Рефакторинг: единообразие оформления кода (пробелы, кавычки, пустые строки), без изменения логики по всему проекту.

This commit is contained in:
Sergey Penkovsky
2025-10-06 22:57:19 +03:00
parent 332cad6159
commit 712278e33c
49 changed files with 2324 additions and 2004 deletions

View File

@@ -58,7 +58,7 @@ def gpt_config(vocab_size, embed_dim, num_heads, num_layers):
"num_heads": num_heads,
"num_layers": num_layers,
"max_position_embeddings": 1024,
"dropout": 0.1
"dropout": 0.1,
}
@@ -68,12 +68,14 @@ def random_inputs(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len))
return input_ids
@pytest.fixture
def random_float_inputs(batch_size, seq_len, embed_dim):
"""Generate random floating point input tensors for testing feed forward."""
inputs = torch.randn(batch_size, seq_len, embed_dim)
return inputs
@pytest.fixture
def random_embeddings(batch_size, seq_len, embed_dim):
"""Generate random embedding tensors for testing attention modules."""

View File

@@ -9,180 +9,233 @@ from llm.core.decoder import Decoder
class TestDecoder:
"""Test cases for Decoder."""
def test_initialization(self, embed_dim, num_heads):
"""Test that Decoder can be initialized."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
assert decoder is not None
# Check internal components
assert hasattr(decoder, '_heads')
assert hasattr(decoder, '_ff')
assert hasattr(decoder, '_norm1')
assert hasattr(decoder, '_norm2')
assert hasattr(decoder, "_heads")
assert hasattr(decoder, "_ff")
assert hasattr(decoder, "_norm1")
assert hasattr(decoder, "_norm2")
def test_forward_pass(self, embed_dim, num_heads, random_embeddings):
"""Test forward pass of Decoder."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
# Forward pass
output = decoder(random_embeddings)
# Check output shape
assert output.shape == random_embeddings.shape
assert isinstance(output, torch.Tensor)
def test_forward_with_causal_mask(self, embed_dim, num_heads, random_embeddings):
"""Test forward pass with causal mask."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
batch_size, seq_len = random_embeddings.shape[:2]
# Create causal mask
mask = torch.tril(torch.ones(seq_len, seq_len))
# Forward pass with causal mask
output = decoder(random_embeddings, mask=mask)
# Check output shape
assert output.shape == random_embeddings.shape
def test_residual_connections(self, embed_dim, num_heads, random_embeddings):
"""Test that residual connections are properly applied."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
output = decoder(random_embeddings)
# With residual connections and layer norm, the output shouldn't be
# too different from input (in terms of scale/distribution)
input_norm = random_embeddings.norm(dim=-1).mean()
output_norm = output.norm(dim=-1).mean()
# Norms should be of similar magnitude (not exact due to transformations)
assert 0.1 < (output_norm / input_norm) < 10.0
def test_layer_norm(self, embed_dim, num_heads, random_embeddings):
"""Test that layer normalization is applied."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
output = decoder(random_embeddings)
# Check that output has reasonable statistics (due to layer norm)
# Mean should be close to 0, std close to 1 for each sequence position
output_mean = output.mean(dim=-1)
output_std = output.std(dim=-1)
# These are approximate checks since the data goes through multiple transformations
assert torch.allclose(output_mean, torch.zeros_like(output_mean), atol=1.0)
assert torch.allclose(output_std, torch.ones_like(output_std), atol=2.0)
def test_gradient_flow(self, embed_dim, num_heads, random_embeddings):
"""Test that gradients flow through Decoder."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
# Forward pass
output = decoder(random_embeddings)
# Create a dummy loss and backward pass
loss = output.sum()
loss.backward()
# Check that gradients are computed for learnable parameters
# in attention and feed forward components
assert decoder._heads._layer.weight.grad is not None
assert decoder._ff._layer1.weight.grad is not None
assert decoder._norm1.weight.grad is not None
assert decoder._norm2.weight.grad is not None
def test_device_consistency(self, embed_dim, num_heads, random_embeddings, device):
"""Test that Decoder works on correct device."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len).to(device)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
).to(device)
inputs = random_embeddings.to(device)
# Forward pass
output = decoder(inputs)
# Check device consistency
assert output.device == device
assert decoder._heads._layer.weight.device == device
def test_different_configurations(self):
"""Test Decoder with different configurations."""
test_cases = [
(64, 2), # embed_dim=64, num_heads=2
(64, 2), # embed_dim=64, num_heads=2
(128, 4), # embed_dim=128, num_heads=4
(256, 8), # embed_dim=256, num_heads=8
]
for embed_dim, num_heads in test_cases:
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
batch_size, seq_len = 2, 16
inputs = torch.randn(batch_size, seq_len, embed_dim)
output = decoder(inputs)
assert output.shape == inputs.shape
@pytest.mark.parametrize("batch_size,seq_len", [(1, 8), (2, 16), (4, 32)])
def test_different_input_shapes(self, embed_dim, num_heads, batch_size, seq_len):
"""Test Decoder with different input shapes."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
inputs = torch.randn(batch_size, seq_len, embed_dim)
output = decoder(inputs)
assert output.shape == (batch_size, seq_len, embed_dim)
def test_training_vs_evaluation(self, embed_dim, num_heads, random_embeddings):
"""Test that Decoder behaves differently in train vs eval mode."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len, dropout=0.5)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
dropout=0.5,
)
# Training mode
decoder.train()
output_train = decoder(random_embeddings)
# Evaluation mode
decoder.eval()
output_eval = decoder(random_embeddings)
# Outputs should be different due to dropout
assert not torch.allclose(output_train, output_eval)
def test_parameter_initialization(self, embed_dim, num_heads):
"""Test that parameters are properly initialized."""
head_size = embed_dim // num_heads
max_seq_len = 1024
decoder = Decoder(num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len)
decoder = Decoder(
num_heads=num_heads,
emb_size=embed_dim,
head_size=head_size,
max_seq_len=max_seq_len,
)
# Check that various components have non-zero parameters
assert not torch.allclose(
decoder._heads._layer.weight,
torch.zeros_like(decoder._heads._layer.weight)
decoder._heads._layer.weight, torch.zeros_like(decoder._heads._layer.weight)
)
assert not torch.allclose(
decoder._ff._layer1.weight,
torch.zeros_like(decoder._ff._layer1.weight)
decoder._ff._layer1.weight, torch.zeros_like(decoder._ff._layer1.weight)
)
assert not torch.allclose(
decoder._norm1.weight,
torch.zeros_like(decoder._norm1.weight)
decoder._norm1.weight, torch.zeros_like(decoder._norm1.weight)
)

