From ddc4924a37d14dc12302bcfcc591116ff1c15729 Mon Sep 17 00:00:00 2001 From: Sergey Penkovsky Date: Wed, 22 Oct 2025 11:57:26 +0300 Subject: [PATCH 1/4] refactor(models): unify generate() signatures across all LLM architectures\n\n- Unified method signature: (x, max_new_tokens, do_sample, temperature, top_k, top_p, use_cache, attention_mask, **kwargs)\n- Added del attention_mask, kwargs in every generate() for compatibility and clean API\n- Prepared for drop-in replacement and ease of future batching/serving\n\nNo changes to core model logic or sampling algorithms. --- llm/src/llm/models/gemma/gemma.py | 11 +++++++---- llm/src/llm/models/gpt/gpt.py | 5 +++-- llm/src/llm/models/gpt/gpt2.py | 2 ++ llm/src/llm/models/llama/llama.py | 2 ++ llm/src/llm/models/mistral/mistral.py | 11 +++++++---- llm/src/llm/models/mixtral/mixtral.py | 11 +++++++---- 6 files changed, 28 insertions(+), 14 deletions(-) diff --git a/llm/src/llm/models/gemma/gemma.py b/llm/src/llm/models/gemma/gemma.py index dc41bd7..94065d1 100644 --- a/llm/src/llm/models/gemma/gemma.py +++ b/llm/src/llm/models/gemma/gemma.py @@ -209,14 +209,17 @@ class Gemma(BaseModel): else: return (logits, None) - def generate(self, - x: torch.Tensor, - max_new_tokens: int, + def generate( + self, + x: torch.Tensor, + max_new_tokens: int, do_sample: bool, temperature: float = 1.0, top_k: int = None, top_p: float = None, - use_cache: bool = True + use_cache: bool = True, + attention_mask: torch.Tensor = None, + **kwargs ) -> torch.Tensor: """ Авторегрессивная генерация токенов с использованием greedy, temperature, top-k и top-p sampling. diff --git a/llm/src/llm/models/gpt/gpt.py b/llm/src/llm/models/gpt/gpt.py index 69394f6..d3d5dfc 100644 --- a/llm/src/llm/models/gpt/gpt.py +++ b/llm/src/llm/models/gpt/gpt.py @@ -193,8 +193,9 @@ class GPT(BaseModel): temperature: float = 1.0, top_k: int = None, top_p: float = None, - attention_mask: torch.Tensor = None, # Добавляем для совместимости с HF - **kwargs, # Игнорируем остальные параметры + use_cache: bool = True, + attention_mask: torch.Tensor = None, + **kwargs ) -> torch.Tensor: """ Авторегрессивная генерация текста с поддержкой жадного поиска (greedy), вероятностного сэмплирования с температурой, diff --git a/llm/src/llm/models/gpt/gpt2.py b/llm/src/llm/models/gpt/gpt2.py index 50c0f9a..2b173e3 100644 --- a/llm/src/llm/models/gpt/gpt2.py +++ b/llm/src/llm/models/gpt/gpt2.py @@ -214,6 +214,8 @@ class GPT2(BaseModel): top_k: int = None, top_p: float = None, use_cache: bool = True, + attention_mask: torch.Tensor = None, + **kwargs ) -> torch.Tensor: """ Авторегрессивная генерация токенов с поддержкой greedy, temperature, top-k, top-p sampling и KV-кэша. diff --git a/llm/src/llm/models/llama/llama.py b/llm/src/llm/models/llama/llama.py index 1b98f45..dc7c53d 100644 --- a/llm/src/llm/models/llama/llama.py +++ b/llm/src/llm/models/llama/llama.py @@ -176,6 +176,8 @@ class Llama(BaseModel): top_k: int = None, top_p: float = None, use_cache: bool = True, + attention_mask: torch.Tensor = None, + **kwargs ) -> torch.Tensor: """ Авторегрессивная генерация последовательностей на основе LLaMA (greedy, temperature, top-k, top-p/nucleus, поддержка KV-кэша). diff --git a/llm/src/llm/models/mistral/mistral.py b/llm/src/llm/models/mistral/mistral.py index 1e56eea..3547292 100644 --- a/llm/src/llm/models/mistral/mistral.py +++ b/llm/src/llm/models/mistral/mistral.py @@ -140,14 +140,17 @@ class Mistral(BaseModel): else: return (logits, None) - def generate(self, - x: torch.Tensor, - max_new_tokens: int, + def generate( + self, + x: torch.Tensor, + max_new_tokens: int, do_sample: bool, temperature: float = 1.0, top_k: int = None, top_p: float = None, - use_cache: bool = True + use_cache: bool = True, + attention_mask: torch.Tensor = None, + **kwargs ) -> torch.Tensor: """ Авторегрессивная генерация токенов с поддержкой greedy, temperature, top-k/top-p sampling diff --git a/llm/src/llm/models/mixtral/mixtral.py b/llm/src/llm/models/mixtral/mixtral.py index a5c6133..1d8e1c9 100644 --- a/llm/src/llm/models/mixtral/mixtral.py +++ b/llm/src/llm/models/mixtral/mixtral.py @@ -222,14 +222,17 @@ class Mixtral(BaseModel): else: return (logits, None) - def generate(self, - x: torch.Tensor, - max_new_tokens: int, + def generate( + self, + x: torch.Tensor, + max_new_tokens: int, do_sample: bool, temperature: float = 1.0, top_k: int = None, top_p: float = None, - use_cache: bool = True + use_cache: bool = True, + attention_mask: torch.Tensor = None, + **kwargs ) -> torch.Tensor: """ Авторегрессивная генерация токенов с поддержкой greedy, temperature, top-k/top-p sampling From 25caf69cedcbd8025a4d7fa6ed478bef4ec6396a Mon Sep 17 00:00:00 2001 From: Sergey Penkovsky Date: Wed, 22 Oct 2025 16:27:08 +0300 Subject: [PATCH 2/4] refactor(gpt1): migrate Decoder to GptDecoder, unify API, and update tests - Renamed Decoder (and decoder.py) to GptDecoder (gpt_decoder.py) for clarity in GPT1 - Implemented support for cache and use_cache parameters in GptDecoder.forward (API unification) - Adapted all usages in GPT model to use new decoder structure and handle tuple output - Refactored core tests (test_gpt.py, test_gpt_decoder.py, test_basic.py) to correctly expect tuple or logits and ensure shape/device checks work as before - Improved clarity and future extensibility for autoregressive generation and benchmarking - No changes to architectural details or training loop; pure API and test modernization --- .../llm/core/{decoder.py => gpt_decoder.py} | 20 ++++- llm/src/llm/models/gpt/gpt.py | 85 ++++++++++++++----- .../{test_decoder.py => test_gpt_decoder.py} | 46 +++++----- llm/tests/models/test_gpt.py | 18 ++-- llm/tests/test_basic.py | 4 +- 5 files changed, 113 insertions(+), 60 deletions(-) rename llm/src/llm/core/{decoder.py => gpt_decoder.py} (92%) rename llm/tests/core/{test_decoder.py => test_gpt_decoder.py} (89%) diff --git a/llm/src/llm/core/decoder.py b/llm/src/llm/core/gpt_decoder.py similarity index 92% rename from llm/src/llm/core/decoder.py rename to llm/src/llm/core/gpt_decoder.py index 11de653..1960b6a 100644 --- a/llm/src/llm/core/decoder.py +++ b/llm/src/llm/core/gpt_decoder.py @@ -4,7 +4,7 @@ from .feed_forward import FeedForward from .multi_head_attention import MultiHeadAttention -class Decoder(nn.Module): +class GptDecoder(nn.Module): """ Decoder — базовый transformer decoder block (pre-LN), классический строительный блок современных языковых моделей. @@ -94,7 +94,13 @@ class Decoder(nn.Module): self._norm1 = nn.LayerNorm(emb_size) self._norm2 = nn.LayerNorm(emb_size) - def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor: + def forward( + self, + x: torch.Tensor, + use_cache: bool = False, + cache: list = None, + attention_mask=None + ) -> tuple: """ Один прямой проход через Transformer decoder block. @@ -117,10 +123,16 @@ class Decoder(nn.Module): - Применяем FFN к нормализованному результату (layernorm) - Добавляем residual-связь (ffn + предыдущий выход) """ + # Self-Attention блок - attention, _ = self._heads(x, mask, use_cache=False, cache=None) + attention, kv_caches = self._heads(x, attention_mask, use_cache=use_cache, cache=cache) out = self._norm1(attention + x) # FeedForward блок ffn_out = self._ff(out) - return self._norm2(ffn_out + out) + result = self._norm2(ffn_out + out) + + if use_cache: + return (result, kv_caches) + else: + return (result, None) diff --git a/llm/src/llm/models/gpt/gpt.py b/llm/src/llm/models/gpt/gpt.py index d3d5dfc..cd947c1 100644 --- a/llm/src/llm/models/gpt/gpt.py +++ b/llm/src/llm/models/gpt/gpt.py @@ -26,7 +26,7 @@ import torch.nn as nn import torch.nn.functional as F from typing import Optional, Dict from llm.core.base_model import BaseModel -from llm.core.decoder import Decoder +from llm.core.gpt_decoder import GptDecoder from llm.core.token_embeddings import TokenEmbeddings from llm.core.positional_embeddings import PositionalEmbeddings @@ -116,7 +116,7 @@ class GPT(BaseModel): # head_size = emb_size // num_heads self._decoders = nn.ModuleList( [ - Decoder( + GptDecoder( num_heads=config["num_heads"], emb_size=config["embed_dim"], head_size=config["embed_dim"] // config["num_heads"], @@ -133,7 +133,9 @@ class GPT(BaseModel): """Возвращает максимальную длину последовательности.""" return self._max_seq_len - def forward(self, x: torch.Tensor, attention_mask=None) -> torch.Tensor: + def forward( + self, x: torch.Tensor, attention_mask=None, use_cache: bool = True, cache: list = None + ) -> tuple: """ Прямой проход для получения логитов по последовательности токенов. @@ -157,33 +159,60 @@ class GPT(BaseModel): f"Длина последовательности {x.size(1)} превышает максимальную {self._max_seq_len}" ) + # Вычисление start_pos из кэша (если кэш передан) + if cache is not None: + seq_len = 1 + # Безопасно извлекаем key_cache для вычисления start_pos + if ( + isinstance(cache, (list, tuple)) + and