, block_size=block_size, add_bos=False, add_eos=False)
item = ds[0]["input_ids"]
assert tokenizer.bos_token_id not in item
assert tokenizer.eos_token_id not in item
assert item.shape == (block_size,)
def test_specialtokens_index_error():
texts = ["sample"]
tokenizer = DummyTokenizer()
ds = TextWithSpecialTokensDataset(texts, tokenizer, block_size=8)
with pytest.raises(IndexError):
_ = ds[1]
def test_specialtokens_labels():
texts = ["abcd"]
tokenizer = DummyTokenizer()
block_size = 7
ds = TextWithSpecialTokensDataset(texts, tokenizer, block_size=block_size, add_bos=True, add_eos=True)
item = ds[0]
assert torch.equal(item["input_ids"], item["labels"])