View File

@@ -10,168 +10,178 @@ from llm.core.feed_forward import FeedForward
class TestFeedForward:
"""Test cases for FeedForward."""
def test_initialization(self, embed_dim):
"""Test that FeedForward can be initialized."""
ff = FeedForward(embed_dim)
assert ff is not None
# Check internal layers
assert hasattr(ff, '_layer1')
assert hasattr(ff, '_layer2')
assert hasattr(ff, '_activation')
assert hasattr(ff, '_dropout')
assert hasattr(ff, "_layer1")
assert hasattr(ff, "_layer2")
assert hasattr(ff, "_activation")
assert hasattr(ff, "_dropout")
# Check layer dimensions
expected_hidden_dim = embed_dim * 4 # Default expansion factor
assert ff._layer1.weight.shape == (expected_hidden_dim, embed_dim)
assert ff._layer2.weight.shape == (embed_dim, expected_hidden_dim)
def test_forward_pass(self, embed_dim, random_float_inputs):
"""Test forward pass of FeedForward."""
ff = FeedForward(embed_dim)
# Forward pass
output = ff(random_float_inputs)
# Check output shape
assert output.shape == random_float_inputs.shape
assert isinstance(output, torch.Tensor)
def test_custom_hidden_dim(self, embed_dim):
"""Test FeedForward with custom hidden dimension."""
# FeedForward doesn't support custom hidden_dim in current implementation
# This test is not applicable
ff = FeedForward(embed_dim)
# Check layer dimensions (fixed 4x expansion)
expected_hidden_dim = embed_dim * 4
assert ff._layer1.weight.shape == (expected_hidden_dim, embed_dim)
assert ff._layer2.weight.shape == (embed_dim, expected_hidden_dim)
def test_dropout(self, embed_dim, random_float_inputs):
"""Test that dropout is applied during training."""
ff = FeedForward(embed_dim, dropout=0.5)
ff.train() # Set to training mode
output = ff(random_float_inputs)
# In training mode with dropout, some values should be zeroed
# This is probabilistic, so we can't assert exact zeros,
# but we can check the structure is preserved
assert output.shape == random_float_inputs.shape
def test_no_dropout_in_eval(self, embed_dim, random_float_inputs):
"""Test that dropout is not applied during evaluation."""
ff = FeedForward(embed_dim, dropout=0.5)
ff.eval() # Set to evaluation mode
# Run forward pass multiple times - outputs should be identical
output1 = ff(random_float_inputs)
output2 = ff(random_float_inputs)
assert torch.allclose(output1, output2)
def test_activation_function(self, embed_dim, random_float_inputs):
"""Test that activation function is applied."""
ff = FeedForward(embed_dim)
# Manually compute expected output without dropout for deterministic comparison
hidden = ff._layer1(random_float_inputs)
activated = ff._activation(hidden)
expected_output = ff._layer2(activated)
# Compare with forward pass in eval mode (no dropout)
ff.eval()
actual_output = ff(random_float_inputs)
assert torch.allclose(actual_output, expected_output, rtol=1e-4)
def test_gradient_flow(self, embed_dim, random_float_inputs):
"""Test that gradients flow through FeedForward."""
ff = FeedForward(embed_dim)
# Forward pass
output = ff(random_float_inputs)
# Create a dummy loss and backward pass
loss = output.sum()
loss.backward()
# Check that gradients are computed for learnable parameters
assert ff._layer1.weight.grad is not None
assert ff._layer2.weight.grad is not None
assert not torch.allclose(ff._layer1.weight.grad,
torch.zeros_like(ff._layer1.weight.grad))
assert not torch.allclose(ff._layer2.weight.grad,
torch.zeros_like(ff._layer2.weight.grad))
assert not torch.allclose(
ff._layer1.weight.grad, torch.zeros_like(ff._layer1.weight.grad)
)
assert not torch.allclose(
ff._layer2.weight.grad, torch.zeros_like(ff._layer2.weight.grad)
)
def test_device_consistency(self, embed_dim, random_float_inputs, device):
"""Test that FeedForward works on correct device."""
ff = FeedForward(embed_dim).to(device)
inputs = random_float_inputs.to(device)
# Forward pass
output = ff(inputs)
# Check device consistency
assert output.device == device
assert ff._layer1.weight.device == device
assert ff._layer2.weight.device == device
def test_different_embed_dims(self):
"""Test FeedForward with different embedding dimensions."""
test_cases = [64, 128, 256, 512]
for embed_dim in test_cases:
ff = FeedForward(embed_dim)
batch_size, seq_len = 2, 16
inputs = torch.randn(batch_size, seq_len, embed_dim)
output = ff(inputs)
assert output.shape == inputs.shape
@pytest.mark.parametrize("batch_size,seq_len", [(1, 8), (2, 16), (4, 32)])
def test_different_input_shapes(self, embed_dim, batch_size, seq_len):
"""Test FeedForward with different input shapes."""
ff = FeedForward(embed_dim)
inputs = torch.randn(batch_size, seq_len, embed_dim)
output = ff(inputs)
assert output.shape == (batch_size, seq_len, embed_dim)
def test_non_linearity(self, embed_dim, random_float_inputs):
"""Test that FeedForward introduces non-linearity."""
ff = FeedForward(embed_dim)
# Create a simple linear transformation for comparison
linear_layer = nn.Linear(embed_dim, embed_dim)
# Copy weights to make comparison fair
with torch.no_grad():
linear_layer.weight.copy_(ff._layer2.weight @ ff._layer1.weight)
if linear_layer.bias is not None:
linear_layer.bias.zero_()
linear_output = linear_layer(random_float_inputs)
ff_output = ff(random_float_inputs)
# FeedForward output should be different from pure linear transformation
# due to activation function
assert not torch.allclose(ff_output, linear_output, rtol=1e-4)
def test_parameter_initialization(self, embed_dim):
"""Test that parameters are properly initialized."""
ff = FeedForward(embed_dim)
# Check that weights are not all zeros
assert not torch.allclose(ff._layer1.weight, torch.zeros_like(ff._layer1.weight))
assert not torch.allclose(ff._layer2.weight, torch.zeros_like(ff._layer2.weight))
assert not torch.allclose(
ff._layer1.weight, torch.zeros_like(ff._layer1.weight)
)
assert not torch.allclose(
ff._layer2.weight, torch.zeros_like(ff._layer2.weight)
)
# Check that biases are not all zeros (they should be initialized with some values)
if ff._layer1.bias is not None:
assert not torch.allclose(ff._layer1.bias, torch.zeros_like(ff._layer1.bias))
assert not torch.allclose(
ff._layer1.bias, torch.zeros_like(ff._layer1.bias)
)
if ff._layer2.bias is not None:
assert not torch.allclose(ff._layer2.bias, torch.zeros_like(ff._layer2.bias))
assert not torch.allclose(
ff._layer2.bias, torch.zeros_like(ff._layer2.bias)
)