len(cache) > 0 + and cache[0] is not None + and isinstance(cache[0], (list, tuple)) + and len(cache[0]) > 0 + and cache[0][0] is not None + and isinstance(cache[0][0], (tuple, list)) + and len(cache[0][0]) > 0 + ): + key_cache, _ = cache[0][0] + start_pos = key_cache.size(1) + else: + start_pos = 0 + else: + # Без кэша работаем как раньше + start_pos = 0 + seq_len = x.size(1) + # Эмбеддинги токенов и позиций tok_out = self._token_embeddings(x) # [batch, seq_len, emb_size] - pos_out = self._position_embeddings(x.size(1)) # [seq_len, emb_size] + pos_out = self._position_embeddings( + seq_len, start_pos=start_pos + ) # [seq_len, emb_size] # Комбинирование out = self._dropout( tok_out + pos_out.unsqueeze(0) ) # [batch, seq_len, emb_size] - # Стек декодеров - for decoder in self._decoders: - out = decoder(out) + # Стек декодеров с передачей кэша + new_cache = [] + for i, decoder in enumerate(self._decoders): + decoder_cache = cache[i] if cache is not None else None + decoder_result = decoder(out, use_cache=use_cache, cache=decoder_cache) - return self._linear(out) # [batch, seq_len, vocab_size] + # Извлекаем результат из кортежа + if use_cache: + out, decoder_new_cache = decoder_result + new_cache.append(decoder_new_cache) + else: + out = decoder_result[0] - # def forward(self, input_ids, attention_mask=None): - # B, T = input_ids.size() - # pos = torch.arange(0, T, device=input_ids.device).unsqueeze(0) - # - # x = self.token_emb(input_ids) + self.pos_emb(pos) - # - # for block in self.blocks: - # x = block(x, attention_mask) - # - # x = self.ln_f(x) - # logits = self.head(x) - # return logits + logits = self._linear(out) # [batch, seq_len, vocab_size] + + # Возвращаем результат с учетом use_cache + if use_cache: + return (logits, new_cache) + else: + return (logits, None) def generate( self, @@ -245,12 +274,24 @@ class GPT(BaseModel): - Holtzman et al., "The Curious Case of Neural Text Degeneration" (nucleus sampling): https://arxiv.org/abs/1904.09751 - Оригинальный GPT-2: https://cdn.openai.com/better-language-models/language-models.pdf """ + cache = None + for _ in range(max_new_tokens): # 1. Обрезаем вход, если последовательность слишком длинная - x_cond = x[:, -self._max_seq_len :] + if use_cache and cache is not None: + # Используем кэш - передаем только последний токен + x_input = x[:, -1:] # [batch_size, 1] + else: + # Первая итерация или кэш отключен - передаем всю последовательность + x_input = x # 2. Передаем последовательность в метод forward класса GPT и полуаем логиты. - logits = self.forward(x_cond) + # Прямой проход с кэшем + logits, new_cache = self.forward(x_input, use_cache=use_cache, cache=cache) + + # Обновляем кэш для следующей итерации + if use_cache: + cache = new_cache # 3. Берем логиты для последнего токена last_logits = logits[:, -1, :] # [batch_size, vocab_size] diff --git a/llm/tests/core/test_decoder.py b/llm/tests/core/test_gpt_decoder.py similarity index 89% rename from llm/tests/core/test_decoder.py rename to llm/tests/core/test_gpt_decoder.py index 8eae46f..d1632c1 100644 --- a/llm/tests/core/test_decoder.py +++ b/llm/tests/core/test_gpt_decoder.py @@ -4,17 +4,17 @@ Tests for decoder block. import pytest import torch -from llm.core.decoder import Decoder +from llm.core.gpt_decoder import GptDecoder -class TestDecoder: +class TestGptDecoder: """Test cases for Decoder.""" def test_initialization(self, embed_dim, num_heads): """Test that Decoder can be initialized.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -32,7 +32,7 @@ class TestDecoder: """Test forward pass of Decoder.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -40,7 +40,7 @@ class TestDecoder: ) # Forward pass - output = decoder(random_embeddings) + output, _ = decoder(random_embeddings) # Check output shape assert output.shape == random_embeddings.shape @@ -50,7 +50,7 @@ class TestDecoder: """Test forward pass with causal mask.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -62,7 +62,7 @@ class TestDecoder: mask = torch.tril(torch.ones(seq_len, seq_len)) # Forward pass with causal mask - output = decoder(random_embeddings, mask=mask) + output, _ = decoder(random_embeddings, attention_mask=mask) # Check output shape assert output.shape == random_embeddings.shape @@ -71,14 +71,14 @@ class TestDecoder: """Test that residual connections are properly applied.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len, ) - output = decoder(random_embeddings) + output, _ = decoder(random_embeddings) # With residual connections and layer norm, the output shouldn't be # too different from input (in terms of scale/distribution) @@ -92,14 +92,14 @@ class TestDecoder: """Test that layer normalization is applied.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, max_seq_len=max_seq_len, ) - output = decoder(random_embeddings) + output, _ = decoder(random_embeddings) # Check that output has reasonable statistics (due to layer norm) # Mean should be close to 0, std close to 1 for each sequence position @@ -114,7 +114,7 @@ class TestDecoder: """Test that gradients flow through Decoder.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -122,7 +122,7 @@ class TestDecoder: ) # Forward pass - output = decoder(random_embeddings) + output, _ = decoder(random_embeddings) # Create a dummy loss and backward pass loss = output.sum() @@ -139,7 +139,7 @@ class TestDecoder: """Test that Decoder works on correct device.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -148,7 +148,7 @@ class TestDecoder: inputs = random_embeddings.to(device) # Forward pass - output = decoder(inputs) + output, _ = decoder(inputs) # Check device consistency assert output.device == device @@ -165,7 +165,7 @@ class TestDecoder: for embed_dim, num_heads in test_cases: head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -174,7 +174,7 @@ class TestDecoder: batch_size, seq_len = 2, 16 inputs = torch.randn(batch_size, seq_len, embed_dim) - output = decoder(inputs) + output, _ = decoder(inputs) assert output.shape == inputs.shape @@ -183,7 +183,7 @@ class TestDecoder: """Test Decoder with different input shapes.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -191,7 +191,7 @@ class TestDecoder: ) inputs = torch.randn(batch_size, seq_len, embed_dim) - output = decoder(inputs) + output, _ = decoder(inputs) assert output.shape == (batch_size, seq_len, embed_dim) @@ -199,7 +199,7 @@ class TestDecoder: """Test that Decoder behaves differently in train vs eval mode.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, @@ -209,11 +209,11 @@ class TestDecoder: # Training mode decoder.train() - output_train = decoder(random_embeddings) + output_train, _ = decoder(random_embeddings) # Evaluation mode decoder.eval() - output_eval = decoder(random_embeddings) + output_eval, _ = decoder(random_embeddings) # Outputs should be different due to dropout assert not torch.allclose(output_train, output_eval) @@ -222,7 +222,7 @@ class TestDecoder: """Test that parameters are properly initialized.""" head_size = embed_dim // num_heads max_seq_len = 1024 - decoder = Decoder( + decoder = GptDecoder( num_heads=num_heads, emb_size=embed_dim, head_size=head_size, diff --git a/llm/tests/models/test_gpt.py b/llm/tests/models/test_gpt.py index 61f90d2..48a0101 100644 --- a/llm/tests/models/test_gpt.py +++ b/llm/tests/models/test_gpt.py @@ -30,7 +30,7 @@ class TestGPT: model = GPT(gpt_config) # Forward pass - logits = model(random_inputs) + logits, _ = model(random_inputs) # Check output shape batch_size, seq_len = random_inputs.shape @@ -45,7 +45,7 @@ class TestGPT: model = GPT(gpt_config) # Forward pass with mask - logits = model(random_inputs, attention_mask=attention_mask) + logits, _ = model(random_inputs, attention_mask=attention_mask) # Check output shape batch_size, seq_len = random_inputs.shape @@ -132,7 +132,7 @@ class TestGPT: model = GPT(gpt_config) # Forward pass - logits = model(random_inputs) + logits, _ = model(random_inputs) # Create a dummy loss and backward pass targets = torch.randint(0, gpt_config["vocab_size"], random_inputs.shape) @@ -157,7 +157,7 @@ class TestGPT: inputs = random_inputs.to(device) # Forward pass - logits = model(inputs) + logits, _ = model(inputs) # Check device consistency assert logits.device == device @@ -197,7 +197,7 @@ class TestGPT: batch_size, seq_len = 2, 16 inputs = torch.randint(0, config["vocab_size"], (batch_size, seq_len)) - logits = model(inputs) + logits, _ = model(inputs) expected_shape = (batch_size, seq_len, config["vocab_size"]) assert logits.shape == expected_shape @@ -208,7 +208,7 @@ class TestGPT: model = GPT(gpt_config) inputs = torch.randint(0, gpt_config["vocab_size"], (batch_size, seq_len)) - logits = model(inputs) + logits, _ = model(inputs) expected_shape = (batch_size, seq_len, gpt_config["vocab_size"]) assert logits.shape == expected_shape @@ -219,11 +219,11 @@ class TestGPT: # Training mode model.train() - output_train = model(random_inputs) + output_train, _ = model(random_inputs) # Evaluation mode model.eval() - output_eval = model(random_inputs) + output_eval, _ = model(random_inputs) # Outputs should be different due to dropout assert not torch.allclose(output_train, output_eval) @@ -271,7 +271,7 @@ class TestGPT: """Test that GPT output has proper distribution.""" model = GPT(gpt_config) - logits = model(random_inputs) + logits, _ = model(random_inputs) # Logits should not have extreme values assert logits.abs().max() < 100 diff --git a/llm/tests/test_basic.py b/llm/tests/test_basic.py index 8d18689..0565d22 100644 --- a/llm/tests/test_basic.py +++ b/llm/tests/test_basic.py @@ -28,7 +28,7 @@ def test_gpt_model_creation(): input_ids = torch.randint(0, config["vocab_size"], (batch_size, seq_len)) with torch.no_grad(): - logits = model(input_ids) + logits, _ = model(input_ids) assert logits.shape == (batch_size, seq_len, config["vocab_size"]) print("✅ GPT model creation and forward pass test passed") @@ -222,7 +222,7 @@ def test_gpt_with_tokenizer(): input_ids = torch.tensor([tokens]) with torch.no_grad(): - logits = model(input_ids) + logits, _ = model(input_ids) assert logits.shape == (1, len(tokens), vocab_size) print("✅ GPT with tokenizer integration test passed") From 9e2796e6bef7b7adaf00b5800dff70d34596fdc0 Mon Sep 17 00:00:00 2001 From: Sergey Penkovsky Date: Fri, 24 Oct 2025 17:42:11 +0300 Subject: [PATCH 3/4] docs(gpt1): add architecture diagrams and notebook updates - Added architecture diagrams for GPT-1: gpt1.drawio, gpt11.drawio (drawio format) - Exported visualization images: gpt1.png, gpt1.svg for documentation and presentations - Updated gpt.ipynb notebook to reference new materials and possibly add explanations of layers/logic - New assets help to clarify model structure and training flow for both contributors and external users --- assets/drawio/gpt1.drawio | 145 +++++++++++++++++++++++++++++++++++++ assets/drawio/gpt11.drawio | 73 +++++++++++++++++++ assets/models/gpt1.png | Bin 0 -> 47153 bytes assets/models/gpt1.svg | 1 + notebooks/gpt.ipynb | 21 +++++- 5 files changed, 239 insertions(+), 1 deletion(-) create mode 100644 assets/drawio/gpt1.drawio create mode 100644 assets/drawio/gpt11.drawio create mode 100644 assets/models/gpt1.png create mode 100644 assets/models/gpt1.svg diff --git a/assets/drawio/gpt1.drawio b/assets/drawio/gpt1.drawio new file mode 100644 index 0000000..7f1e6ca --- /dev/null +++ b/assets/drawio/gpt1.drawio @@ -0,0 +1,145 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/drawio/gpt11.drawio b/assets/drawio/gpt11.drawio new file mode 100644 index 0000000..9709f61 --- /dev/null +++ b/assets/drawio/gpt11.drawio @@ -0,0 +1,73 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/models/gpt1.png b/assets/models/gpt1.png new file mode 100644 index 0000000000000000000000000000000000000000..14a58df56a6c5d3248af000f36935e74b8427812 GIT binary patch literal 47153 zcmeEu1zc3?);>rH;-GX4B@#;a&;kMqD%}!8H$w?XDI=grsf0*M2oe$!(u_z*D{YX{ zAl>!f1B?execp4=IrpCL|8dT5JA2QL_kGuTRy=F%xuq)G&H%Z&N5ogwr*yYHl}EdywV4s7Xc%)|8R=A|nrvoRS)_FX?D(Vd-pY?Cj!b3LFHESehJse^Ex; z-9$;1T~WZ+&c;Sw)5X@t4td7WJEQJz>n7(2g;`v+H!-yVZeikfa0_l;UZI1Vnz$bv z;S~@#IAHFGdJgwb2UIO@9uAHh7&vk;<}Q{drcQ@QQZ*Svl3H$z_vAvxgFp2L@ zggQFfyMBL~nZ3>7><*s_gPNnBcyM>*0aatD%`cB?TADap96SKRBly$VmrO0qEl^M9 z7C4-+EfjU~;Y^$?peFXN2iNZ(`sF&JR@2em9=P8T0UmsDbc>X;w5bhpu~F-I_#8$a z*?;}oZ>!;GYIiu5f9H0*2di@fYU6Uajt2*voZV3i>uB#{XJU#J2B4o(u1FnJg+Yyx zr@I2G1RS$)wzUEFxPgy=Zre!P+t@qqFCVX&nHi6w6wF{X~rrYMa=$>pbs?9c7@ zR};1HfEt_H+nPE%x&!Nact;+{;Yy%1nD=ns^(TGc<2yWNaa0!s4i7>Pbuo=kvjK# zfHXA$4BsI>?d<_94jgD+c2b^iK9Jj{7hMF5yRB_6OwPXles>w!HEE zvwjUmKXUJ%B&}p`30Svp$mT^!@=&lSpran-40SX&bw0f4#~_P();@5**^=KMC9m|q z0rUM8{!Xy6ravM22%Kf@9bKW0-;n%0)=?JV$obbyon7r6tx@0n{Cwnc{Ar*U5)kBt z3j7lErraj{rh>rnL+$;2JO6Kjo=1R-Lx^91kDH60hY$}hm!QDm_Tc>g z8q6O?C`TZF&E64+0RJ7y{T*`P6%^tS5)u^P7UJSVZod-)%8DNGy}W`P5J7G}9ti*8 z_Lp)%d1n-`|5itgGL=Wr^82RN)Xmaa>oD*^e%1y)b8+wkFhK5IM202EkZFGhsh#^f zc0kO6yy)A`k*kp3{dC#>9_qS-wfa}hIyaz0NHsbzkib)c-M`$_|K$-AYF7U^#Bd7= zavTK!_hIaZ6fz*0U%?C?V7d;_b+|orBS($be-t#_KafF~+L=fqGdy6H#x_tVCre~_ zcqC~+;RpqmBZ&BI932UQOl^$pU1fecaOj2pRj?e+ z#>0+U4b%w!3DF!1xkpUU!K98lj~`TfWZwM4?&Bvdzi991Y+-M1ZwIyc_jRB9FcCVc z{0CBfwQo0sE=ALWG{#`lLh z3Z%pbUI?Xqf4=$R<~wRmfmH6$ar{_t@lSB=Jby++`%T>s(m~{|HW2>qgK9so`<5K; z?;%$Y8T}qe??(dHqq@!WzavcL72xB%2kpYL+uA5Lz6L<|2d>K!$!?^g4l7M=n%5Fk87ajgIwbVwT?BKn^Y zo}!G-cXIew!_&XjvmPWie?a+;~rgi4!0>z8vjwQ62~9;oU~-L0U;n$JU|t=QT3TaO!1;Hd&Ea@qZ0R{ zPJ$a%4?<-Ke=C>7`^z*~4d?&@+K9MhY>f_7{0NHvB?10YAb(0T(Z4OI?~NZXpCFLE z@0U)Fii+!yV>v1+J|5JW{~1{wI`ktTQ?hrmJm~uR3&i#3w1ND|;^O-?T>Tdci|=1` zL4VMl9Oef{-N}I^`U9ryzsR5bvRme&sWH&a?D#t-3F*B5hmyn38drgKCWr~&ulWuL zj}fvp8pYN9wZ22}2YiR%uh^siu~wvB*^*;D+<37oc#)zc=wO} zqrt>?IIaIhfd^`5@H+O#V65wy13E=P7-|_i@ z#P>jCe{C8o^z(QQ6}%nc)llrsQCjWim8rj#0Odat#}{JmK$s_b|aX#D?tprNL9 z#Q$8ev@?Y|9_aQF0sh2N{{S+6MhPK{4FAn#2A*HIrC*ZQsFgYjGNAAEV4eOW)b)Y- zefM6Zs=b-BE!6E#72dZO6n{~A_{L@b9fpwm=Ur{Qs7|RPmJlV6{~{s%(v$7ig7&-B z{<~cdYB5o%&#!nMRGIDQdJFwWF>wgoBZljL;7?IaG3-E(5YS}2Rq zpbq@TyM_BFE15c40zaq#@aTu{CjNn!8xJ7#yX~uonfKAcH~(Kw&;3Yt^_$%@Kx-qa zx$01f__+Bv1O$ZmxCQwH`2~4UP1q>=`4{xh{49Rr5l2j1cO z^IIJE@Aw-(lY)BMPd`X=R8afhqJ9qN;ETfxkUyYv&?FnKxO@Q(jSlVdMM*U`{h2r{ zEj0z&I)k!W(%if}5w2?Mr$&MTH^vJ|@|5y&%gV}XK{gdhX9RBeejX4U(c>6=9sgO3 zyKJ{@$+K^o z6i9mgOMpelw)V=?b)qKwMQJvPbb*u$CRoQo8N@`GIO>EtV@Ah8jchEYatE`Rmt##l z3tsN)7&og6FPT|N;f$D9B-%(ABzj7qk0m~<+b8#UwBt*FmiM-$t?#g6);fd4o5c~u zX@Uv&)N>bLN>8qtrJaFT6y14Z0_+j>Jy+Tv?j>|q^$X`94Q44O*CroNDq_M*m2lnM zrkXyJp%-6#EP2Tr?aT%=_4DQMP?-g0jqL}tMjH!hD>%#L?@8z&EPAXjRS3a+3gRtx zOpx^GWi_sYWxqvoJ`ocfTQE1LT_m7wMckkzP(dPZ*2zF!UMhSR>ig!im^^`&Rc9~{ z6O+U)kt(KyNkR9S{G@dv*4+kzyzS!ycSUZ@OxRdkPwy^_)br#RRJAhdU?@hi^##9j z7@?u$w^EaPH$|%FWwxR>8q4Q?W{oqUDsp3e_a&^fPLX&|HVeW{Pzcu964b*5*3|O1 z))W)G{God{&A61X!Pa0nv^!EvR3z)mb{vMQhbB#e3@dj-=w3J(f*^bNLZ;)n-8X>} zNMSh_E-Wv{u1&m4E&_o-1K0KRjLn-OuVyk)nU+XON*>3<+srd>i+^nSJ|)^1Hw;!g zk-a3PUtt|{CcC8=ECV)5E4a!O`+_r}9MM#7@BOJ9#%z{kf;)aE;0`d*{QJM5SYQ0% z#;!M(TEiRP#hIPlCDZWk=`NQEB4;lX_OMkE>1_xdAnAEeP`J}mDjFz}HypZss)<0) zw!ET3(`#q5tI(|FiNF~tNw1xTNOoNsaku$Fx4qpRD$CDp7u9#C97Hs|_7-aRT^F+U z&sqV^6Wk=<9R9o@yK}wd1u(Ec4qy0rTy`gJOdM0v@O%a&nr{)WCzFIxfv$-_OrGlH zvt?U$5BflB%`)TgJ~&w3%Cwg(ga>c0>p8IRD1G$FZc0Xp*su`Fi|sVlJgM>0tffGw zSkt&ELDYTmqhf-1Hn9UXeGK>G_u_uKUx&5Xuk{$~wpH$|&Th#Iz{3U;^OP-(Zu-KR z@X{7+F>&|>ZUr(Q3?=tG7O+O*9$TMSo}@a4bY6b19dT_;6d$f^Za-JnR~)#>O!kO& z6M9R-`!SJRq#I{#g4Ti@64jZ(jJ&u-&2Du;6n80jpEb?&y(GBTDc3Uda?yN6fa8q% zWk=uI&%A)b6E|$I+S2a?*=o8*w$3qis%Jrd zEswcJ%q=V?u0Jp%;8^{{$FA31KqG`_o~Na!I9ocu)KSkll3)fY}`s;Om) z3(|RJuV#ISYHk3X=^>mt2o_&-BLtdD($!cM7L@w#Rv8QwKD!z-mLKkgz4E-?jNpY< z-f-Re!ib*`mfO4BlRbFhuFaQ=loEXwnoS8j{k_0FMQZ}EmDsNm{{bj??Pcu?h-x3qFm4U za9Xzp@lJu&>gjypQxj~3#M#?nIuh2G<+$Y8$YlUE3@DsGezJZX6DNDr^y!MzMZ2J! z0q?q!YBC+o`;7!?XiF)#UrJ+MK4hQl&xz1MXLyUvB>8mwLAO7czAEo1j@ z8T1=VCJ9rDjt?13X-V7CYCNjETekmMeqx&=u4o-4AtB zfv++q#v5Pssf#g?RHf~EBtA%Q1+2!ioHLO0pcfi(tO&`4Sw;v;rJS1dp&B=70MZlQ zJq=cqGk>0HF&fahsjVRFt89c|LE7Qtpz|Faz?ZU`nXM6niR-I`VB!IW4En<-o3bLG zy!U@k{=e1!$7|T+s`u6=N#4jCZZV8|u7u!l7GlOj2TX@`MGb(-z1I}(F&bQfhPSl1 zsvC0i*1rHTYc1^teIzX=PQ>Ie0G8xT_3;dB@OI`!kmxH{-JB3>SFjx745Rm!&F}mu8H;Y&Y0Cvc`RnsA}|M)>SfmDqeLJcSRbU=uxHN-LOSGJT8l}Za7F=#N`WboUrOD$w0?35cLV9 z9jJ1mZX#~J`;KTlaogaZRwKht2BpTL?Y3C(z|191yvAmAQoqq4ThL*=iE}*`Cv% zx7?G0oEUAczr?&hb_EfzHm96fDN?#j*(_<)q0?&dDM^g9CEm9!LE@?L+OEYQ&1tlJ z9tv=lN;XKxb!H`|ct$)@vE}B~JnybEXXRrt^*jh_{k!fvOg*NRk90uvo?BWNTTu{q z%C$~-s#RzLdf0nbdO$K+x#T8w--w?XsFCBG>7|2I-~!%7C8SkE2WCVaml~NAL8~%t z&OUiu_8wL;GI$0&{}n|!n9{z!qEBlz+l2}T5z_2T_229Q~ zSZ}u0m90W(E3zgT)h`YEGH6#|tAimerzqJyQ^K7XfI}&;bW3hroF$C$9FKX+ZD?|u zQBSvvRcXrB(U>1|EOvfjAOd|QsfQ08fv#BgckS_v=Q_vX#bOWOH%obnObw_2tnN9OFZVe}LH2{H|hZ3gM&Qv!BxhX#iWJ(Nm6 z82|wlPT-eI_aya+-X&U6X&d_wCT2ORnC(Z2$mA4=REz*o%D$FU&eHI{o9eq*NKej4 z8gvH8-Qa+#dYu9w<6Jm(z3>iP?4zKhPMI?~Xy-4q^%0I`-J5Hbc^brPeo4j$H@a&a064sy7&*S*bmM%Z~ zH7T`#)tFg+$H{Io3>q#B*G_+`^6@d*1{P(Y!b32VN2M_#6ArJ*UYi^6xl6>{iWnRm zj9-j0)Ctjfjfj3EH}auN;jw@ZdyeN|p^s8cD&20$9!=$l+p5JnB}xE*GJxVjIz=XYh$eZ>xT!!>i$J~-di_HdK(Z;09s_hM{B@4OWTQ>h*oy-8XcSF5V;TFLh~>#C4Gm zXUP+#qoZ2~Xby~s1_Swc%;Yz|$_JrL`1||h33VAmiOI<$Gq-Nt0;S4FY(mVMA7fsj zF*i3KQGY)XA{_u)c<4IQyYQ*Lp4nx0dt=<7(z7H^whNb4LjmHp(ul>Esfxa&X(RW5 z@S0}=B1Z6q<0!B7!xV5m#b79eEfDP$QO=< zMf7i+%pMvM6hX=F9RPECsM&2kAc6&&@&mkK?+Z96tlH=*T0}DVh#>L348bEn>z9 z$M=eEF6mp4p%cN39T=9urdPeUbkbtOM?>&U&#(BxBfpS#MI0N-Wqo3~wW-%ctF zzqzOT^>dkP;fF#XqbM4#i;{!2yR}S!Q1GrM2M9LGc6D5xQE90zzc`R8THj z7%1Tj2f`!^_KKS;uRoOl$@&6)hI!t3h=sNFR$GR8=Au>;`q_6_bTMMR1(qGR>O*NW zD{-)a%S*A{m(D_1a^l0OzR5`&n9tN3Od#=gj?@X%0MeZBsW6wcj`O?6L4;tnBvT-1 zky1CTmy&qX5G&-=o+NWWfA<`$y{2ZQ8?Y=d&oNkbmH;Q}I*c?i012cSDuF~hXBY(J zX2Hr$%LSMiS9-496DdTx3PL*_{dk>PT7;x8T)u!5*racAf;*>DpEfg4w5n%{aRD=5 zm7ONW#3{UStFb5TLPJ18?qwE$yydx!f#to8W|VQGH3ggClFY91evWDfq-qB_YP(fz zT9@1XZ`u3@Cnc*;+v~!aIvQDB3N?_oqYBwwO+aYnNpn7e2=G|paaDUn9G`bGu8e8K zTPI;U3~8KYigm2bTVzhHzkltvy@8L>ZZF-9FK2N{{Ej({)cV%n%1Q~vVnL>Bk5D#9 zCwQrV(q8#U?lQKcfQ)L?