View File

@@ -9,157 +9,181 @@ from llm.core.multi_head_attention import MultiHeadAttention
class TestMultiHeadAttention:
"""Test cases for MultiHeadAttention."""
def test_initialization(self, embed_dim, num_heads):
"""Test that MultiHeadAttention can be initialized."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
assert attention is not None
# Check internal attributes
assert len(attention._heads) == num_heads
assert attention._layer.in_features == embed_dim
assert attention._layer.out_features == embed_dim
def test_forward_pass(self, embed_dim, num_heads, random_embeddings):
"""Test forward pass of MultiHeadAttention."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
# Forward pass
output, _ = attention(random_embeddings)
# Check output shape
assert output.shape == random_embeddings.shape
assert isinstance(output, torch.Tensor)
def test_forward_with_mask(self, embed_dim, num_heads, random_embeddings):
"""Test forward pass with attention mask."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
# Create a simple mask
seq_len = random_embeddings.shape[1]
mask = torch.tril(torch.ones(seq_len, seq_len)) # Causal mask
# Forward pass with mask
output, _ = attention(random_embeddings, mask=mask)
# Check output shape
assert output.shape == random_embeddings.shape
def test_causal_mask(self, embed_dim, num_heads, random_embeddings):
"""Test that causal mask prevents attending to future positions."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
# Create causal mask
seq_len = random_embeddings.shape[1]
causal_mask = torch.tril(torch.ones(seq_len, seq_len))
# Forward pass with causal mask
output, _ = attention(random_embeddings, mask=causal_mask)
# Check output shape
assert output.shape == random_embeddings.shape
def test_attention_weights_normalization(self, embed_dim, num_heads, random_embeddings):
def test_attention_weights_normalization(
self, embed_dim, num_heads, random_embeddings
):
"""Test that attention weights are properly normalized."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
# Forward pass
output, _ = attention(random_embeddings)
# Check output shape
assert output.shape == random_embeddings.shape
def test_gradient_flow(self, embed_dim, num_heads, random_embeddings):
"""Test that gradients flow through MultiHeadAttention."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
# Forward pass
output, _ = attention(random_embeddings)
# Create a dummy loss and backward pass
loss = output.sum()
loss.backward()
# Check that gradients are computed for learnable parameters
assert attention._layer.weight.grad is not None
if len(attention._heads) > 0:
assert attention._heads[0]._q.weight.grad is not None
def test_device_consistency(self, embed_dim, num_heads, random_embeddings, device):
"""Test that MultiHeadAttention works on correct device."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024).to(device)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
).to(device)
inputs = random_embeddings.to(device)
# Forward pass
output, _ = attention(inputs)
# Check device consistency
assert output.device == device
assert attention._layer.weight.device == device
def test_different_embed_dim_and_heads(self):
"""Test MultiHeadAttention with different embed_dim and num_heads combinations."""
test_cases = [
(64, 2), # embed_dim=64, num_heads=2
(64, 2), # embed_dim=64, num_heads=2
(128, 4), # embed_dim=128, num_heads=4
(256, 8), # embed_dim=256, num_heads=8
(512, 16), # embed_dim=512, num_heads=16
(512, 16), # embed_dim=512, num_heads=16
]
for embed_dim, num_heads in test_cases:
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
batch_size, seq_len = 2, 16
inputs = torch.randn(batch_size, seq_len, embed_dim)
output, _ = attention(inputs)
assert output.shape == inputs.shape
def test_attention_output_range(self, embed_dim, num_heads, random_embeddings):
"""Test that attention output is in reasonable range."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
output, _ = attention(random_embeddings)
# Output shouldn't have extreme values
assert output.abs().max() < 100 # Reasonable upper bound
@pytest.mark.parametrize("batch_size,seq_len", [(1, 8), (2, 16), (4, 32)])
def test_different_input_shapes(self, embed_dim, num_heads, batch_size, seq_len):
"""Test MultiHeadAttention with different input shapes."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024)
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024
)
inputs = torch.randn(batch_size, seq_len, embed_dim)
output, _ = attention(inputs)
assert output.shape == (batch_size, seq_len, embed_dim)
def test_parameter_sharing(self, embed_dim, num_heads):
"""Test that parameters are properly shared across the sequence."""
head_size = embed_dim // num_heads
attention = MultiHeadAttention(num_heads, embed_dim, head_size, max_seq_len=1024, dropout=0.0) # No dropout for deterministic test
attention = MultiHeadAttention(
num_heads, embed_dim, head_size, max_seq_len=1024, dropout=0.0
) # No dropout for deterministic test
# Create two identical sequences
seq_len = 10
base_sequence = torch.randn(1, seq_len, embed_dim)
identical_sequence = base_sequence.clone()
# Set to eval mode to disable dropout
attention.eval()
with torch.no_grad():
output1, _ = attention(base_sequence)
output2, _ = attention(identical_sequence)
# With identical inputs and same parameters, outputs should be identical
assert torch.allclose(output1, output2, rtol=1e-5)