->PRuksu`1XZSNu`NGZKl8v@ZU-OoHNUZ&UUs~Q2FL(I* z&bB>Ws4WXZl66(9F_|0ks#@gui|p9cvwI`&J+~H5dQV?F1ui%>4v>S!#DD?#4KcmT zH)2#vHLYz-r<6f5U=bfvULOZNIU9qBAqNMYmJq}HQXu#^lJFuBfYZrf0$hXPvcvqs zXJ+unVMSQG)RPmyy#c-;F{D*R;awwvFI|Eu#iL9rnPB@awW9T-SPW~?7TtEjf@ zEdoq!De%0jJ*`i^o`qb3wLcj~@)vf5_(}(fFrc^3LE5gu*~6iObbu1-kOCVuMj*|} z0EXG6-UsI@5om=Zp_QW9K-9^i0k%-5LXF5M9?;4RK!;`3ec>5X=gpy*IHPKh1{1+n zfC-kCX=;NbN8S`_=d6r2zk|Ct_Xt2zfW_KyyGTLt?&}DoI|PRAH0PlLaVzYx6lN;i_AXCGup* zJ^&a8^-+Q6Ku*H+)@+{17mm#s$O9}-N8!t7BDerj3!b?Fyf$z@jLrjM3y8Thq`Tv; zWv(*-Vo|ym2}BUMfbh;Ip9k*c67dqamt)3;fj&}r03|W`fx>CL$9~`x^9>tgJ7s=$ zq!co+V_yT3R?`~vdCB|(atOWy&(QG2<4v!A1*&C8d6&DivBA5Xh1k@Q@|C~>?XE9i zNce1DV56Xa#8`s}k7gb2$`p(|mE^X!Oisvjm(xZs8y)1mwRd^Z2xsmpGxcsXumH0EWLh0`r zRJqMq5~1VLFr`p?FJZy@qTtM2=N<8Iwh_X};qB;07Bd>8FYH#hUHYw(sePy@ea{G~ z3^xal=jL6uTi%)RS63Jt>>cuYoCmA8yf$6-_TiA>=JhUz4S6(`luPt6H1a0If_B%- zaaXsJhYTys_#IYXM-P0_4zKkTn6F77vqT#uPuY~A^;kf0{jH*z z5t8g(#pU_?OyCr5ls@(6JmV$GSH)9zhWa~Rs|2l4-rC^xQc9K8yAo5?J#pa#9Nv?F zV2ZZnx<6=mv5x{Q>by>#Z`x#5Kx@^10d~p|maBC8j749H3+AM1s(di!0?}hz90X#5 z(Ioc@AH;3El^PPkaT(S=Gtt9=;fwykGAGC6SAeCzPggSHckw9t!gVt2-A%1~H%@_r zj)BBIVPt~#n1eGbV&1R=K_iic;f`a9_FEDZM%1;vz}0*WwiCg>|* zn{S|B8XwW__`B6`8%XMZ4Z571YujO!qL6Uf(zau0_T#B1LhCv90NkhN!u2(p2Mzre zN#3RExmHBz7rUP%WsAPQM%$kpqATV+*Lk1wwD;~Xg=jsf_VOMPtT_S)!-GIF{*${q zjmVl^eUN+QT@qeW`6w2+_K9a5%?K7LAXIa=^}|juIw}5kKijp?-!o!&B?1#SUC!Qa zcfF9I)p#j0c%O}Z&z2vn1{kY)*3(uQNd4r(gIFYRFbKTR_I>N5k(Ba?m%{)8k34xk zxkOI$Q;7?_2JryyF+3HqG$H85=1coYrs@T|!_2VPn|oAbj9}Z1_r^t@Zdv9AowmKl zR$_{VVC{P!RGXjhkd_s_sDDB&2epo(SAsII9>gJMH2 zW~4h%;lHin-QFyzZcAFkg>r3_et>dSgaXzMH%h$`aB1>Vx|g|uA_m}F6!9kq6P;46 zEXKe3^Y+9)m0FmYk1s_V-wq8xNETtbb%w>iIt}w{+x1w4KxR%o@_WgI@OU#I>N+0S z#noVaM&+4&%~0ak53k1g7D-ur^*(kZQ}U`VlQ*v@$R!-n>aInHX7Eofw2?K(-d!?R zBm{43virgpU3>vf3rOk9)LdWBmK8IIUIDUJZs?b@&R;+876+JISeU``IeXOzBL|VZ zF;2#jAUDg@1(Tb1`qF6nok>Wl%wfWiuUj?GCC zT3`6PYJ@&Uxe}kImGf8rb%T^5RT| zbSDK6X(`*_%2*;Z1l+N0^vmBO2z{WG1vq?YdZarcxKqWeiB-3zHDJ(?50*O@#!b$h zNTtCR@3(nX$GG{6`{S{Z+M&d@pj4LV`jEYB`IXY%ayts_<@suWBQks>iuI)H`7MBx zp_gXDS-(bp+lM2r=1p|dYtY#Zz^gZsG~x@07pTQ0P1OvNM;5lyNr+Z7LT41_u9QvmpyHaSgvh|785Mp`yB1#JvU|C zR|uu>_FTiQFIulLzMvtqs41)}9QH=k&vO1;_uwOBg->;8@Cm=Qp}l=5;P9SwUMM^g zxob5EnD4LIlV#ac>rC1D8bFZ^t4QNPh9%N(b&gmhw6-8XXD4~x_!7G6L1&`NJXsBB z0Kd^5jON|j05-7q*5Qts)qJIO?#r)v%EAVzu%oII;+<6-d z$6jjS;gy>#S7rp-Wx@Vho z35UcURf91VUfOksFO4dNo`9+JRI$dzksk0*k|rRCg?I%?DBUi{;`V6t?ERQpQ>3Tc zUT9yRi?dTUe!+W~TjXsFyHJ0jJ5PtW<71o9r{{9s9+@XUPCe7NiwaQm-`;D7bA5Q|t+r z(O?hM^l%!4_0gB5sEB*Jh2pHuoym?93kWEk-YT|#3jD8nw+>X z$i!i!t~SO{;_Q`E13}lrE7UC^7U`>5JEES%&E^eeZ)Xxk{2mUh4vpZ59U6GI_^>e1{G)H2ssLm^Rj+}Fr$=oT4CF=G z5M-QhRC|5>gOU$jq@d1EW#+sm4>t;dqHv|Zj|ymi#@T%Bz2bg(M)i@)&VUgI!Yul0 zV9S*UYLh-h?{1&1ODFNt$zB78&s|Pxo&30Fe-|jGLevOB=exwu;3qvI9o* zx-_rw=+C9@CtsK@J%ug2*Q!{#bjO+IYQ|9dfWD208@dqnl1y~{%yVOh=`oipk1H{O zD09q`*Q~WsksDO$LpI_`CcDMu6VY&cRd4I5^3o0HrkL^n>3r4fV69r=%|nq>nB3^+x&NGc$3d2nnhC_avo&LG|fdzz6^(iz5O z`=Q`cEQI@oensH=f)6#O?Jj;tC;k9`uRwjRJdt-G*I|wX9s9R+7fa96eIeu`$v{zCC zY`*s`!{Z7VQ%F3dxr2;d4L|OqOO3%Ot4!u`xUVgcYZX>ozjB*7FJM1_R%})HfX@4v zUwF`CAkkDe*;T(AUYBmF~6!eUel-CLNrnh99+n>NDXU!p{8j)Cy zrpCH&$bx3TAX+i9RDx2S?EYL@ zb`kuV<84rj{v?w3sR{uB1hhtd`KILJo{-4q)r%vWr>jm~^geUWl)@L@7B4npzyt8f zuU}T(n56_$Q}0~@jMm9$UZ?qyw9p3iH|V^~Ei${JSZB1N#r6D;GZQos4l4!^jZnx{&Q(s5DSPBPAu3=dr|*b-e)3lr_AT zeBd3EY~J!mHn;i9-j|Anq~!eugCr#io?s>ciQ;-W52r8?CN%pH6GY=fUvV-p}U3tkT`M!hFj&kC`T zi4$_d1{$Pff+_h;np9JQh-W;%qBYc)-`R3~EMf~b+TKfmsLtd0jF_L9Wx%1kr%DuaWgC(H+D`v_d^ zu#&PAOz{_=+%xktDU@ZJimPv9;3z%2LNW8XEUIeaW07rB!ccFX z@%nU56>N2012L!q>#zCHZ)3^RmjB>Zq%${9Dfsm>aix1T1 zLlHW~d-IEM;b5f_DRrB^65RWdoYhZcsE{5Me|ZLH9O!*bO=2}`UK*XO^4asp8$EBN zGypAc5WZ@is67(-xXgld?5ge^PJ_y7rx_(t_s!#WFABL`y3fw^zcP3i4fi+FXk9(6 zZ!SG5i-l8Y!*C2C$z)nEr=W_H(DI=)`SLUqR3i@Jd~BAoxSnQD>{0?Z^^5DTd~xH& zUpY;K8ec)4R%!a2Rfxy8!5y4A=ahSM!3r?8;9y;TsSbgw3p-l`%}a3sg$g~x(>*!q z$~o9K@n>!Wb&a91l^Al7H&lwW5`NaUn$1rjC#VQ)26=Ik&zpBlT|Hj8cdCs>VpLbz z?HajVXAgs)A=(BM>a9fqPFa7MyPmwO?NgkszQ^V#cM%Jx4=-V~DayDrUDNy!#N08{2u%n1P4JEC?xL?11;ds!=m1h_a4lBY=~#&q z#OPg?=|p=CMxk|Q?T6sZ2Q12GmM1>pObcY!EvVKHs^#M|1;sXN8t)LnusX)C`R$c- zu!QB%3A;PXESzEFG8?`m>b-bewZ3Igx6gUH=bj?v#Kb$snP^-PGkUCf~R_(kv2wT7>?I?`^}%wTxtkwHyWh#z^3js+zY|S4ZaP>@DHuu{j8hk z*hJ59b<2!j`TbjpeuiBD(UXq?$ls?igaEZp35fz9W?9hJdq5amGicZ&F5O=AoN9{C z2DH{4murK-7x#c|7t}%>U2T-9A~L#UE9$ae@74_(uEvIVTE6^xb8&(`k~0=vz-bR z87q9L#pPvKaPodcSLw)c5JMkH37a$w)*36MRcJ-hU*!`D)JEiP!4U|=cGTN=F^?o5 zr1kV4iV?Jj0X4563SR#<0h20=)wu!M01&lrR1}&2NvgUb=+^4&1E#B#yR{|*m0sIR zy2ZP?;^Z4oFW!dRtkS_}qIvs9zE<45r3r%cRv2@dG;K~dQIvt5#w4HNM=QUuy8Na2 z0hQjzwd$b}Z>?80;vrwf@9DbQJ(axw0oE{c3zRJ~@+sBnE)_FKmVheYtB)%plA0>d zp;qII6WgsBKOX3unZ&MX@^d+9x6sFEF)44`pKFQ)QH#^~l&DE{Z&QS^C>uFje8#nX zQYcfn8S#Kom6R`|hxkNPOHJPibK(HFRZ-}?gIW5g^ufeP+lyQf^4Tqw7l?6y;#7vH zo^I9`IuWt~R^~8pf93HiIbWBNEw=L1Tz_T#dv*oL_R_+WySOiz>6WjuU^`P+-yVL> zz|7t6bnNEIulHt3UXILN+fhz)uyvjuIH@kLCc_kPCB3JBBeF#||Ex1k}s0qj}BizPx>;oOX@6z^3mZhD4EzQpdBa4qrbBWohO4)<~=x1CiRw zy9{;K%HVdO0QZ1Vfz)}rJ2+H&tSuoFumm-qKU4eRkp!-Kr46o&W;iC#y1uTF6u+FJ zLs9OzLwItUPj-^<8jEs)T5pgf_TKq!HiA&n+4azo%9qRxe0-R!V>z{rE=_~HwxSx% zx&Zq#@YKDm?y-mqy?g{rs`8=G12JpR^3;1W1x@y`!Q9JUu4*g>r)NtG>zot%U{2Xs zQ9!SOb{5|gJ`4YB5y6r6cW`9V{Pk1C$tX(GLEf8qd$+v{Ldih05P!bs9sXjx2+8D1 zv*;)-d1JmDOxv$a5R1sKr3Un`&6D7FNU?BS3>miJ6Le3Lomk->ps7fbIU#Qn_1MM1 z-rB9ZQFQ2mqgR3}m|r|~ocsjv;a^N^D~V(;`NM5)$ktr}K|@bdE z);yqus+uUHet^U5Sy>-7%yp)>?@zoiH0-trd0Zn2&`X0F#ke_Tc5Sb3v63m5sVLVD z(q+D~i&SyrbROim+I{{NY>3c69!vr@;a$WdIe*K%c$FOg>qO(jV>tIo*#m*9zTrq+ za6<&EW^cX`HcKB{^&@7*Md686hH}?A8iU=L>FFjPs7cIrermf7)7hAn296?4DqRp_ zx3w}nm#0^O>sl=2W`Z0sq~SanO@2VY9r#vJ&9OPUS4BnxSA)u&o2XQtUBZfic?jLG z`WWm(Z_)Sk+_7zYM_Bz+=)w&7v=Ge=%UL0?X!$fIk9qU!D#I)B-00pSA<3{l&)k=V z(z8=88*I{{FS21@8%#fy65R=F7i4*y!xb;;)jUME_5OXKGyw>wkL)3KA=OZ8#YfnS zu{$T~U!0LyB=(Fn0+5GXM%A}q>CqGOJOzI3+0cbv)r!+VC(B4HMn~tz2%M~dm>w3uRoR5j{W3Ax<>O! zCQ6*zVRwS060BXE1+i42s+4JO#Ihbz%V!e+s5yO%GCwb$HGqi4S|X7u4iVc}TfrOM z9UjnIrTGMp$0$8BzpV!{@0+QebnLH`T z?ka^Y=_(MY2GL6N_s;PLrf6Ca;KN-a-jkm+J9Ej`exULx5G#}m%tWmc(2CQ!FMips z>f^)#f%Xt2k{LFR{JXQBS1J?iFh!Z0FT@Yqy`#AV2zLCKL6Snure{v|9e@?9O^Vhk zg-R@%UrQnbl`pfTA9*f>!5y;VPT{6{-38^r&PM}#bTQ{6rFyO@QCL6m(*2V(qefrGP z!-MNWo!L|##f_QG^#z7rnlm=fsLKF%73#UMcpII!i0xWqL^Bg^|DEz3cFREGx3JA+ z3X`VQEp%r5!8~o{nG-c{?h$QlL4k0XML7v`z$wft&k*eqJ8pLuFZA^t!z!Jx{S{Q` z=;+%~mu_$$Z%CxydWhgCD!7f1Sv@fZAU90H$9p%n6s~wiv-7ceL{fl?_9|@m2esLMTt!6o2MDtBB8GoQmEBQ=LIR3x+*QWNk_Xp6E7u zFHdBP@Ymn!hv&@=(h##=2TQv8a`juEF`(gwPHF9?%HU9aES@6A#v!l~@wEZ<<(bvU zH|s;-a9O=FSVKZT8|0Piin4RUr`P0`-U^u)x59LuHsD}ee3m5#7lgaI$8g(CbeLtS zJ$Dx_8b?~d9D@p3iu(LscO#t0HiO#{Cp32>$H$~&2KAFEWUsACkrdzE;?DEJtVj!$ z@yj4t_eu+i_mzVe%|H3#=f_KGRKH+=fnKx?@hRN~gLrO{s|(?{ZY@Zw*0q7nJ6}!` z?uo4PP3k+@Eq>^xSqXFzJP&v`mXe@rSwpwa%Jy`9qDq%&&!Jnv>6CccV3=v$t0h*d za2{;(F_62phGR7@c9y!eh{yzEn${HRs2hgqS(ji7pcMJ9%~#1 zSZ7BGZ9T(6)bdgAwLmbt|El@Y zZEtoVGaMW{gEE}C{;FV7(3E%XK%O}jQ`b0~L5o2BIvjpJ(d*CU zn4g+~O4a77*IqbrsGikPU}yt3$G)S9=H2<=Gw+_|`OqB119|1uVKwt9KT^8rq3QK? zbo!wo!@aMzu*C!e1?|56+xN#e<$d9BxvOY_T<)#%KnW68>;u1SQEUi{Mn0QPXU-jK zM8bN!vdx}!RFZbEFWlWmdMI3BFH6wt*_{NhXIrA%&4{IO&c$fA86#ewzIdO~D3O@f zHp8c#(eP}M;Ob$Lk7v|sN^DMl^>|rS1DlxVh64fZl<|d!?CiZS%?SeFHfD5NE)TqJ z8%BW^^T=2{qAmh1x`;tHq?!X8r#_gf9+9jDS!e1cz$Mxi=I;x?&rW4(TWwztR<$E2 zV?ICk<*`sY0VqE>6o@E8SebK{#PqcW;?pjI*kZ~aVg${@!qoGv;;O>B=&69jCsPI!`HxKh7CfkDt(Y$vlCkl#{hI8je#;E7Q%^2OD1I=CkZTE9Q{6 zFr$^XFt5xduX)~#6f9a)OG|^1PuXeEvU<9b=UoKV=VnRLdYyvP=;k2VjmmIqv&M|t zOm3@cmh0Yb6ue$$gO3Ls*!q^I2{k`y;Wx5!`Umt*6sf$zvg30SBOU_`+==>cleQ^P1VDMASRsm#khe3UIV?-B?? zUSpWd#g4uKO|ipkBM#i%`l9GXOSOR}%cKb_ueFj|Fi)WcI%a_AGWdNXz`IBRi1PsD z&wBNy!r?Re*vI!tl?WFpYT6N2bHQ3kTXp5o2 zJh8M5nn7g*LfCFa>4nv~E0iPmDb=lqS1WY4%gXG=27ObPxEwa!Dgz`~2MSf*i1h{g z!%tUE)ZIm-dFOM!mQnd z3(iH*QN5ZHXf}t77q!NnHjnh5by=G`aY;q+`CwBZ7JiI3LO@~bB%!=z&_kLFxfctv zdQGIYf|l3!itOL+wn#RJ;iSHn{9G+4O5BMqW4sDBfz6Kutg)zaF+};bOen;4bKryW ztMVS*)wEfaE&`Vf>6aZ7_t{;h0%xf{C#U4MuSXFWGRBlcf zf|J}gTVQOD)9I4g4ASPZX;#Z63W)(KSIC}nryNO^coFtZd`iEYK+&u2jq+m=uW}<; z7<$GzUQNH2FI!%1h&&+eqXW`D7pdHSF`W94x|V4&{I5df6vw9%6I)%+H3hoN5ft5d zOfCExfDJ{i^Nky09^tug)n1W7AnV^2&ZzPiYtcrREQKryT%!iWE%*VCWV|z`E0ylhdr~Nq}Lw!U(5_Y-3^ zNfakGEb9U|Hlek?B)vu6BG1@jgFv%Hs=09`b_8CqYAJLvORM6{ zlL9;Zv`?n(PD%uwwkl-2%&o6|Crc5-HRR=LPVn<$>NG%uPE?iwgT1b%mZH{C~r8YKHsJZ1hk_WD$Jc2kwlG)K{< zzwLO~r`7HCoyX-Lr+vD&^f^5w0HVef>b zR-rf6i-fXZ^R@&>*n|j_$?h}g^&-E*#@eEZfG{z712#?{TS&SA42rf@KOsh6UU_ga#auhhMuYV4jr{0>0Obef+!M-7MDRH5CFdcd!b*9z|3*`!;x ztW_CI1QE*kOP9KZ9mBEzT#nt7zX97FV?BHAAu;mhnekBCJj($J&&_3Sd=L*^Z+8WD z2yK6xIceni5nrmF-60rkwKMOP%aSnD6$9UU#{Tmi@U&Ll7V|YRPZ$AE9P#&K5eZ9i zToF$Hm~PrTkQ5`7{*f1!WiG+?WXD?AyHU-O%Y7A3e0sk3snMA z(bS@jW1XkHE%3^Eq0EBEUKp-)Gc-&-ZZmweuvCR^YzC5b9cE``TeQpqtO3Q%QpS?H zSdFY0e)0%j%%|3jBJ_pE2v#BRm4|0>2O1v7S=8;eczc;Ng=ibJfzCn| z$a?$XGe%8hXWGCfP2qh}G4s5jK7Fc94xv?Wxbaw`N*c*@BNorU-6_qm)q=_>Ib z?>vM6Z3&>6*4VXi0~6<_z~~$GiqxYxAv68Xw-Vy(Rz;u&7B{j!Hl>O=4s!{wZo4eH zG=4cZr1F)MO}pfjNcZf}OZ=T8TDWwi!OJbu9IabJ#@>=vMfO8LC8Rgk^F&)u@AOES zVi=E;65!uoeiU;272&Om_lOoK?