View File

@@ -10,127 +10,134 @@ from llm.core.positional_embeddings import PositionalEmbeddings
class TestPositionalEmbeddings:
"""Test cases for PositionalEmbeddings."""
def test_initialization(self, embed_dim):
"""Test that PositionalEmbeddings can be initialized."""
max_seq_len = 1024
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
assert embeddings is not None
# Check that positional embeddings are created
assert hasattr(embeddings, 'embedding')
assert hasattr(embeddings, "embedding")
assert embeddings.embedding.weight.shape == (max_seq_len, embed_dim)
def test_forward_pass(self, embed_dim):
"""Test forward pass of PositionalEmbeddings."""
max_seq_len = 1024
seq_len = 64
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
# Forward pass - takes sequence length, not input tensor
output = embeddings(seq_len)
# Check output shape
expected_shape = (seq_len, embed_dim)
assert output.shape == expected_shape
assert isinstance(output, torch.Tensor)
def test_positional_encoding_values(self, embed_dim):
"""Test that positional encoding values are computed correctly."""
max_seq_len = 10
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
# Get embeddings for all positions
pe = embeddings(max_seq_len) # Shape: [max_seq_len, embed_dim]
# Check that different positions have different embeddings
# (since these are learnable embeddings, not fixed sine/cosine)
for pos in range(max_seq_len):
for i in range(pos + 1, max_seq_len):
assert not torch.allclose(pe[pos], pe[i], rtol=1e-4)
def test_different_sequence_lengths(self, embed_dim):
"""Test PositionalEmbeddings with different sequence lengths."""
test_cases = [
(10, 5), # seq_len < max_seq_len
(10, 5), # seq_len < max_seq_len
(10, 10), # seq_len == max_seq_len
]
for max_seq_len, seq_len in test_cases:
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
# Get embeddings for specific sequence length
output = embeddings(seq_len)
# Output should have shape [seq_len, embed_dim]
assert output.shape == (seq_len, embed_dim)
def test_gradient_flow(self, embed_dim):
"""Test that gradients flow through PositionalEmbeddings."""
max_seq_len = 64
seq_len = 32
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
# Forward pass
output = embeddings(seq_len)
# Create a dummy loss and backward pass
loss = output.sum()
loss.backward()
# Positional embeddings should have gradients (they're learnable)
assert embeddings.embedding.weight.grad is not None
assert not torch.allclose(embeddings.embedding.weight.grad,
torch.zeros_like(embeddings.embedding.weight.grad))
assert not torch.allclose(
embeddings.embedding.weight.grad,
torch.zeros_like(embeddings.embedding.weight.grad),
)
def test_device_consistency(self, embed_dim, device):
"""Test that PositionalEmbeddings works on correct device."""
max_seq_len = 64
seq_len = 32
embeddings = PositionalEmbeddings(max_seq_len, embed_dim).to(device)
# Forward pass
output = embeddings(seq_len)
# Check device consistency
assert output.device == device
assert embeddings.embedding.weight.device == device
def test_reproducibility(self, embed_dim):
"""Test that positional embeddings are reproducible."""
max_seq_len = 100
embeddings1 = PositionalEmbeddings(max_seq_len, embed_dim)
embeddings2 = PositionalEmbeddings(max_seq_len, embed_dim)
# Different instances should have different embeddings (random initialization)
assert not torch.allclose(embeddings1.embedding.weight, embeddings2.embedding.weight)
assert not torch.allclose(
embeddings1.embedding.weight, embeddings2.embedding.weight
)
# But same instance should produce same output for same input
seq_len = 50
output1 = embeddings1(seq_len)
output2 = embeddings1(seq_len) # Same instance, same input
assert torch.allclose(output1, output2)
def test_positional_pattern(self, embed_dim):
"""Test that positional embeddings create a meaningful pattern."""
max_seq_len = 50
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
pe = embeddings(max_seq_len) # Get all positional embeddings
# Check that different positions have different embeddings
# (with high probability due to random initialization)
assert not torch.allclose(pe[0], pe[1], rtol=1e-4)
assert not torch.allclose(pe[10], pe[20], rtol=1e-4)
@pytest.mark.parametrize("max_seq_len,seq_len,embed_dim", [
(64, 10, 64),
(128, 50, 128),
(256, 100, 256),
])
@pytest.mark.parametrize(
"max_seq_len,seq_len,embed_dim",
[
(64, 10, 64),
(128, 50, 128),
(256, 100, 256),
],
)
def test_different_configurations(self, max_seq_len, seq_len, embed_dim):
"""Test PositionalEmbeddings with different configurations."""
embeddings = PositionalEmbeddings(max_seq_len, embed_dim)
output = embeddings(seq_len)
assert output.shape == (seq_len, embed_dim)

View File

@@ -9,99 +9,103 @@ from llm.core.token_embeddings import TokenEmbeddings
class TestTokenEmbeddings:
"""Test cases for TokenEmbeddings."""
def test_initialization(self, vocab_size, embed_dim):
"""Test that TokenEmbeddings can be initialized."""
embeddings = TokenEmbeddings(vocab_size, embed_dim)
assert embeddings is not None
# Check embedding layer
assert hasattr(embeddings, '_embedding')
assert hasattr(embeddings, "_embedding")
assert embeddings._embedding.weight.shape == (vocab_size, embed_dim)
def test_forward_pass(self, vocab_size, embed_dim, random_inputs):
"""Test forward pass of TokenEmbeddings."""
embeddings = TokenEmbeddings(vocab_size, embed_dim)
# Forward pass
output = embeddings(random_inputs)
# Check output shape
assert output.shape == (random_inputs.shape[0], random_inputs.shape[1], embed_dim)
assert output.shape == (
random_inputs.shape[0],
random_inputs.shape[1],
embed_dim,
)
assert isinstance(output, torch.Tensor)
def test_embedding_weights(self, vocab_size, embed_dim):
"""Test that embedding weights are properly initialized."""
embeddings = TokenEmbeddings(vocab_size, embed_dim)
weights = embeddings._embedding.weight
assert weights.requires_grad is True
# Check that weights are not all zeros
assert not torch.allclose(weights, torch.zeros_like(weights))
def test_different_vocab_sizes(self):
"""Test TokenEmbeddings with different vocabulary sizes."""
test_cases = [
(100, 128),
(1000, 256),
(50000, 512)
]
test_cases = [(100, 128), (1000, 256), (50000, 512)]
for vocab_size, embed_dim in test_cases:
embeddings = TokenEmbeddings(vocab_size, embed_dim)
assert embeddings._embedding.weight.shape == (vocab_size, embed_dim)
def test_gradient_flow(self, vocab_size, embed_dim, random_inputs):
"""Test that gradients flow through TokenEmbeddings."""
embeddings = TokenEmbeddings(vocab_size, embed_dim)
# Forward pass
output = embeddings(random_inputs)
# Create a dummy loss and backward pass
loss = output.sum()
loss.backward()
# Check that gradients are computed
assert embeddings._embedding.weight.grad is not None
assert not torch.allclose(embeddings._embedding.weight.grad,
torch.zeros_like(embeddings._embedding.weight.grad))
assert not torch.allclose(
embeddings._embedding.weight.grad,
torch.zeros_like(embeddings._embedding.weight.grad),
)
def test_device_consistency(self, vocab_size, embed_dim, random_inputs, device):
"""Test that TokenEmbeddings works on correct device."""
embeddings = TokenEmbeddings(vocab_size, embed_dim).to(device)
inputs = random_inputs.to(device)
# Forward pass
output = embeddings(inputs)
# Check device consistency
assert output.device == device
assert embeddings._embedding.weight.device == device
def test_embedding_lookup(self, vocab_size, embed_dim):
"""Test specific embedding lookups."""
embeddings = TokenEmbeddings(vocab_size, embed_dim)
# Test lookup for specific tokens
test_tokens = torch.tensor([[0, 1, 2], [vocab_size - 1, vocab_size - 2, vocab_size - 3]])
test_tokens = torch.tensor(
[[0, 1, 2], [vocab_size - 1, vocab_size - 2, vocab_size - 3]]
)
output = embeddings(test_tokens)
# Check shape
assert output.shape == (2, 3, embed_dim)
# Check that different tokens have different embeddings
# (with high probability due to random initialization)
assert not torch.allclose(output[0, 0], output[0, 1], rtol=1e-4)
@pytest.mark.parametrize("batch_size,seq_len", [(1, 1), (2, 10), (8, 64)])
def test_different_input_shapes(self, vocab_size, embed_dim, batch_size, seq_len):
"""Test TokenEmbeddings with different input shapes."""
embeddings = TokenEmbeddings(vocab_size, embed_dim)
inputs = torch.randint(0, vocab_size, (batch_size, seq_len))
output = embeddings(inputs)
assert output.shape == (batch_size, seq_len, embed_dim)