${(C$lCOQes%Iw4RddGxj4<( z6W-35UT|n0G*C!5LBjc_gKeM`UkL0pFMVY>g4cCQ^i!q#iT;j?U|T}b3SX{U+gym# z+1p$$ZIam7y?ea^)X%Qtg%q>wUg5f!iDXHuw1Jmr{p51z+5krzqU2Dt$GxRbLk%{` zeAqjVLqKyUZQN%mg**rPsJi#^8@;j{qgyBQ@7wOxn1Oj#Ybv*1vitTnOPz~C(x8E% zMFaQB$AOOJ^|f4asC%Aic}q-zRMd^n8|UKymTJrcBY&=cVWhVHb+iJ|jxiJVAbzK8 zxD#Q(`ngv_Vy3#1p-j;+my8+MWV+gj1Gh=+$%RT+ZivR{H7uG=cg@bsq`Wz;m<%{TQ(E^@ zOY*bf@5uoh$f$M|-A|ZSFO*`G$9dP3V>!#JjY3@#z~xguV3S9%x!p$u@Z857hPNvt zZgb>>3F7m8m^ZNbQm$X&8A8^UK(88^b(d_eDm5K=0i*6Eb7&Zcv{`>!uCu^fmH9=3 zs++fqpVBvky+x!)w*pwew(P5oT$Xjs?sq%I{*eH2yzMDa!Qvk{2lTF?$nGpAnn0(w$+Q$XnkX+%Q05u_0Wqy_2jkd&@(OqOe%ea>EMf9LoY*Cp@!j(o-#&$xd# z%)dzcO=T{$Y9!S|2C5|#vU-7}gQX7#3{!k){9&8{xXGG)f5_fP2yVWPP0##ZEck2k z`JAzInGly)Ee(gBRtI{s?$`P)BkRZXNBgVHl@Fxa7;o;hl>O_l=f09Eppj?78$J&x>^@rDE zz_F&Oxf!V_Z~S7!vbosstB;k+qdhi*D@`%CWNY8^$k=_kAelpml6c85z3%^*<<*g- zcnB#ar_%&S;axd&%!#xqfh!GMP0)>Ne@i#b@@tD-IzST( zYS)TYgL0e6RJBe5c7j92G-D<;ZAbh<`!ZqHypSef|DB}lpphz++^@-f9QEAAeXt0jBOmU?s*^%P)v z181N}+Ywz~z;*Zp2V*@d6-M4%{*j+xlqK(le7b9*tUx5ih)scc``lINmTO(gbx4K` zodS;!vR{EAq?;9pQe5~Lupo{n;t~R%zWgG-a0UWixXNiX(2-b8r$+p|l$#&9pcmgv z0U$aGn&@ZhV%wqNrj1ejQ=d^aDRiHk5S(}S=0No7nVt?M7i@U^#+Oog2Cf(-fuw3B9%n9fk9EjlM*iU+qGGz+3zR=)pAt}13D-UmaY-| z4M!y-r!^8-%IHK&e5? z?%@E^9SBK|fbM)H#)Rm|;zoM5AWp7e(LJ)XOT`PTPI57cA$xY4LZ$%;b;(iDyAB!26Mk$MMk@5)IaCA`qIK13W#v-Utm(4VrsPQtc5rG@1@U%0 zWI#qIdgV0XMx*fFOltrCs>y(J!lk6;2|Bc7;Y%Nx_H(A-J~s#>1LRT}7%sA~5NJvp zJw*1KPiz)&Cv?M(eU#{(tL1)P>CVeVm1QVk)R{Q=K_4S!3fwj+QOG`B=Y2)`uB6Rg z$)7d)>0PK_3VudzWMV1MvJ%fZ{Cd&ljYQ=kt8y}w>eWQ$VC0f%-zuLG_cev@U*`*-X%)lu@N9T{4jcXOZya!~wO()JawyUd#AEe&JXMv0s zuLSnbV6-gHB##ZXG#s7-V%SZLU@V`lqhh8z-ACk-lh?$GDSG4gX6Bpp>VgAxFCO z7HCqbK+?DDXFtK91y>Weh3YMfVJEIM3l%TT+Pc^nt`!7yEDmM;TlUyARU~~Jhb#PP zR&g`X@d5P#HaKSp0}{H=Vp{4;Xv!6&Yo)(oozHNs6`Bu_cb1!=VUodb6+drbV_1&% zL0YP*uq8ZbOYDOZ6rTFzRLd5O0Q#h>M4+k5t`ladQb^aG$m?61fK3T57Xa1jm@uT@ z7*X}|VupY9)1c^qLM@B&qL^F){|%4( zdIL*qu%&F9ef#K}Dds-07sJ)qa3Q{#)UU+pv>4VY}2Wy5iFV-X}yB?TIy8ERfRS%mI$Rh!dkFvR_&d`uJzYb~Hkp>ap zxFq6IpZ=Vade=e}=&P|VKEN(*J^V1rw75VsSPBRjA{slTxt$le)ol2$RjfO&@aZuo zuLU0EI#GaJui4lDmLu_Ff7dkyJ|;BenO{gt7B=~o^TCg2728*K2{pbwB`)wVdxs#5}SB~5IUNVT}r16 zqSs-HYKjg5@=Hq`#AVsRkGsaw+}9ND0Pb*h44esp@YEM%f%}{hiX1O`F|AcCw(Exq zCvdt*Dn-g&@L97rSw2<$5J|oZ-vU+y*L7+_zo|cZ|LP=@+xd`9JBOFjG-P~vvFj5v$qR*W6^#1le<>ou?W%hpO5(c4Dw@yon}X0ceBm|W)Iw+>(`^Cp>I11P~sS={tp zq2Y41Kax&;2)Dnd3n{oNmo^M+Cx6=S5w9DX1{uh{qH5gJ?(38~ew|O4848}(GTV)O zU1%s!b9dI=pPJAF7X?PkyhfP*94Hq(&?~ z>}H9@M8J)>MfSUr%;O7)BDo`(wHYu7_UOh>ZjhOMP#jupMFj;#H?b=1nDyBThI=CgPr;GXmTK>C%a(eC%D{m z79X4bX(0qgnUAX!@I10izNrfAb<*A;FOJW^6;Tvj*wqvP_xTe{kF%W{D7%Ua6b&#= zBg6gd!?PDrbaC62*&o$PueK`aY>f$1!7U99*SvRM{@SY3<$jiBXA31}P|I)M-?epqb)^SuSsQR|jkE^zg;2%t5j~Rc=_S4bWeOP^r_h!8mf8W`OG%ZEVEOI=pRK zzXOl1uiD=JOCSmM!naSa8-*W_ZSGHu-J$QCCPTW-%uH{b@v<7XiaD5lCz4cviF6XO zhSNCfLWwQZ3j?vq1@-%Oj)v>^5YKe?;s?dbJFMGcX#_PL&0BYkVy!FgpE!5meMA@y z-4bx^jgnR1&Q?1?*Ml|+D{EhDk`cQFfJN*N*ML`Nf#u`!2qi|EOEQ$r7EqNaXcEw9 z^lV!4lz;#QbPs@dI0{b)?iEb>0#()S@MwiCK64_!Z;~XlUDrq@KWgUhX%Ec_vBO*HDj7?IHK+E*E(A|hL-E$q-= zP0c7tYICA+vDjQMa_zYZZ&p0JQqP-eum#dW4mHs3&m-5Un;Q?`@aHLV-{=;}UZGEQsQug5VB_WvUr8dX(mpK|R zkf?c!qWAtM@uK9)-3C2D$8tx$*d6i{ZyjVHXn@j=Y&eJa{301HWeNeo=^1FZ`qE~Z zVFN15qhfcERg7oB=t&k3Nst)q%{b5>$lD|XY6|; z{P{iI_^cyayB4Zhz6rK>iV48_NKf)14a}%Kp2ykLYa$(hO8mp zu%>uUCW>I|MVGAiJZU|6AopuC*%+_^l(u(C>dM01oi?p;2**pyWgpQEwH>WkKR+SA zIaQD3ww-J07C>5$1byI>mo{2)h3eMb^}?fj8n?5YGtq2PUwdm`wCVb`JaZ)Jb4q$x z)UgugCqXy7AaIdFA#37~UfdN!P9vT8x{`*D02v&b!Y9&-`A$y2NK6J^4aDKWPh>Sm zxojpISe+Gs&se;+NalSoUYNjmp@(s(^Z)xG0bXO{u}HH6i@lQmA;MV9vHS6So^I}% zE@wR6%FdTZ(9^l}J4Hs^acuVDH7r_xJ2o%-gOM$rVR zet_Mk%gK}f%t?CBB>T5F8?d8LaK){~TgCoj2M*X^bBqfCLikH`oP+yWZEzrckGwCT z8VbM%;AD2BtmDrEu>VTj%LHFFlP+*O+sCp!=U;D)a?xt;6jn~wigINng$BG&*W3dy z59!y$5OnIw8{o+6ONsYE!9#t|Q^1Qu0Ata2#|L@8`mSRV@NJkQ_{+|~jI;YY*g5@W z?8L+nGipc@8)5<_&Wcs~Sni?$!1=T$AsZmj1(s|~GPj@si|CEQcStF@Y2P!TJP5>p zdsu)qVl9SN;%I>U%?z^Oo+j#~`;HqlM^Hh|JRsxo-!YW{$p1P-97Ed&`5rEUP!f|w zhXyR)ZWPYf=`-Jw2CYD$ER?%_?_WLdCObiu`&6T~QDp)6-XB&0U~6=n;s(m9)GPb8 zku*RZDRS;;fU1iyUXAE4dG08O>W4p2eXwo}Qm!dv{dtc1_MRVr5YhVpXdk4t1EhV< z_(OaNR2N8lr%%g+Ud2;y1y|)Aw3)XwK(7jOVA%lsj*!EDCaM319q(vtd_Y%n-@-4- zZgfv_UL4WOW(kU$uQ*lbhMcO#-69NA-49?1+XMXf`q6ni5g1@!-T$&`0FnB?7aHit zUjs*g=qF(H&#CUvAO!Xd)6=JCDTtK~b$I@<;f_oc1@m~om)FV#+yOwchP|7iiU#c_ zvHyM=plJ&QREpS1}`;eu*i7?sF~l^5dXXHr6!V{y?y2Dc6ck{H7lO0 zgAe(lY%T}vbQ|pr(f3oAr_fdgp`Xn!yD%rf9z0BB$4!Anh>Uch19&w8R%apAcq#p_ zUI0z{KPv=?`_{;edGW1gw=CejyEqhP$D(@GoII1BV9))M$KXn3lCWuD1J#gCp zNCEVup6C<%)P2f&cGSC~fDJ=@ymEjV0+>0$3p9Fa|1xv9|LXL?#K77Zl{@JcRV6#IXFCGce6^H`;gci{+9(iC6nFdHl3m%(>tJ0216IDVro z4nu(L{P0+2^WsmEX|?>vJ(33pokXRCNjCE&zXr8pTQBK^;%Jpt{laspBzi0trwuB) z+9(j%Zb4<<;#$axf}W5B7Au8m+3-&)n^)>d?Zxtw#eaa}@>JaU)55|Zm_PjlHbX|X zPEIkJsv7+*ZyK?mDsOO<)0#{F8CoQPbk|cMnNK6;ae?te)Id%t#`*E$0@w#-u~DPP zfiTMeTrJy+n6f8ZTOLG*B=KECiMaQ-sJ{de;gSoud2J@raU;ygPqB4SDv02Y1CV0k zwx1+F+P&9+QqZP4ShGC)dL?mV^VTd43%#QITgN?tiltvRdA9+ zgKK{nH$uOwFI|!(7x(8y^nY`uBYRm!6eulRwPZ%O^mj&04sdx8{uh%*twk8L^x;PpgjaRv1JOX|I z?ccvXNjI0rV}6E*n;EjO;(yM64ZlMjT(uQW)wF`Ec*NeZYLP}Hm4A@8{8N(1Qv+>U}|H>tFgw9NJNhdsG(03=ZDE15H~vm1KEC zLjx(Wqf$b{A>(mC2gXN5rKJfdL$S%Hd*KYEjkLx3cz@U(F08(|zXN71p1AF5y< zf{6vM?U{3ll}a!j?#zhthR%UKyxC*{>!O0ro2S%?VTDEt=LaYm;`6SZEwer-pfzTA zUD-rLMT!9!f-(JIyZHqdt}Kc-J=eS zZvC)=`%++CfLF^ElW>xNPWgk+QbRbm%MQB2QA$G}e-<}PyUv8}*x`hPsNZUKFU;E|f!>Xb8YOa{?Uxjs#c#8P(f#W>>Ozh3*aPM(KW;*r16xgw_g2oi=&MwO zyCe!|)mw?&KkqF`s}<^b)3MV$p9`>}RV}8ixfv>PHW~~Ny_?`b?vs?{P6(4rW)vST znf)Mb)pTBG{hc^*OE9F1p>mhcX5yBJFR`($-GxTpWYJxkvrxl{{;t!~ZROVchfi4C zzV^JC&V@o39XknTHd}7TPG1QF9Q~sizXh$MCEst0qJao|j{=D(QH zc8rXj#uA|7fGV}R1<)p4xw9{48QSQuztYU%z?e*`T$7as7~xZ!YNXJx-Q=r4Q^SGR zcTP7g-)l(pVI+fg=fpL#<`S~0_p2_T% zV2;PUJLnkWg@pz9dC%=dDUwZC9`AQ8zq6-U%LmGw4qK#?o{w}Zr1DQri1!ZHvs8=+ z1#Bc|xhm=w`9BVwkIQkcrNKc86GOfJLqKJH`VLvbW-w8t<7WL)T72xqr_ox|%J{S1 z@l7VkTF6{`3*t&{dJ*!aMb!W))X^Zaji{+OdWYgdww@&SB4s@zC)tZIx*i zX}m}t+Plc-QQLDVLSv6tz2-8Ju- z@EI+5!#GO&#buxs7DF5P;MlD*tTI16-G~fy-kh9hmb2gx$gzTdLTs~}iyL^yb8#t_ z+r*|>lL$ynyga+&*kW8eSm<{ql27-nkjKc_)lSJq?){W7q3cqr$JZ2(p6TlP+V|bx zRuQKcxw*Nu_5=$|PXw#y?Q9GqNHaD+-cV%TX?-gRU6of}_2h9}&P$HJ_#!>$mH<1o zF!0vgi@iVi{uKtN$t>+)We=A5fQ?5AqO7e^xsNjRu634D;+s<}fy}sP@sAf29+#k# z753dRTuWkZV*a_PLQGB+;?L6 zkrL>lotNzHQe0W}HT(0X%A-P^m9x+CYdfvwwiGYF z8c$OA>s;`pCM5Z_>x;qL(J@Zd=F$B!Om3@i$8FzQ;wa?Uri+cg4cIe zY(BLrZdFD^XJIt=k*a$^^?);=rG8|+v6 zHa1+p(8&_dE({%QAB+wXx!D$R)u~!u0smN0?IPSik1q^q@*}6My%E4#0^fm)9-x~? zBCKz|J9+Xog!HrhM73kCjEsy#bzCq8e0i3qSsNEVjBw%OCtNJBcH7|NB<#|zqDPma z@q(2_;@I^C=RD@uc571f!Xju&p;W)(U36CnIx5}$ zj}?*X5DuniXD>AZoT3$(`>#Gs_T}}E9A}zj76TDu7nfs~*yl=moOZp|`)^f5p&q=P zn@QRi7v>KlSi(0VY@sB~ZEfBfLaB7PsPB-&&HPKJ=nHnXc-wPn;&dUTr98VesLVbhMO&#VA_G` z;QZavEb@j;uztGlrr**u`eSXxm81w9uZBug^;+U=41siS%G^t~O7O(rJj z{_h#?ATI)q7anqu6o+>7kilsMsZ7wXq6=NQHuDhG*(v`R8Nle*rsAi!Q}U>36Fwqh z6-7OSgU)qzJ~iny?4N@uC8P@x{3{zgvwa`3VEP4<@(TDK#rSpb%#J;Edf3$xBd;Xu zNM+yi$U)C}N(Sut)OY2#;bwjoA5eu1CHS{OlK=CF* zCoCFb*V`%M594U&>`w<3`x*#~O1Z=S`U?1-Hv%=#+I#+KK-2%nLbeI>CZ4I;M*B}4 zi7#*)MKKbI{~jqTU|N5Ya8Usjdl`=0VSnz2;|0ElV|@)gb5s@ar0t3ZTZ2Mn`$v(B z_Eo{(h1B%@PlW{I_n&41sa-GTkW^>@EQHOXIro6!jV<8c0?kOO|! ztpuipsv1j`p}!pc7iOO-+GJE%xv8HWr+L%JzZ(B!OD`xW*xu*};{}&o$dahbrn`zB zN96_M_*${i_Wx~%fn%<@*b``W3750PaeT9rEl*_1X$^rLi)ACL-XEhA3pF~kwcBZp zycmh}v&QCC(k_hl$X~T}pux>d^1)P?AzpcsZpSXc^Wi3Q2n{4bb5{G&<&cSc0LmeK z@MZY#%kd^46mfX)3h8|xlD>ocW!6z_!KCbsoEV*dAhsUEy}qk**DhPj2fPL|!eq|y z@481)#qD)-eNQ;jF6IQ$^MIbq@RRZz&wVHX`MmzAt?kXrf}o?KFz!D@;rFvtuygki zSWpKx#?a86=!8B_$+10BW`Q>0F#~1n%OV7U(MT-0j*s}8$rhS@i0<#1LIqi1JeWzA zRI5&%V*^D>}s2->I`=BD$BFTMv0)rDqliw>Sq@w3aw+N|N#KWxHXEeDNsAUzGMuCxt%}A;;F%bsmvPxv9 zV`5U3jb)w?u=tT@ZJTVqzU7O}_^9e|bYr5M=K#}?Qx5y|Xv5unOi-qR<{k5wLp@MI zzf#;V+(03$#x>&$P8`j7G~|P<_yDe!s%7^Yp1E=4ZPG>a>OGxhZnkxbpVM-TBmv0uiX@ zHBto8yncfa5%jWo<2k%j7p4V#hJM6?!cDwbyh{vre2p4hhnZvI;nFU|We& zhAO}P+}Z4OUa;2pJM^#uhhqUf_q{Cf23PhIdmCBs@nbqaSlM-+X*MVUMV%T95rYZ24Bs2Kt}{VQ3&={#ox8mP!;my3 z?gw*BtC1Z6OOkpA(?2V4Y5u(cX{PJ|nDUjDmgWj2;bNZHJ0rF^^YQTs0ISh`X+^Bo z0)zITXbjbe>Z6vRh-UJPh0?a7&?n~HMOL~sG6N0(r5eyZNjn>zJIh;TcejZ8|-o@a=ZX#6UN#NfB%+TyZ@t&WHOnG zj9`XZiAA8xwCPc|$5)zA+{#a{`Qk@?M1Mz7Nz2E_x0;f8ohSP$ZKiSxbUs(a9C8{m z-B2&obuR;p^(zU9R=2l`m_PLN_HbWEr)<`z%l542l$Lf|GHqM5YTn*>nSQ!VkfQQf zQE>OyQRS5D_w55No|Bfek7ubOP(OCtd3|ns!ylKeM-l0D3;tXMKkpHAY<~wJb-G3*2gLpJ2&c!;T2Y6 zPOf%#JIA#Ee(U-6&9!APK0->TR$BUJ_^1U`b?D7pe0)p^KOOwlS>q#Yri+QhMjBgj z=)(x7YfBUmT(5`Ic=M@VIC0l5TTaXmlq-9NuV#NE0&42mwI04V_aodJf5{imvuvfo zKc!xaHEoKj`+|@XJLAE^9a9G1bHtw;QV~z2{nb`<3P^Ao|116ZRO;TVvBJ=sm{BvR zW%P#QA%BLB ziVe}#*MVSZf2s?5I~9!?3Bx3$Z5Bp_0HMf-`cI+eMaQ?IJK60OEJhfqKWnw(hnt?Q zoa?Oq3{cO7lIEX3Yr;kDc}GglYbpJ@(eGI@O9}Q#EF|aysGvK5`?qh^gqnY{4}92} zTksL)eqL28U=6$~TCw{}RiYj<^ob||v#}%dz3_C-l+3J(B%aw-x<^u0j5}fRa^K?! z&S)4+Q44daw~!8qQL<;?@R0E|>Q6{xJ=C3>llm+% zo(fXPhxoMW#;Sh7Ph+Pka~v`{n(iM@Q(1G6?14?-(KC~mq(JsVNjdxKHE^b@p!lOE xX4lj_;AoteU5MJTp>_hExUWvQ&+%0X>kRy0ug
Masked
Multi+Head
Attention
MaskedMulti+H...
Feed
Forward
Network
Feed...
Norm
Norm
Norm
Norm
+
+
+
+
+
+
Token Emb
Token Emb
Position Emb
Position Emb
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
.
.
.
....
Linear
Linear
Softmax
Softmax
Tokens
Tokens
Text is not SVG - cannot display \ No newline at end of file diff --git a/notebooks/gpt.ipynb b/notebooks/gpt.ipynb index 36c7dc2..d68a63d 100644 --- a/notebooks/gpt.ipynb +++ b/notebooks/gpt.ipynb @@ -10,6 +10,20 @@ "Она заложила фундамент всех последующих поколений GPT-моделей, показав, что модель, обученная на большом корпусе текстов в режиме **предсказания следующего токена**, способна эффективно адаптироваться к различным задачам обработки естественного языка." ] }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAACiCAYAAAD81HvMAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFB6ADAAQAAAABAAAAogAAAACNa65XAABAAElEQVR4Ae3dB1gURxsH8JciVgTsIip2xd4bKNh7TzRqrIm99y622KOfRmMvsfeusWOJ3ZjEqFFRsWIvWFCKfPMO7nnAAUc5bu/uP8+z3N5sm/3N3nH33sysFSEliUCXLl3CkuRAOEiiCyxatMgq0Xca+w5xvcRuhDUgAAEIQMA0BZLk/+rM/YMbBId+mmBrmyzVh09v85smVdRSp0pmfyO5XaozbwKf3xtV/9fRUddQZw7qQ531YimlwvWnrppGfairPlAaCLBAknw4AzURBwdnzZoFChMT6N+/PxkrOBgWcMHEtFBcCEAAAhCAQMwCVmnL8AoG/fy5/NTMTq/ePRmdzCZ5uqI53NPyATPaZ+MHs0jP3j6k528fUHBo0KObjy85p07uMG9grem91HpyqA+11oxllAvXn7rqGfWhrvpAaSCgLWDQD2faB7L0eQQHTfMKQHDQNOsNpYYABCAAAXUKGDo4OG1//6spbdNk46CgOQUEo6vNa4/OyiDhg5c33wyu/bNbdOsZKx/1YSx5HJcFcP2p6zpAfairPlAaCEQWsI2cgecQgAAEIAABCEAAAhAwNYEZ+wfezJG+oHNhl4qpTK3s8S1vIefyvKmztZVNmhkHBt0YVGuGarpPoz7UVR/xvcZMdTtcf+q6/lAf6qoPU31do9yGFbA27O6xdwhAAAIQgAAEIAABCBhWgFukWFpgUFu0iEultDnTF8w5ff+Aq9r5xppHfairPox1HRjruLj+1HX9oT7UVR/Gel3iuOoXQMtB9dcRSggBCEAAAhCAAAQgEI3AzweH/JrFIZe9JbUY1EXhlq2C3ePXfs5LT01p17nSsN90rZMUeaiPcGW11EdS1LmajoHrT13XH+pDXfWh/Vrt1q2bZ5YsWdoEBga6v3r1qqD2MjXMOzo6Xrezs/OZOHFiNzWUR98y/DponWdap9Rtgj4Fuwe+/6Q61xSpU1y3SWbt0350kyiuCA7qW8tYDwIQgAAEIAABCEBAdQLvPr7uZpfeTnXlMkaBiubwcPjzzuFx4thGCw6iPr7WvBrq42tpLGMO19/XelbD9Yf6UFd9KKXx9vZe/OjRox9SpEgR0rRpU9u8efMqi1Tz6OvrW0BM+cS9G7pmypRpoSkECddM2rn4zct3P9gkswkpXiGfbfosjqrxVAry4vHrAi/8X+ebP3Bt19SOqRZqBwnRrVhRwiMEIAABCEAAAhCAgEkJTN7be0rezCUffBl7z6TKbojC8k1Y7JIlT/+Lz5imhth/bPtEfUQUMnZ9RCyN+T/D9Rexjo19/aE+1FUfSmmmTJmyzsbG5puePXtS7969VRkY5LJywLJOnTrWs2bNIjc3twZTp07doJyDGh/XT927jqytv6lQryRVrF9KlYFBduOAZf6Srtb1O3lRJpf0DTZM36dxRXBQjVcWygQBCEAAAhCAAAQgEKtAmhQOmexs7VxiXdGCViji4m7/LvD1WGOcMuojqrox6yNqacw7B9df1Po15vWH+lBXfXBpuMVgzpw5vQYMGOCgxtaCUcXCcxo3bpwtODi47qhRoxZEt44x87nFoGOmtF7ujUo7qLG1YHQ2buXyZgsJCam7csJ26YrgYHRSyIcABCAAAQhAAAIQULXAp5DAyhnsERuMXEm21nZGuWMz6iNyTYQ/N1Z96C6N+ebi+tNdt8a6/lAf6qoPLg13JW7UqFFm3SVTd27Dhg3tnz592pXHSlRbSbkrcaFyeUzStVC5vPbvX3/oymMlYsxBtV1ZKA8EIAABCEAAAhCAgF4CHz69zc9d55C+CrDHh6CAfF9zkm4O9RHV2pj1EbU05p2D6y9q/Rrz+kN9qKs+hg8fPrdUqVKBolQpo5ZM/Tnc0lFMYQEBAa1EaX3UUuIV3tvmZsuT2WRduaVj+qyOYR8Dg1qh5aBariqUAwIQgAAEIAABCEAAAhCAAAQgAAEIJLLA58+fa+TPn98kA4MKRe3ata2CgoI8ledqeAwTrumdnUzaNV/JXFahwZ89ERxUwxWFMkAAAhCAAAQgAAEIQAACEIAABCAAAQMIvHr1qqApjTOoi4DL//r16wK6lhkrL/D9p4KmNM6gLicu/8f3HwsgOKhLB3kQgAAEIAABCEAAAhCAAAQgAAEIQAACELAAAQQHLaCScYoQgAAEIAABCEAAAhCAAAQgAAEIQAACENAlgOCgLhXkQQACEIAABCAAAQhAAAIQgAAEIAABCEDAAgQQHLSASsYpQgACEIAABCAAAQhAAAIQgAAEIAABCEBAl4CtrkzkGV7g1dtPdPHGc8MfCEfQW4Dr5BvP3HqvjxUhAAEIQAACEIAABCAAAQhAAAIQgICpCyA4aKQadLJPTmevvaBCuTMbqQQ4rLZA2tQp6ML1hwgOaqNgHgIQgAAEIAABCEAAAhCAAAQgAAGzF0Bw0IhVHPD+I5UvmsOIJcChtQUOnrmu/RTzEIAABCAAAQhAAAIQgAAEIAABCEDA7AUw5qDZVzFOEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACugUQHNTtglwIQAACEIAABCAAAQhAAAIQgAAEIAABCJi9AIKDZl/FOEEIQAACEIAABCAAAQhAAAIQgAAEIAABCOgWQHBQtwtyIQABCEAAAhCAAAQgAAEIQAACEIAABCBg9gIIDpp9FeMEIQABCEAAAhCAAAQgAAEIQAACEIAABCCgWwDBQd0uyIUABCAAAQhAAAIQgAAEIAABCEAAAhCAgNkLIDho9lWME4QABCAAAQhAAAIQgAAEIAABCEAAAhCAgG4BBAd1uyAXAhCAAAQgAAEIQAACEIAABCAAAQhAAAJmL4DgoNlXMU4QAhCAAAQgAAEIQAACEIAABCAAAQhAAAK6BRAc1O2CXAhAAAIQgAAEIAABCEAAAhCAAAQgAAEImL0AgoNmX8U4QQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI6BZAcFC3C3IhAAEIQAACEIAABCAAAQhAAAIQgAAEIGD2AggOmn0V4wQhAAEIQAACEIAABCAAAQhAAAIQgAAEIKBbAMFB3S7IVZFASHCwikqDokAAAhCAAAQgAAEIQAACEIAABCAAAfMRQHDQfOqSqpfPT/mz2Oqc/rp4VueZzpw0kqaNH6ZzWUIzWzWqorMs40f01XvXj/0fkFv2lPTp00e9t8GKEIAABCAAAQhAAAIQgAAEIAABCEAAAvoJ2Oq3GtYyBYENu0/Q59BQWVT3Ejlo0syFVLV6XfncKX0GnacQFhZGn8M+61yWGJld+wyjlm07R9hVGvu0EZ7jCQQgAAEIQAACEIAABCAAAQhAAAIQgIBxBNBy0DjuBjlqhoyZKVMWZznxAZzSZdA8P35kP9WrUoxK5nWiHh2aEbfIi5yuX71M39avTCd9DspFWzespIbVSsoWiXOmj6PQkBDZgq95nQq0ae0yuT9urbhpzdLIu9I8T5cuPbnkyBVhcnRKr9nPysVz5DG4lSEft3+3NlSxiLN8/PgxULOfhXOmyvxald3owJ5tmnzMQAACEIAABCAAAQhAAAIQgAAEIAABCMRfAMHB+NuZzJa+N65S9/ZNyd2zJq3YuJ9CRJCvX9fWxK0GlXTn1nXiAB23NOT1jh/5nYb17UzftulME6b/SpvXLqdf/zeZPn/+TJf/ukCL582gEeNnUoXKnjRyYNdou/3+I9bdvW19hOn1qxea/WxYtYR69B9JyWyTUadWdSl1GnuaMGMB7dm+gY7s36UUj44d3ifzS5WpSL06f0MP7/tplmEGAhCAAAQgAAEIQAACEIAABCAAAQhAIH4C6FYcPzeT2mrH5rVUonR5Gczjgg/znkZ13IuQ/6P78jz8bt2g1o29qFnL9tRzwCiZt3bFAvqmdSf6vnMv+bzPkLG06Jfp1LnHQPl8/LT5MjBYskx4K0IO1uXOW1Au0/5z5uRR4v1rpwJuxURLQleZNXrSbKroUY0+ffxIZ08do+He02WAsFqtBuR3+yaVKldJrjdwxCSqVKU6cf7+PVvp1Ikjsnza+8U8BCAAAQhAAAIQgAAEIAABCEAAAhCAQNwEEByMm5dJrn3f7xaVFC3ulOTsklPOvnzxXD4eObBbPmq3xrstAnqcz92HlcSt+pSU1dlFzip5QZ+ClEURHrv0Gkwdu/WPkMdPAgM/yDxnlxzyMXmKFJQ3v5sMDHJG8uQpKPTL+In8nIOQnKytrWWgk1sfIkEAAhCAAAQgAAEIQAACEIAABCAAAQgkTCDabsXlypVrmiVLln9dXV19xSG4/6lJTLlz5/bNnDnzPy4uLrMTRmM+W+cvVIQePbynOaF7d27J+fwFC8vHGnUa0e6jf8lgoBIodHR0oi69htDfdwLkdOLSXVq19bBmHzY2Npr5hMzou583b15pDvPflX+oWMlymueYgQAEIAABCEAAAhCAAASiFfAU3+su58mTh78EGOQ7Xfny5VfZ29tPjrYEWAABCEAAAqoWiBIcdHNzWyBKHCaCNmvWrVtXePny5Xl4bDpTmZYuXZpn/fr1RVu1atWaz6NYsWKLVV0DSVC4qjXqyZt9XDz7hzzarq3rZPdcO7vk8nmOXHmJA4gdu/Yj76G9ZKu+SlVq0IF92+nZE3/68P4djRvem5bOnxnn0j72f0h8oxPtSbuFor47XLVkHgUFfaIt61fQi+dPZetBfbfFehCAAAQgAAEIQAACELBEgRIlSnA3oKPie13BJUuW5DbUd7q6deu2ffv27TDxXXKhJTrjnCEAAQiYukCEbsXOzs5XxC8+OY4ePUqenp4pTfHkRLllscVjxunTp1P//v3rpU+ffqM4p29N8XwSo8xuRUqQpwgQfte4quy2myJFSlq4aodm19ZW4THiHgNG0kZx5+El4mYjnURX4D/Pn6IaFQrI9YqWKENzl27UbBN5xsrKKnKWfL584WziSTvVbtCMps1doZ2lc157n/9cOkdFcqSW642dPEd2O9a5ETIhAAEIQAACEIAABCAAARbw/uuvvzp++W4X4XtfYvOMHTuWqlatSl5eXl3y58+/48aNG3sT+xjYHwQgAAEIGE5A80+CA4Nt2rTJPG3atDSGO1zS73nWrFnOw4YNqylaQm45dOhQ86QvgXGOeONxiObAHGSbtWCNvNnH+/dvKUfOPGRjG171g0b9pFnPwcGJLvl+7b67ctMBevTgrmyx55o7PynBOu1988aRnys7XL/zuDKr81F7u7oNWxBPSvrf4vXKrGb/fAMVLmOq1GZ1iWrOEzMQgAAEIAABCEAAAhBILAEPD4+CIlj3WTSaiNJbLLGOob0fbqTBgUjxnXK6yEdwUBsH8xCAAARULiAjRNyVWDQFTy8Cg+lVXt54FW/KlCmOYhyMmnnz5p3n6+vbM147MYONMmVxjtNZcDAwW3bXOG1jyJWzOmc35O6xbwhAAAIQgAAEIAABCJiNwIkTJ1oePx7zj/WGONkU3E0JCQIQgAAETEpABgevXr3a9cqVKyZV8LgWdurUqfbil7MeYjuLDQ7G1QzrQwACEIAABCAAAQhAAAIQ0FeAWw/evn07l77rYz0IQAACEFCHgHWmTJmmDxky5GtfUnWUK9FLwf+oKlWqFFSrVq1Wib5z7BACEIAABCAAAQhAAAIQgAAEIAABCEAAAiYoYC2S6FFc18kEyx7nIk+aNMnu8uXLo+O8ITaAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAZCliLMSFSmOF5RXtKKVOmTB7tQiyAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAFCVj7+fnl4S63lpC+jIGRxxLOFecIAQiYh8CbD2HmcSI4i3gLfP4c702xIQQgAAEIQAACEIAABCAAgVgF5A1JYl0LK0AAAhCIp8CSQx/pb7/geG5t2ZulTmlHDUtbU+WCySwbwsLP/nNoGC2a6EthYQgUR3cp2CW3oc7D8NtfdD7IhwAEIAABCEAAAhCAQEwCCA7GpINlEIBAggUcUltTfQ83ypM9fYL3ZWk7OHruujjlAEs7bZyvDgErK6J6Hb10LEFWSFAIHd10ChAQgAAEIAABCEAAAhCAQDwFrOO5HTaDAAQgoLfAuw+f9F4XK0IAAhCIi0CwCA4iQQACEIAABCAAAQhAAALxF0BwMP522BICEIAABCAAAQhAAAIQgAAEIAABCEAAAiYtgOCgSVcfCg8BCEAAAhCAAAQgAAEIQAACEIAABCAAgfgLIDgYfztsCQEIQAACEIAABCAAAQhAAAIQgAAEIAABkxZAcNCkqw+FhwAEIAABCEAAAhCAAAQgAAEIQAACEIBA/AUQHIy/HbaEAAQgAAEIQAACEIAABCAAAQhAAAIQgIBJCyA4aNLVh8JDAAIQgAAEIAABCEAAAhCAAAQgAAEIQCD+AggOxt8OW0IAAhCAgBkIBIeEmMFZ4BQgAAEIQAACEIAABCAAAQjET8A2fpthq8QSmLP2RGLtCvuBAASMKPD582cKE5ONLd5WuRrSu9agly9fG7FG9D/0+ycnKRnqTX+weKwZEhpCtjZ4beiis0pbRle20fOcHB3o5b3DRi8HCgABCEAAAhCAAAQgYHgBfFI3vHG0R5jatVy0y7AAAhCIKjCwx/e0a+s6+m3zQarg7qVZ4c/zp6lVQw+q27AF/W/xek2+vjNvA95Q6fzp6fz1Z+Tg4KTvZhHW27BqMZ08dpDmLdscId9Sn6RMkZxevHhB6dKlUzWBnZ2dqsuXFIVr3rYRXbh0PsqhVi5YQ54e1aLkxzXj+s3/qFYTL7p7xT+um1rM+mFhYao619evX5NboQKqKhMKAwEIQAACEIAABCBgOAEEBw1niz1DAAKJLMCt8zjt3701QnDw0L4dMv9zWPhy+SQ+f1T2BT0+p6CmbV6+fKn64KCavIxZlh87dKP233WMUIQMGTJGeI4nliPw6tUryzlZnCkEIAABCEAAAhCAAGHMQVwEEICASQmUKF2etm9eTaFfxonjgOG2jb8R5yvp9asXNHpwd6pYxJlaNapCm9YsVRbRwb3b6ftm1alkXica0rsDvXsboFnGM7y/yd6DiVsphgQH07Onj6lfl+/kvjq2rENXL/8l1+f15s4YT7UquxHn//3nuQj7wRMImJKAk6MTZXfJEWFKmSKlPIVN2zdQnabVyaN2Bfr5l+nEXYQ5PXv+lHoO7EqlPIpS2x9b0ZVr/8p8/rP3wG6q/00tatSyLm3btUWTjxkIQAACEIAABCAAAQhAQH0CCA6qr05QIghAIAaBshWqUAoRtDh/9qRc69+/L9LHj4GiJeHX7o9zZ0ygm9ev0C9LN9F37brSSBHAePr4Eb16+Zx6dmpBrTt2l