View File

@@ -9,162 +9,156 @@ from llm.models.gpt import GPT
class TestGPT:
"""Test cases for GPT model."""
def test_initialization(self, gpt_config):
"""Test that GPT can be initialized."""
model = GPT(gpt_config)
assert model is not None
# Check that model has required components
assert hasattr(model, '_token_embeddings')
assert hasattr(model, '_position_embeddings')
assert hasattr(model, '_decoders')
assert hasattr(model, '_linear')
assert hasattr(model, '_dropout')
assert hasattr(model, "_token_embeddings")
assert hasattr(model, "_position_embeddings")
assert hasattr(model, "_decoders")
assert hasattr(model, "_linear")
assert hasattr(model, "_dropout")
# Check number of decoder layers
assert len(model._decoders) == gpt_config['num_layers']
assert len(model._decoders) == gpt_config["num_layers"]
def test_forward_pass(self, gpt_config, random_inputs):
"""Test forward pass of GPT."""
model = GPT(gpt_config)
# Forward pass
logits = model(random_inputs)
# Check output shape
batch_size, seq_len = random_inputs.shape
vocab_size = gpt_config['vocab_size']
vocab_size = gpt_config["vocab_size"]
assert logits.shape == (batch_size, seq_len, vocab_size)
assert isinstance(logits, torch.Tensor)
def test_forward_with_attention_mask(self, gpt_config, random_inputs, attention_mask):
def test_forward_with_attention_mask(
self, gpt_config, random_inputs, attention_mask
):
"""Test forward pass with attention mask."""
model = GPT(gpt_config)
# Forward pass with mask
logits = model(random_inputs, attention_mask=attention_mask)
# Check output shape
batch_size, seq_len = random_inputs.shape
vocab_size = gpt_config['vocab_size']
vocab_size = gpt_config["vocab_size"]
assert logits.shape == (batch_size, seq_len, vocab_size)
def test_generate_text(self, gpt_config):
"""Test text generation."""
model = GPT(gpt_config)
model.eval() # Set to evaluation mode for generation
# Create initial input
batch_size = 2
initial_seq_len = 5
input_ids = torch.randint(0, gpt_config['vocab_size'], (batch_size, initial_seq_len))
input_ids = torch.randint(
0, gpt_config["vocab_size"], (batch_size, initial_seq_len)
)
# Generate text
with torch.no_grad():
generated = model.generate(
x=input_ids,
max_new_tokens=10,
do_sample=False # Use greedy for deterministic testing
do_sample=False, # Use greedy for deterministic testing
)
# Check output shape
expected_seq_len = initial_seq_len + 10
assert generated.shape == (batch_size, expected_seq_len)
# Check that initial sequence is preserved
assert torch.allclose(generated[:, :initial_seq_len], input_ids)
def test_generate_with_temperature(self, gpt_config):
"""Test text generation with temperature sampling."""
model = GPT(gpt_config)
model.eval()
# Create initial input
input_ids = torch.randint(0, gpt_config['vocab_size'], (1, 3))
input_ids = torch.randint(0, gpt_config["vocab_size"], (1, 3))
# Generate with temperature
with torch.no_grad():
generated = model.generate(
x=input_ids,
max_new_tokens=5,
do_sample=True,
temperature=0.8
x=input_ids, max_new_tokens=5, do_sample=True, temperature=0.8
)
assert generated.shape == (1, 8) # 3 initial + 5 new tokens
def test_generate_with_top_k(self, gpt_config):
"""Test text generation with top-k sampling."""
model = GPT(gpt_config)
model.eval()
# Create initial input
input_ids = torch.randint(0, gpt_config['vocab_size'], (1, 3))
input_ids = torch.randint(0, gpt_config["vocab_size"], (1, 3))
# Generate with top-k
with torch.no_grad():
generated = model.generate(
x=input_ids,
max_new_tokens=5,
do_sample=True,
top_k=10
x=input_ids, max_new_tokens=5, do_sample=True, top_k=10
)
assert generated.shape == (1, 8)
def test_generate_with_top_p(self, gpt_config):
"""Test text generation with top-p (nucleus) sampling."""
model = GPT(gpt_config)
model.eval()
# Create initial input
input_ids = torch.randint(0, gpt_config['vocab_size'], (1, 3))
input_ids = torch.randint(0, gpt_config["vocab_size"], (1, 3))
# Generate with top-p
with torch.no_grad():
generated = model.generate(
x=input_ids,
max_new_tokens=5,
do_sample=True,
top_p=0.9
x=input_ids, max_new_tokens=5, do_sample=True, top_p=0.9
)
assert generated.shape == (1, 8)
def test_gradient_flow(self, gpt_config, random_inputs):
"""Test that gradients flow through GPT."""
model = GPT(gpt_config)
# Forward pass
logits = model(random_inputs)
# Create a dummy loss and backward pass
targets = torch.randint(0, gpt_config['vocab_size'], random_inputs.shape)
targets = torch.randint(0, gpt_config["vocab_size"], random_inputs.shape)
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)),