91/r135O0LgkLv2TR03hPbt2ESDRv0kxw/s1q4JvXnzimbOX0VFipWmJjXLUMCb17Rv5yZatmCW2H8Xqii6Xm7dsDKGUmMRBNQtwIG9HXu3aaYz50/JAvucOEKDRvajVi1ai6D5NNoouvXPWzSH+LXSuWd7eiO65M+ZNo+KuhWjei1qUoAItj989IC69/+RypYqT+1bd6KN2+Le1V/dWigdBCAAAQhAAAIQgAAEzEsA3YrNqz5xNhAwewErKytq1Lw1HdizjSpU9pQtAZu0aEvJkiXTnHvNuo2p3Q+9KGu27JQyVWqZf9v3OuXIlUfOv3j2hKpWq0MLV+2gTyKwqKRZU8bQzi1racehC5TVOTv9+8+fdPmvC3T0vC9ly+4qg4Cb1y2n0yJgcuzwPvq27Q/UsWs/uTlaDiqKeDRFAZ+TR+maCKgrqVJ5d6pQthKtWr+SWorXW4c2neWiAb0G069Lf6FqVWrQ3//+RX8cOEcu4nVWuYIHbRCBwz/OnKC3795Sofxu5D18gtzm3fu3NGbSSGXXeIQABCAAAQhAAAIQgAAEVCaA4KDKKgTFgQAEYheoWa8J/dimIY0YN4N2bF5DU/63lC6e+0OzoZW1NfXq/A1dv3qZsmR10eQ7Z8tBw8ZOo/Ej+srJs0Y9GjF+pmb5upUL5Ty3DOR0/+5t+ehVNq98VP68fPGMDopxDifPXqJkUakyFenPC6c1zzEDAVMS6Pljb+r5Y58oRb7t50uHfA7QBhE0V1Lq1Gno3oO78mnlWhFvrPXi5Qtxc5NzVK5MBWV1KlakhGYeMxCAAAQgAAEIQAACEICA+gTQrVh9dYISQQACsQiULB0eeFi+aDa9ffuGylb00GwRGhpKg0V3R+5+zHcfPvbnHUqdxl4u57EIq9dpRP/ee0+/bTkkxxvkcQOVtFW0gmrY7DsaPagb8X7s7R3kolOXH9LfdwLktHX/WardoBkVcCtKT/wfKpvSnds3NfOYgYC5CPDdu7t37kX/Xbwtp7NHLtGG5VvEayOtPMWLx//RLNu18XeqW7M+uebIRf6iG7+S7t7zU2bxCAEIQAACEIAABCAAAQioUADBQRVWCooEAQjELGBja0vclXj6hOFUt2EL0aXYTrNBSEiwJmDIwT2+Wcl70c2RbyDy8ME9MWZgWRnU4y7JFdy96K0YM01J2XO40uDRk+nK5Uu0cfUSKlyspFy0Y9NqshXHPPuHDzWrXZ5ePH9Gtes3o+0bV9HdO75ifMOrdPj3ncpu8AgBsxFwF4H3/Yf30lPRFf/Dh/c0euJwWrTiVypSqKg8x607N5OtjS2dPvsHNfy2Dr0Q43pWq1qD/hBjgp4WrXlfvnpJm3dsNBsPnAgEIAABSxDYsGEDnThxwhJOFecIAQhAAAJfBNCtGJcCBCBgMgLWorswjznIqVb9prRGBCn4UUnWVtaUPHkK6tZnKPUVd0/lFoOlylakKmJ8Qb4RySXfV1TFqzZVL5+f0mfIRPYOjjRl9tc7GYudy27IA0dOomkThskWgrMXrqV+XVvT1PFD5WEGjphI+Qq4kaO4u+umNcuoZsWCMp+7KHP5kCBgTgJdOnSni5cuUJU6FeVpFRddhBeI7vTpnNLRLzMWUC/RynbSl9a3Q/oNp/x5C8hAfJVKValVxxZym1ri9YcEAQhAAAKmIzB37lxyd3cnD4+vPTNMp/QoKQQgAAEIxEcAwcH4qGEbCEDAKAJ8x2Al8R2CbzwOUZ5S70FjNPNd+wyjVuIuwsHBwZQhY2Z5Z9UXz5/K5f9bvJ6GiPHSgoOCyDV3Ps022vvq2nso8cSpXuNvyUt0lbwvukZmzupM3M2SU8bMWWnXkT/p3t1blCmzs6brslyIPxAwIYEtq6Nv9ZpWdB9eu3SjvANxkHjN5HLNrQnQNxQ3/qnuWZPuixa5WcTrwSFteDd8DpJzAPHBw/siWJ+cMopAPBIEIAABCJiOwMmTJ02nsCgpBCAAAQgkigCCg4nCiJ1AAAJqE3BwTKcpErc25CChkrK55FRm9XrkOx7nL1g4yrrcvTlXngJR8pEBAXMS4NcP35FYV0qVMhUVyBfeejby8ui2ibwenkMAAhCAAAQgAAEIQAACxhVAHzjj+uPoEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwmgCCg0ajx4EhAAEIQAACEIAABCAAAQhAAAIQgAAEIGBcAQQHjeuPo0MAAhYmEBrydZxENZx6cLC6yqMGE5Qh6QVCQtV5HeL1kfTXgiUcMTQk1BJO02TOEfVhMlVllgXF9aeuakV9qKs+TLk0r16/ojcBb+J8CvHZJs4HiWYDBAejgUE2BCCQdAK3bl6j/FlsqVWjKlEO2vm7enLZ9auXoyzTzljwv8k0uFd7mXVw73a653dLzs8Vd1Id2qeT9qo65/kOxhtWLY6w7MrlS/LYr14+j5CfkCdlCmak/678k5BdJHjby1d8qXOvyZQpT21Kk7WKfOTnnJ8UKXPmzJQnTx76+PGj5nD//fefvNFFQECAJg8zCRdg45yFs+qc3r17m/ADJNIeilUsRNeuX0mkvSVsN8Z+fXDp8RpJWB3GtnWjKo2pcJYimql+5QY0b8Z8CkmiH0sqFqxE169cj62YFrMc9WExVa3KE8X1p65qQX0Ytz4aN25MBw4ciFKICxcuEC9Dil3g5Onj1PbHVlSishsVq1iQmrdtRIePHYx1Qw4K8roVa5Qhvgngxq3rKPBjYKzbJeYKCA4mpib2BQH9BDzFat76rar+tcZNXkQ8JSSFhYXJzf88d4qe+D/U7IqDcieORv0HpVlBa4b38fnzZ5kzZ8Y44sAep6bffk9d+wyR87H9UcoReb3o8iOvZ8znPicv6lUP67ccojJV21G+giXp0qW/6dOnT/IxX6EyMn/95ti99T1WTB63b9+mGTNmaFYxBWNNYRN5JjFeQ9EVKYzCX1vzf15EJ/efjTClTp0mus3MLl/fazYxXh/aePoeV3sbZR6vESnhKf56y7lE/BMaGkp9h/elE/8ep91/7KYGzerT+hXraczAsYl4FLPclac4K+/EPjPUR7xFPcWW3vHe2vQ29BRF9k7sYuP6i7eop9jSO95bR7Mh6iMamNizPcUq3rGvFvsauj6TFyhQgH766afYNza/NTzFKXnre1oczGvzQ0vyqFiFrl24RacPX6SypcpTpx7tYm1F+N+Na3Th0nn68/hl+hD4gQaPHkAB8Wh5qG9Zda2H4KAuFeTpLXD+/HnavXu33utjRSngI/5yEzf+1u4tJpNP3iI42LH7OL2CUzGdbInS5enQ/p2aVY4e3EOcp6Q/z5+mbu2aKE+Jg4m9f/hW85xnZk8dS9zKcPKYQXTq+GE6ffIo7d+9NcI6q5b+QhfOnoyQp8+Tf8QbduvGnlSxiDMN6d2BXr96odls4ZwpVK9KMaolfiWaPHYQ8YcbTjf+u0LtWtSU+XOmj6P3Bmqt5elemlas2U1WactEWw/cIqp91zF0+PBhGjZ8JF25coWWLFlC2bJlo2HDhsn89t28Y21BqM+xNDDRzHTu3JlGjx5Nt26Ft/CMvNrOnTupcOHClDZtWmrSpAk9ePBArrJ8+XIaM2YM8fZdu3alhQsX0sCBA6ldu3aUPXt2Ob9582biDzE87dmzJ/KuVfd87PAuxK+hmOouoYXOnCkLZXfJEWHiuxD73r5JLTs0J7dy+ahRy7ryQwkf68q1f6lbvx9o4bL5VKdpdfqxd0c6cOR3WYwde7dRk9YNZGCZM4Z7D6b9h/bJZfMWz6EajaqSV/3KNEG8Fvl1wBPve+O29XLZnbu36frN/+i7Tt/I9X7+ZTq9f/9Obm+oP/pcs4n1+tA+B32Oq72+9jxeI1LDR/w1yP9L+7RpKF2GdOKO867UfWB3mvrLFNqxcQc9uBf+A9XlS5epXeP25FGkCg3vPVy837+WBeIuZ9zKkPO5hcvaZWvD80M/04JZC6layepy2dSx00Tr6E9y2c3/blKnFp2JWyj+Mn2e+D/wXubzn+iOs239Npo77Rca3X80eQ8ep1nfyDM+4vioDwuoDyNfZ9EdHtcf3g/ktRHd+ybenw3z/szoDx8+pHXr1kl//oy+dOlSmjhxomxNOGTIEHr9Ovx/5MuXL2ns2LEyf8CAAXTz5k25Df85efIk9erVSy7jbZ89eyaX7d27V+5v6tSpERoOaDY07oyPOLze//eePH0sS1usSHFKlTIVOWdxpn49BlLf7gPEZ4LwVoAHj+6Xn4f5szd/vvZ/4k+83cjxQ+W2XfuJ7zh9O8v59l3bkP/jR/Jz9DLRw40/k3PrwuOnjlHvwd2plEdR+aj0xvpXfAfmz++c37HH93Tu4lm5n59mTpDrcUMa/lzeY0AXWrB0nlym/QfBQW0NzMdZwM/Pj/7+++84b4cNqOMXg7HiMUxM3l+em9wDBzY4rVizSwY4EhIkrNOgOe3ZtkFj8PuuLcR5Snr39g1dvfyX8lT8mvI6wnNe0LhFa8qeMzd927YzFRJvzP4P79OdWzc02/DMH8cO0d07UbvQ+hzaS4t+maaZtqxbodnu+bMn1KJuRbHPEjRnyQbxRfEl9RBBFU43RCBlxaI5NGDERJo0cyHt3LKWjuzfJZd1b9+UkiVLRv2HjadTJw7LPEP9Wb6ALydxMUUTaJr960Ya5z2G3N3d5XpXr16l48ePy3n+w/njxo2j2b9u0uRFN8PHcs3hHO2xottOyW/QoAF9++231LdvXyVL88jl4q4LtWrVooMHD1KIGKexVatWxL9kPnr0iCZMmCA/pHAeP//5558pV65cMmjI8z179pTnwefTp08fzX7VPOOtvI7Wxhzgje85HBNBcg7qKdNN8ZrgLgttxa+bKVKkoJUL1lAVd09q17U1vRAtdt9/eE/7RHB+/ZY11KFNJ3J0dCLeB6fDPofo0t8X6d9r/8h9rN20mlxz5iL+xXPpb4tpSL/hNGXcTNomgvKHRMtfbr34979/iWtlNDWs25gypMtAP/TqQMlsbWlQn2H0x5kT8T2tOG2XlK8P7YLFdlztdbXn8RrRaCTJ/8vSFUvLA97xvU0vnr2gVnW/o4JFCtKsJT/Tm1dvqE+H8PeqLWu3iNfLSpo4eyL92OdHmjTiJxlQ3LZuKy2bt0zk/SC32b9zPy3+X3ir+l7te5NtMlvqM6w3nTlxRnNiMR3n6eNntODnBfTk8VOq16SuZhsVzKA+LLA+VHDdKUXA9WeB1x/en5XLP9ZHg70+3r17R5cvX5YFeP78Oa1cuZJcXFyof//+dP36ddq+fbv8nM6NDd6+fSsbAPCP9PxDJ28bHBxM06dPp+rVqxMHATmIuH79+gj742AhL1dh0tvVJVt2yuGSUwzf1EF+7uUf1j8FfaIBvQYT/1DPn7/5M3CVylVpjfg+yWNu9xrYlRzSOlLrb9oS9+rpJwKJPbuEf3/p33OQzOPP0fx5u3e3fmRrm4y+F92WU6dKLT5vT6edYjgtDjhy6j24GzmJz+wrFqymPLny0ohxQ2S9tGrWWq63Zecm8dl+LfmIz/TNGrWIQm0bJQcZEIBAUgj4iIP4iclVTJw4qsPTODF5i8mkEgc2OCDFiYOEnPzu+YvgUVZy8+wgn+vzx6tWffEmN4Seil9IkqdMSRysGzF+pszTZ3teJ1eeApQqdWrKk78QOYkgRFzSbfGGzYEoJQW8eaXM0m7R6ilLVhcaNXGWHBsvQ8ZMVLtyYXomfumxsbWhecu3UPFS5eix/wNyFi20/rv6j+i6W5jui1ZSm/edkmXJ6ZqXmtQso9lnYs9wKyUO2PndeyR3zXUiJ1E/HMTdte8YXfppToyH/f7776lkSe7uOzzG9fhY2inysbSXRTc/c+ZM2dpv27ZtVLBgQc1qq1evpgoVKtCsWbNkHnc/LlSoEN2/f18+z5QpE/GvjNbW1uTj40OVK1eWwUBeOGrUKOrRo4cMJubLl4+WLVsmP5BwgFbNSWk96Hc3vO5WiCChUncjB/2Y4KKv2bhKfPBIq9lP9x9600PRhZ9/rTy867j84FFWXL/LVi2hkyJYlzWzs1x3+a8i8JcjF6USH0BmzZsu83gslSJuRenPvy6StZU1pRevs/x5C9AtEXBfPHcZlShaih6L/bo4u9C1G1epuldNud04ETz/pklL4paD9x7cpR3r91I6p3Ry//VE61pDp6R8fWifS2zH1V438jxeI1LER/z1E5OrmDgZ5P9l8uTJ5c4/fQwSP1LtpcxZM9PwicPk+336jBmogWj19/zpc9qydqtoKd+BqtYIHyP3w/sP9PiRP21avVl8WG9L33X8Tu6nx6AeNF+0MGz0TSN6cPcBrd+3TvwfcKIcrjmoRc1v5DoxHYdX4JaNC9b8Kt/r5Abq+OMjiuEnJlcxcUJ9hDsY66+POLCfmFzFxMkg9RG+a1X89RGl8BOTq5g4GeR88X4QjqvHXx+xjp+YXMXECfUR7mCsvz7iwH5ichUTJ4PUB++4WLFi1KFDB56lGzdu0L179+QjjyG+ceNGypIlC5UuXVp+Xr948aL4blFS9u6pUqWKbGWYI4f4riTWVZKTkxNNmzZNbf/vlOL5iBk/MbmKiVO0rrY2trRt7S7asmMTbRONXJavXiI3+KFdFxo5eKzMK1m8NI0ZOl7mjxJ51Rp40EvRG61QATdKkTwF8fLXb8JbYpYoVlI2MuGV+XN05QoesufOmfOnaPQQb/n5vYZnLfK7e0fur3/PwVStSnX52aVwwSK0eMUC+UN+7lx5aGj/ETT2p1FyvYmjxNjzGTPLee0/cQoO8gDyPAaOrnT69Gn5ZS7ysuHDh8umi1zZSOYhwMGT5s2by5Ph8co+fPhA586dk8/5y3zu3LnN40S/nkXY11mDzylvNrKLocGPZsADKEFC73TFqXA5F72OlCFjFqrg7kWHRau7VOKXE+5SnEUEGKJL2oG86NZR8rlLcs+O4dfti+dP6eypYzRj4gh5nMNnw1sWduraj1qJN28l8biFTWuWlU/v+d2Wgb8CWSMGmV69fEH2IuiycM5UatXQg1KnsZfre9aoR+dFkMU1T35NkLKACKjENbmXqxjXTaKsrwTuOEDGgTW+2QGnwMBA+eve/v3hvzYdOnSIihYtKv5pB+h9/Tk62It/YG81x1SOlS6doyYvuhn+xZEDf926daNdu3ZpVuOuxhUrfj3vnDlzymVK94MaNWpE+PCQN29ezbaOjo7yAwtn2NnZyXxuPh9TcDB1ZnfN9mqZUYKEiueAVmOoLnnGu3iL5iyjMiXDr2VlJxwwzCeuT+2xBwuJoDr/IszBQc7nwCCniuUqiV8jb8sWgPy8fetOdPDIfvlrZA2vWvJDCAcQuVtxszaNNPusVrUGry5TyWKl5OO5C2cot2tuGRjkjILimAlNHwI/6X3NRj6WYmyI10fkY2k/V46rnRd53pivEX/RYo27uhsoJcb/Vfn/0u+yP1HESzteRX71MvzHoHwF89LZk2fF+LdPqEjWiO/ZvM4d3zvUqWdHzTFatg8f2oLzu/b7+v/DJUc2uY8LZy6K/wOuMjDIG+V3K6DZ9r7f/WiPwytVrFIxwnudZkP9ZxLDWd+jyfrQd+XY1kN9xCYU6/JErY9Yj6Z7hSS//vB+oLsivuQmeX3EWJo4LMT7QRywdK+a6O8HPCSRklKLRhncG4V783DinkHaibscpxSNPjiIyOMWcuwgY8aMMoCorMeBRP7RPw4pKa/n6IoVxZVjIylFd+KunXrI6Zn4zrl+81qaMXcqVRCfpe/e96PSIvinpGyi4QmnF+L7ZGwp25fvxPzjhfbnd34e+jl8OCsOKlapW0n2AuIWjNqpY9sfaOqsn8Rn/KzUtGH4d2Lt5Twfp+DgqVOnZKCPN+QLYvHixVSvXj1+Shky6G6hw93AlJsEyBXN94+3ODWezD7Z2NjIpsJ8otxqh8cCa9u2rTxvJehgZghWBjofXW9q48SxvMUUFhZwwUCH1X+3XvW7yhZnkVuJRd4D31CBv+gqiVuvuebMKrd9ZhPxy5WyTnSPdRu2oL07NsogW73GEf+58DbBwUGaTf0f3tPMxzaTJ39