targets.view(-1)
logits.view(-1, logits.size(-1)), targets.view(-1)
)
loss.backward()
# Check that gradients are computed for various components
assert model._token_embeddings._embedding.weight.grad is not None
assert model._linear.weight.grad is not None
if len(model._decoders) > 0:
assert model._decoders[0]._heads._heads[0]._q.weight.grad is not None
def test_device_consistency(self, gpt_config, random_inputs, device):
"""Test that GPT works on correct device."""
model = GPT(gpt_config).to(device)
inputs = random_inputs.to(device)
# Forward pass
logits = model(inputs)
# Check device consistency
assert logits.device == device
assert model._token_embeddings._embedding.weight.device == device
def test_different_configurations(self):
"""Test GPT with different configurations."""
test_configs = [
@@ -174,7 +168,7 @@ class TestGPT:
"num_heads": 2,
"num_layers": 2,
"max_position_embeddings": 256,
"dropout": 0.1
"dropout": 0.1,
},
{
"vocab_size": 5000,
@@ -182,7 +176,7 @@ class TestGPT:
"num_heads": 4,
"num_layers": 4,
"max_position_embeddings": 512,
"dropout": 0.1
"dropout": 0.1,
},
{
"vocab_size": 10000,
@@ -190,98 +184,94 @@ class TestGPT:
"num_heads": 8,
"num_layers": 6,
"max_position_embeddings": 1024,
"dropout": 0.1
}
"dropout": 0.1,
},
]
for config in test_configs:
model = GPT(config)
batch_size, seq_len = 2, 16
inputs = torch.randint(0, config['vocab_size'], (batch_size, seq_len))
inputs = torch.randint(0, config["vocab_size"], (batch_size, seq_len))
logits = model(inputs)
expected_shape = (batch_size, seq_len, config['vocab_size'])
expected_shape = (batch_size, seq_len, config["vocab_size"])
assert logits.shape == expected_shape
@pytest.mark.parametrize("batch_size,seq_len", [(1, 8), (2, 16), (4, 32)])
def test_different_input_shapes(self, gpt_config, batch_size, seq_len):
"""Test GPT with different input shapes."""
model = GPT(gpt_config)
inputs = torch.randint(0, gpt_config['vocab_size'], (batch_size, seq_len))
inputs = torch.randint(0, gpt_config["vocab_size"], (batch_size, seq_len))
logits = model(inputs)
expected_shape = (batch_size, seq_len, gpt_config['vocab_size'])
expected_shape = (batch_size, seq_len, gpt_config["vocab_size"])
assert logits.shape == expected_shape
def test_training_vs_evaluation(self, gpt_config, random_inputs):
"""Test that GPT behaves differently in train vs eval mode."""
model = GPT(gpt_config)
# Training mode
model.train()
output_train = model(random_inputs)
# Evaluation mode
model.eval()
output_eval = model(random_inputs)
# Outputs should be different due to dropout
assert not torch.allclose(output_train, output_eval)
def test_parameter_count(self, gpt_config):
"""Test that GPT has reasonable number of parameters."""
model = GPT(gpt_config)
total_params = sum(p.numel() for p in model.parameters())
# For a small GPT model, parameters should be in reasonable range
vocab_size = gpt_config['vocab_size']
embed_dim = gpt_config['embed_dim']
num_layers = gpt_config['num_layers']
num_heads = gpt_config['num_heads']
vocab_size = gpt_config["vocab_size"]
embed_dim = gpt_config["embed_dim"]
num_layers = gpt_config["num_layers"]
num_heads = gpt_config["num_heads"]
# Rough estimate: token_embeddings + output_layer + (attention + ff) * layers
expected_min = vocab_size * embed_dim * 2 # embeddings and output
expected_max = expected_min * 10 # Allow for decoder parameters
assert expected_min < total_params < expected_max
def test_causal_attention(self, gpt_config):
"""Test that GPT uses causal attention during generation."""
model = GPT(gpt_config)
model.eval()
# Create input with known pattern
input_ids = torch.tensor([[1, 2, 3]]).long()
with torch.no_grad():
# Get logits for next token prediction
logits = model(input_ids)
# The model should only attend to previous tokens (causal)
# We can't directly test attention masks in the public API,
# but we can verify the generation works correctly
generated = model.generate(
x=input_ids,
max_new_tokens=3,
do_sample=False
)
generated = model.generate(x=input_ids, max_new_tokens=3, do_sample=False)
# Generated sequence should be longer than input
assert generated.shape[1] == input_ids.shape[1] + 3
def test_output_distribution(self, gpt_config, random_inputs):
"""Test that GPT output has proper distribution."""
model = GPT(gpt_config)
logits = model(random_inputs)
# Logits should not have extreme values
assert logits.abs().max() < 100
# Softmax should produce valid probabilities
probs = torch.softmax(logits, dim=-1)
assert torch.allclose(probs.sum(dim=-1), torch.ones_like(probs.sum(dim=-1)))

View File

@@ -11,25 +11,25 @@ import os
def test_gpt_model_creation():
"""Test that GPT model can be created and forward pass works."""
from llm.models.gpt import GPT
config = {
"vocab_size": 1000,
"embed_dim": 128,
"num_heads": 4,
"num_layers": 2,
"max_position_embeddings": 256,
"dropout": 0.1
"dropout": 0.1,
}
model = GPT(config)
# Test forward pass
batch_size, seq_len = 2, 16
input_ids = torch.randint(0, config["vocab_size"], (batch_size, seq_len))
with torch.no_grad():
logits = model(input_ids)
assert logits.shape == (batch_size, seq_len, config["vocab_size"])
print("✅ GPT model creation and forward pass test passed")
@@ -37,27 +37,21 @@ def test_gpt_model_creation():
def test_bpe_tokenizer_basic():
"""Test basic BPE tokenizer functionality."""
from llm.tokenizers import BPETokenizer
tokenizer = BPETokenizer()
# Train on simple texts
texts = [
"hello world",
"test tokenization",
"simple example"
]
texts = ["hello world", "test tokenization", "simple example"]
tokenizer.train(
texts=texts,
vocab_size=50,
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
texts=texts, vocab_size=50, special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
)
# Test encoding/decoding
text = "hello world"
tokens = tokenizer.encode(text)
decoded = tokenizer.decode(tokens)
assert isinstance(tokens, list)
assert isinstance(decoded, str)
assert len(tokens) > 0
@@ -67,18 +61,18 @@ def test_bpe_tokenizer_basic():
def test_token_embeddings():
"""Test token embeddings."""
from llm.core.token_embeddings import TokenEmbeddings
vocab_size = 1000
embed_dim = 128
embeddings = TokenEmbeddings(vocab_size, embed_dim)
# Test forward pass
batch_size, seq_len = 2, 16
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len))
output = embeddings(input_ids)
assert output.shape == (batch_size, seq_len, embed_dim)
print("✅ Token embeddings test passed")
@@ -86,20 +80,20 @@ def test_token_embeddings():
def test_multi_head_attention():
"""Test multi-head attention."""
from llm.core.multi_head_attention import MultiHeadAttention
num_heads = 4
emb_size = 128
head_size = emb_size // num_heads
max_seq_len = 256
attention = MultiHeadAttention(num_heads, emb_size, head_size, max_seq_len)
# Test forward pass
batch_size, seq_len = 2, 16
inputs = torch.randn(batch_size, seq_len, emb_size)
output, _ = attention(inputs)
assert output.shape == inputs.shape
print("✅ Multi-head attention test passed")
@@ -107,17 +101,17 @@ def test_multi_head_attention():
def test_feed_forward():
"""Test feed forward network."""
from llm.core.feed_forward import FeedForward
embed_dim = 128
ff = FeedForward(embed_dim)
# Test forward pass
batch_size, seq_len = 2, 16
inputs = torch.randn(batch_size, seq_len, embed_dim)
output = ff(inputs)
assert output.shape == inputs.shape
print("✅ Feed forward test passed")
@@ -125,29 +119,25 @@ def test_feed_forward():
def test_gpt_generation():
"""Test GPT text generation."""
from llm.models.gpt import GPT
config = {
"vocab_size": 1000,
"embed_dim": 128,
"num_heads": 4,
"num_layers": 2,
"max_position_embeddings": 256,
"dropout": 0.1
"dropout": 0.1,
}
model = GPT(config)
model.eval()
# Test greedy generation
input_ids = torch.randint(0, config["vocab_size"], (1, 5))
with torch.no_grad():
generated = model.generate(
x=input_ids,
max_new_tokens=3,
do_sample=False
)
generated = model.generate(x=input_ids, max_new_tokens=3, do_sample=False)
assert generated.shape == (1, 8) # 5 initial + 3 new tokens
print("✅ GPT generation test passed")
@@ -155,50 +145,48 @@ def test_gpt_generation():
def test_bpe_tokenizer_save_load():
"""Test BPE tokenizer save/load functionality."""
from llm.tokenizers import BPETokenizer
tokenizer = BPETokenizer()
# Train on simple texts
texts = ["hello world", "test save load"]
tokenizer.train(
texts=texts,
vocab_size=30,
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
texts=texts, vocab_size=30, special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
)
with tempfile.TemporaryDirectory() as temp_dir:
save_path = os.path.join(temp_dir, "test_tokenizer.json")
# Save tokenizer
tokenizer.save(save_path)
assert os.path.exists(save_path)
# Load tokenizer
loaded_tokenizer = BPETokenizer.load(save_path)
# Test that vocab size is the same
assert tokenizer.get_vocab_size() == loaded_tokenizer.get_vocab_size()
# Test that vocabularies are the same
assert tokenizer.get_vocab() == loaded_tokenizer.get_vocab()
# Test that both can encode/decode (even if tokens differ due to BPE state)
text = "hello world"
original_tokens = tokenizer.encode(text)
loaded_tokens = loaded_tokenizer.encode(text)
# Both should produce valid token lists
assert isinstance(original_tokens, list)
assert isinstance(loaded_tokens, list)
assert len(original_tokens) > 0
assert len(loaded_tokens) > 0
# Both should be able to decode
original_decoded = tokenizer.decode(original_tokens)
loaded_decoded = loaded_tokenizer.decode(loaded_tokens)
assert isinstance(original_decoded, str)
assert isinstance(loaded_decoded, str)
print("✅ BPE tokenizer save/load test passed")
@@ -206,18 +194,16 @@ def test_gpt_with_tokenizer():
"""Test GPT model with tokenizer integration."""
from llm.models.gpt import GPT
from llm.tokenizers import BPETokenizer
# Create and train tokenizer
tokenizer = BPETokenizer()
texts = ["hello world", "test integration"]
tokenizer.train(
texts=texts,
vocab_size=50,
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
texts=texts, vocab_size=50, special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
)
vocab_size = tokenizer.get_vocab_size()
# Create GPT model with tokenizer's vocab size
config = {
"vocab_size": vocab_size,
@@ -225,19 +211,19 @@ def test_gpt_with_tokenizer():
"num_heads": 4,
"num_layers": 2,
"max_position_embeddings": 256,
"dropout": 0.1
"dropout": 0.1,
}
model = GPT(config)
# Test with tokenized input
text = "hello world"
tokens = tokenizer.encode(text, add_special_tokens=False)
input_ids = torch.tensor([tokens])
with torch.no_grad():
logits = model(input_ids)
assert logits.shape == (1, len(tokens), vocab_size)
print("✅ GPT with tokenizer integration test passed")
@@ -245,7 +231,7 @@ def test_gpt_with_tokenizer():
def run_all_tests():
"""Run all basic tests."""
print("🧪 Running basic tests for llm library...")
test_gpt_model_creation()
test_bpe_tokenizer_basic()
test_token_embeddings()
@@ -254,7 +240,7 @@ def run_all_tests():
test_gpt_generation()
test_bpe_tokenizer_save_load()
test_gpt_with_tokenizer()
print("🎉 All basic tests passed!")

View File

@@ -8,15 +8,15 @@ from llm.tokenizers import BaseTokenizer
class ConcreteTokenizer(BaseTokenizer):
"""Concrete implementation for testing BaseTokenizer."""
def train(self, texts: list, vocab_size: int = 1000, **kwargs):
"""Dummy implementation for testing."""
pass
def encode(self, text: str, **kwargs) -> list:
"""Dummy implementation for testing."""
return [1, 2, 3]
def decode(self, tokens: list, **kwargs) -> str:
"""Dummy implementation for testing."""
return "decoded text"
@@ -24,33 +24,33 @@ class ConcreteTokenizer(BaseTokenizer):
class TestBaseTokenizer:
"""Test cases for BaseTokenizer."""
def test_initialization(self):
"""Test that BaseTokenizer can be initialized through concrete class."""
tokenizer = ConcreteTokenizer()
assert tokenizer is not None
assert tokenizer.vocab == {}
assert tokenizer.vocab_size == 0
def test_encode_implemented(self):
"""Test that encode method works in concrete implementation."""
tokenizer = ConcreteTokenizer()
result = tokenizer.encode("test text")
assert result == [1, 2, 3]
def test_decode_implemented(self):
"""Test that decode method works in concrete implementation."""
tokenizer = ConcreteTokenizer()
result = tokenizer.decode([1, 2, 3])
assert result == "decoded text"
def test_get_vocab_size(self):
"""Test that get_vocab_size method works."""
tokenizer = ConcreteTokenizer()
tokenizer.vocab = {"a": 0, "b": 1, "c": 2}
tokenizer.vocab_size = 3
assert tokenizer.get_vocab_size() == 3
def test_get_vocab(self):
"""Test that get_vocab method works."""
tokenizer = ConcreteTokenizer()

View File

@@ -10,18 +10,18 @@ from llm.tokenizers import BPETokenizer
class TestBPETokenizer:
"""Test cases for BPETokenizer."""
@pytest.fixture
def sample_texts(self):
"""Sample texts for training tokenizer."""
return [
"Искусственный интеллект",
"Нейронные сети",
"Нейронные сети",
"Машинное обучение",
"Глубокое обучение",
"Трансформеры"
"Трансформеры",
]
@pytest.fixture
def trained_tokenizer(self, sample_texts):
"""Create and train a BPE tokenizer."""
@@ -29,128 +29,130 @@ class TestBPETokenizer:
tokenizer.train(
texts=sample_texts,
vocab_size=100,
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"],
)
return tokenizer
def test_initialization(self):
"""Test that BPETokenizer can be initialized."""
tokenizer = BPETokenizer()
assert tokenizer is not None
def test_train_tokenizer(self, sample_texts):
"""Test that tokenizer can be trained."""
tokenizer = BPETokenizer()
tokenizer.train(
texts=sample_texts,
vocab_size=50,
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"]
special_tokens=["<pad>", "<unk>", "<bos>", "<eos>"],
)
assert tokenizer.get_vocab_size() > 0
assert len(tokenizer.get_vocab()) == tokenizer.get_vocab_size()
def test_encode_decode(self, trained_tokenizer):
"""Test encoding and decoding text."""
text = "Искусственный интеллект"
# Encode text
tokens = trained_tokenizer.encode(text)
assert isinstance(tokens, list)
assert len(tokens) > 0
assert all(isinstance(token, int) for token in tokens)
# Decode tokens
decoded_text = trained_tokenizer.decode(tokens)
assert isinstance(decoded_text, str)
# Decoded text should be similar to original (may have special tokens)
assert len(decoded_text) > 0
def test_encode_with_special_tokens(self, trained_tokenizer):
"""Test encoding with special tokens."""
text = "Нейронные сети"
# Without special tokens
tokens_no_special = trained_tokenizer.encode(text, add_special_tokens=False)
# With special tokens
tokens_with_special = trained_tokenizer.encode(text, add_special_tokens=True)
# Should have more tokens when special tokens are added
assert len(tokens_with_special) >= len(tokens_no_special)
def test_vocab_size(self, trained_tokenizer):
"""Test vocabulary size."""
vocab_size = trained_tokenizer.get_vocab_size()
assert isinstance(vocab_size, int)
assert vocab_size > 0
vocab = trained_tokenizer.get_vocab()
assert isinstance(vocab, dict)
assert len(vocab) == vocab_size
def test_special_tokens(self, trained_tokenizer):
"""Test that special tokens are in vocabulary."""
vocab = trained_tokenizer.get_vocab()
# Check that special tokens are in vocabulary
special_tokens = ["<pad>", "<unk>", "<bos>", "<eos>"]
for token in special_tokens:
assert token in vocab
assert isinstance(vocab[token], int)
def test_save_load(self, trained_tokenizer, sample_texts):
"""Test saving and loading tokenizer."""
with tempfile.TemporaryDirectory() as temp_dir:
save_path = os.path.join(temp_dir, "test_tokenizer.json")
# Save tokenizer
trained_tokenizer.save(save_path)
assert os.path.exists(save_path)
# Load tokenizer
loaded_tokenizer = BPETokenizer.load(save_path)
assert loaded_tokenizer is not None
# Check that loaded tokenizer works the same
original_vocab = trained_tokenizer.get_vocab()
loaded_vocab = loaded_tokenizer.get_vocab()
assert original_vocab == loaded_vocab
assert trained_tokenizer.get_vocab_size() == loaded_tokenizer.get_vocab_size()
assert (
trained_tokenizer.get_vocab_size() == loaded_tokenizer.get_vocab_size()
)
# Test encoding consistency
text = sample_texts[0]
original_tokens = trained_tokenizer.encode(text)
loaded_tokens = loaded_tokenizer.encode(text)
assert original_tokens == loaded_tokens
def test_unknown_tokens(self, trained_tokenizer):
"""Test handling of unknown tokens."""
# Use text that likely contains unknown subwords
text = "xyzabc123" # Random text that shouldn't be in training data
tokens = trained_tokenizer.encode(text)
assert len(tokens) > 0
# Should be able to decode back (even if it's mostly unk tokens)
decoded = trained_tokenizer.decode(tokens)
assert isinstance(decoded, str)
def test_empty_text(self, trained_tokenizer):
"""Test encoding and decoding empty text."""
tokens = trained_tokenizer.encode("")
assert isinstance(tokens, list)
decoded = trained_tokenizer.decode([])
assert decoded == ""
def test_tokenize_method(self, trained_tokenizer):
"""Test the tokenize method."""
text = "Искусственный интеллект"
tokens = trained_tokenizer.tokenize(text)
assert isinstance(tokens, list)
assert len(tokens) > 0
assert all(isinstance(token, str) for token in tokens)