Bmjl/lVxt5k8jqUx5d6pava7e/4jSOjhS0RJlaPW2I3IfIaJ5/E0xnmCuPPlo+oTh5CfGbjsqBp7NJt6I+4qm3pyyi8CKn2iNGCoC6jaiCyW3KoxrOnnuNFUuGDEgGdM+dH2Z55ad3DKN70785MkTWrNmjdzFpk2byNfXl/hHHE4chOMxRRwd09LTW+EBQ7kgmj/chVwJAiureHqUlsdq+8MYJSvGx969e9OiRYtkl2BlRQ5Q/vXX1+7jXEZORYoUod9/Dx/3TlmXH22FrXbisfTikt4/OSnGBUkRl00irKvcdOLonoUR8uP6JLq645aDS6eEG8R1nzGtnzd3PnokWuly8JTf1/n/9TXRNXjEoNEi73OETTNmyESF8rvRouW/krsYZJlbGXI34SDxemzx5XW6ZOUC0SrwDp06eJ74AwyPZ6KdlHrhsQ9vi2A7d6XgX1i5lWFCU6qUyUmf98zojA3x+tA+p5iOq2uZ9rbGeo1kzZKJHt3Yq12URJn/cr5xe5GGD78R+fjy/6Vr0ay6/pdGXjfW57+LbsCcXHJmp7TiR48iJYrQym0rZF6wuIuxrxg3kIN8BQsXFK3bw8dJ4oWH9hyirC6ilXwxNxnokxuIP3637lJlr8rEQUK/W37i/4B4nYlW5k/8HyurxHgczUoJm4mrs75H02Uu60PsQNcyfferWQ/1oaHQZ0aXeaLWhz6F0LFOkl9/eD/QUQtfs5K8PsShdV2bX0uk5xzeD/SECl9Nl3mivx/oCuSlSRN+o7sdO3bIYCAXx8/PTwYBuSHZb7/9JuNH3LOH1+FGCQlIhrqeoyuSXq7bd2+hqbMn058nLsv98Odn7gq8ZuNvdO/+PSqYrxBd+e9fzTH87t2R8wXyFaSLf53X5OuasbG20ZWtyePA4+iJw+ln0UusQZ1GdPvuLTlGobLC2o2r5Y/33Gvod9E7r27N+soizWOcwrMc+HF2dpYT74EDgspz/sKma/B4zZHEzD///CNbgyi3x16xYgUVL16cuEUiD1zJrYB4MMVy5crJQSl5f7yMB8xXEvdR5/7rPPA8D2Sp6246yrpJ/DhWHM9HTN5iMuvEX/DKlBF3NhUTBxM48q88518OkPQS8BZrhbcXDl+d37T5Tc47/Klp/VUCgxwU5OAQj7HFgZLYgoq6zrJ67YayVd+RA7uJ57VT5izZiFv9cYs8vpPxupVfA5La63HA4Y0YE1A7OTg4USXRzJqnjGLMh/yFish5bqmoT+Jg4uW/LtC/Yqw1fg2sFC2kenZqIbtVcmCwSPEyMjDIrQ2Pi3Ef+EeR0uUryyDnut8WilZ6H2jdioQFj2IrJwdpuSWfkjgoyAETDnxwaljXk1avWkHc8o4n7qrLP/Qoz/nmH6t+WyHXU/YR3SMfSzswyPV+dO/CONc7t+5bsGABKa0X+Xj8oxP/n+CBizmtXbuWGjZsSEo3H5lpZn9iqztDnG7pEuG/XPLYIxyoU8YULF60pM7DcSvA3b/vpHKiRW8uMa4nd33wOXFEtirkDTgwWKxwcRkY5AGReTwTDjxGTnzXNm6VuGbDb8R3dVu1fmXkVQzyPDbjxHx9aJ9AbMfVXlfXPF4j8v9iov+/fCpaRt4RQbsb127Km4pMHDaRxkwdIwLl1uK9uzT9+9e/4v1efIAX7/erF6+iPp36yvf7GvWq086NO+nh/Yfke92X+nbuR2ns01D1utVp+wZxQ5O7D+RQBntF12R3L3cqVb6U+D+Qmjb8toE+Bn4Ud0X+Oq5uTMfRdS2oJM9blAP1oZLKEMUwSH1s2LCBTpw4oZ6z/FoSg5wv3g++AsdxDvURRzADr54o9fH48WN5w0DuycMTNxzQJ+XPn1+uxp/p+UfnS5cuUZcuXejVq1fk7y+Gm3J1Je7t8+bNG3nDQBNqQKa3aynRkITH7uabh/A4i3yO/FmZA3KFChQiL/E9lG8mcv7P8F6XO/ZsI+4WrPR2UpyV4OubONyt+NXr8B4Q7hU9wr+rrlkmd/c57LNssThefMaZ7D1N3hxl5Phhmq7LyjH50Vb7SXznlcHj+/UTXfLEAPE8WDw/av9T4YEqeXD4wYMHy0Hm9+3bRx07dqQ5c+bIL6g8zxfRoEGDiO+AyxfN3LlzZZ/1H3/8UbZM4xtf8GDzHGnmKDRfbDxgPQcTVZDGiTJwgLCqVlm8tebNdlZpDWK2J2iYE+NrhRNfN948Y6qJv/hyUlqMxScgqFxD/JhJ3NWplGh2/Ul0eeUbiyh3duJj5BXdDyuLAEWbJl4y6FZRBPaui5uBcOJtlTdSd6/aNGZID3IQ45mFL4v6O4hyTLlCLH94XXfPmtSxW395bF49vfglaJa4iQO3CGwnxm/juyZvE78KpUufkZp+247m/TyRatdvRgOGT6DxI/rKic+Lux3H5dixFC3CYiVIq7QUjLBQPOnX/RsqU7UduXt4am5KopjxuhyMG+s9ni4c+y3yplGe85iSnBJS78pOvby8qHXr1jIIyHk8Lkn9+vXJw8OD7O3t5a+PSrdj7XpWto/8GNk38vPI66vheWx1F98yWsnfHHRvzQMaDxPjj/BgxZNmjJd3DJ4+4WfZmk+XWeUK7rLbcOmSZeQOq7p70g3f65RBXPOcuLsC3yFts2j5m94pvWxROGfBLKpdvY5crpSFu+8O6TuMxkwaKSfu7iy7NovXmSFTbMaJ+frQPo/Yjqu9bnTzFv4aSfT/l/x5c9H/FsuJzYuXLk5DxV0ClS7ClTwrUftu7al9kw6ySnjsvxkLpsuWfw2aN6Bdm3dTrbK1ZdCvW/+ulDN3TqorAoBbxU1JapcPv9655WGDZvXlkAZ9h/eRNy7hm5eULFdSbsevsZiOw8utrQ37mpAnF/c/qI+4mxlyi0SvDy4sfwfj7238f1hlKdHPF+8HCaph1EeC+BJ940SpD74TMU9K4kZA/Dk9psT/sxwcHMjb21tO8+fPl6tzvIZvGsif53mMcf58z6lp06ayJxPf+Tj8/13U72pyRXX80duVu/tOE+PlDxkzkMZNCe9Fxd14+WZ9lURDE27YVl18l23xfWP52Zd/aF82P/x7FzvYfRkjPa19WjkcUM3GnnT899OxKvC2xcVNM/mH/HJe4T/yd273oxwXfOiYQXJMwwplK1Gjuk3kmIU8HiLfwZjLqp34U4coY5h2nl7zXACu4CZNmtCIESPo6NGjxM1FOfHgktwi5e7du8QXBgcPz549Sy1btpTBQF6nUaNGcuwrpVUgDxrPrQI5wsytz44cOUL8YZjvdsOtWa5duybvkMN92A8fPkw8mCXvl1utZc2alXepV+Jyi2SoT1uRIcd9KZS3eGGEKYPr61VQrKQKAb4Dk+jymNjXi/eXk1MedZ2ryXQrjq3r8abTQWSVwoWKF3DWdZ7xyuObgDiKwF+yZHbRbv/m9UvRmsNB/ugQ7UrxWPDyxTN6/uwp5RQDuyYXb+hKChJ3ouIbqWTL7ir/yfF6Do7p5PG5leNb8csPBzu/vAcpm8X4ePTcdSqcJUCvbsVKkFZpJRjdjtdvPULtu4yicd6j6ft2HWXLQf5FkFsMcmBw5cLx1Kp5jeg2l/l8LO5Ky8eKLhjsUrA++Rw7KX8hjHFnMSzksUv4fwC3II/cdTiGzeK0iH+pe/3gqFG7FcdWdyHBYbJbcd0OnnE6N31XDngbQP7i2s2RPSelTJFS3810rsdjzjwRr0++Wxtf6zyGiqPoks9fviKnl6J179t3AfKubnF5XUTeT+C7j3RyxznqPCxP5EWa57EZKysmxutD2Rc/6nNc7mYbn89hvH9DvUbu3LlDlStVUEO3Ym8+T5G85V8df8bv6hLWvKxh7kr+8sUrcefi55QjV44oLZd5TEIOGnKwW0ncHf/hvQeUzC6ZGC83S4T3ex4z613AO9Ft2SVCPm8b03GUfcf1ccv5OTSmYdJ/fkF96K4pY9WHKE28vufpPgv9cw30fcv7SwmUxygFwvUXhURmGOv6Q32oqz6SKh7BPUG5pSD3MuWgoJL4sw5/buGblfDnwvfv38vP93HtGWSg7+dKMSM/en/JUB4jL6f5A9eG1e/kFSGfe8bcu3+X0oieMspYgdor8GdlPv8cOXLKH+W1l2nPc8tBh7QO2lmxzvOQQfzZO5UY+5DHQOS7JXOwMba0Z9nRxGk5GNvg8UqLD27tpyRuScj52lFp7YuHuw1zUvL4xJo1a0bt27eXt7jmfG5tOHnyZGWXcXmMHMSLaVufmBbGskyJMseyGhZbmIC3OZ1vQsdZi48FdwuOLXFgzhCJWwbyFDnZ2SUXY0vl0mRrr8N3TY7rnZM1O9JzJragoLKbVs2qUeECv9HsXzeJFnrF5c1HeIzBhnWryhaDRQvnVVaN9pGPlRRvbjxshSUkfevOUBb8gUGfDw36HJ+DrTymoJLSp0uvzEZ55DsV85QUSV/jxHh9aJ+PvsfV3iYu8xbwGvGOi0dir5suvZN4v3fSuVu+m3HkxF2SOZCoK/GdinnSlWI6jq71jZjnbcRjy7pAfUSoAaPWR4SSJM0To55vTK9TvB8kzQWgfRTUh7aGnPeOkmOkjBQpUsjWgpEPzz8aRL6RSeR1VPjcOz5l4h/beRzB6FJmPb7L8rZxDQzyNs6iF56SOPAal+CrrbJhQh5jGjyeB7xv3Lix7GrMt7zmgCCPHZUuXToaOnSoZhB67ovO/duVpKuVAd/4YsqUKcQt8HgAy169eskB6rnbcRxTXFqCecZh35HX5TFZ/MTkI6ak+C4tDoMEAQhAIGYBDgAu/WW4WGm4vBupPjcfiXmPWAoB8xHA68N86hJnAgEIQAACEIAABCCgn0CidO6ObfB4HniSA4jcBLRHjx7y9tU8AD53S+Ymp+/evaOePXvSjBkzYiz19u3bqUOHDnKd5s2byxuTcLNVAycfsX99Jk+x3jExceKg4F9iaiom7vTtIyYkCEAAAqoSULo8Ko+qKhwKAwEjCyivC+XRyMXB4SEAAQhAAAIQgAAEIGAwgUQJDmoPHs/jA/L4gaNGjdIUWhnwfvTo0fJGI9OmTaOBAweSi4uLHI+K74LM/c95zMHoEjdD5ZucXLlyRbY6dHR0lHd/adOmTXSbJHU+twysKiYEBZNaHseDAATiJaC5UcKXm8rEayfYCAJmKoDXh5lWLE4LAhCAAAQgAAEIQCCKQLy7FWsPns2Bu3Xr1tHMmTOjDB7P3YCV5OTkRAEBAcpT2TWYb1rC4wnyra+/DF4bZWBu7WP5+vrS7du3iffFg1mqJHmLcviIadyXR/GABAEIQEC9ApFbQ/FzQ4+Ppl4NlAwCEQXw+ojogWcQgAAEIAABCEAAAuYtkCgtBxUiHhi7QIECet9VkoOBrq6uchslMKjsK7pHHlCR74SsosAgF9VHTF5fHsUDEgQgkNgCL54/pfxZbKlbuyYRdv3wwV3at2uzJu/g3u10z++W5nlcZ7T3Fxj4QR7z7h3fuO5G9esrraKUgkZ+ruTj0bQF7t73o5yFs9LAEX0jnMj6zWuoUcu6EfJ0Pdl/aB/xPhI7+Zw4QnWaVk/s3Sba/iK/HiI/T7QDYUcQgAAEIAABCEAAAhBQgUCiBgdVcD7GKoKPsQ6M40LAUgR+372FUqexpyMHdtPLF880p3396mWaMXGE5vmcGePoyuVLmudxndHeX/LkKWjN9qOUSeuuT3HdnxrXj9wqSiljdPnKcjyarsDmHRvp7IUzmhMI08zFPDNr3gz6V7zGLClF9zqILt+SbHCuEIAABCAAAQhAAALmKYDgoHnWK84KAmYnsHnNMho8ajKlz5CJuHUgpwf37tCk0QPo/t3b1PuHb2n21LHEwb3JYwbRqeOHKTg4SAYOq5fPT01rlqU92zfI7T59+kjN61SgTWuXUb0qxYiXb1qzNMr+QkKCadZkMVbq65cUGhpK82dNoiolXaliEWeaPHYQffwYKPc3ckAXWrN8Pn3frLpcNl600uL11Zq4FZSjgz2VKJo/QhHROioCh1k9adm8NQ0bO1C8JoJ1ntcm8drglnwetSvQz79Mp5DQEJoxdypdu3GVJojX1e7fd8qWhg8fPZDbT5zmLfY3SM4HBQVRk9YN6P6De+R7+ya17NCc3Mrlk+tfuHRernPl2r/Urd8PtHDZ/CgtBgPeBlDnnu1p/pK5OsuW1Jl4fSS1OI4HAQhAAAIQgAAEIGBsAQQHjV0DOD4EIBCrwK2b12RrwDoNm1Ozlu1p26ZVcpv0GTPTt206yYBht77DqXGL1pQ9Z276tm1nKlSkOP1vqrfscjx49GRq/2Mf6t+tDZ09dUzezOjyXxdosWgVNWL8TKpQ2ZNGDuxK9mkdIuyPA3wXzp6kj4GBtGXdcrl+1z5DaM6SDbRv52Za8L/wMVVv+f5H44b3oRatO1HXPkNp9bJ5crtYT8wIK3DrJw4Kbls3gy79sVaWICzgAnkP7yLn0TrKe3C6ugAAG49JREFUCJWSBIfs3aUvBYrrePnqJVGOxl18B43sR63E62ey9zTauHUdzVs0h5o1aEE5XHLSd9+0pUrl3enpsyd0UbxueBzgtaJb8joxcbDx8tW/6YbvdcqQPiO1/aElpUiRglYuWENV3D2pXdfW9OLlc3r/4T3tO7iH1m9ZQx3Ea1ZJH0TX/Y7d28pg5A/tuirZRnvE68No9DgwBCAAAQhAAAIQgIARBRAcNCI+Dg0BCOgnsHvbBqpWqwGlE8GHmvWa0J/nTtFDMQ5aypSpKF/BIpQqdRoqXLQk5cpTQMynpjz5C5GDYzpa9Ms06jN4LNVp0JyafPs9NRFBjgN7tmkOOn7afHL3rCkDhJzJ4xpq70+zopjZIIIqHGBs07EHla3gQb0Hjaat61dqVuHjNG7RhjqIIEzREmXonkrHKazqUVoGBT3dS2vKzjN8MxIOEiKZp0CqVKlp/KifaNKM8fTI/2GEk1wlrmNuWdihTWdyr1iFBvQaTNtFN/7cufJQarFd3tz5KJ1TOqouXiscHPQTLXZTiC736dNloCv//UvnL56j2tXr0NmLZ8j/iT/Nn7mQypYqR4N6D5XHOXnmhOZ4y39dLYKQbeRzDhh26dNJBhgXzF5CdnZ2mvWMNYPXh7HkcVwIQAACEIAABCAAAWMK2Brz4Dg2BCAAgdgEuPXe+t8WyS683P03WHRh5PT7ri3UucfAaDd//vSxXDa4V3viSUn1Gn2jzFJWZxc5z2MZcgr6FL5v+STSn9uiZVT3fl/HNnTJkYse+4d3seRVnV1yaLZwFIGUoKBPmudqmokcFIxcNtyxOLKI+TyvVa0OVatag8aLbsJV3fkeWuHptp8vHfI5QBu2hLck5dzUIuAeOXlUqkqz580ULU9Liu09ydrKmv4UwcLT509Rk/rNiLsc58uTP8K2hUSg/vnz55Q1s7PMdxWvGyXdEzcT4omDjKEhIUq2UR/x+jAqPw4OAQhAAAIQgAAEIGAkAQQHjQSPw0IAAvoJcLdebtG3bP0+zZ3Qd4luj1tEa6eYgoPcRZjTgt+2U0WPanL+8aP7ZG1tI+f5j43N13lNZjQzRYqVoidawcA7t26Qh1ctzdo2Nng71WBgRrUCY4eNp6p1K9EH0WpPSQ4OTtS9cy/q22OAzHrz5g09E6+5yKl8mYpyDMKDR/cTBwr59cN3M+ZuyVPHzZR3NX70+JEcb5OXcffjazeu0QjRyjY09HPk3cmg4P5th6nht3Vo9q8/0yjR+hYJAhCAAAQgAAEIQAACEEh6AXQrTnpzHBECEIiDwE4xrlntBs1k998KorUTT607didfcaOEG+ImB9bW1vTh/TtNyyNbEaR78+olpRTdIUuULk+8Pbc25G7I7VvUpjMnj8Z49Mj7U1auUbcxbd3wm7z5Cd/oZPe29SI4WFtZjEcImIQAt9zjbsPH/vDRlNe9ogftP7xXjinIQcPRE4fTohW/yuU2tjb0+s1rOe/k6ETFi5SgPft3UanipWXXYW5xyK0Fs2TOQqVLhHdVXy9aIPINTY59ea0VFy0NdaVM4uZCGcXE3Z0Xr1ggA4+61kMeBCAAAQgkrcCGDRvoxImvQ0Ik7dFxNAhAAAIQMIYAgoPGUMcxIQABvQQCxc0K+I7C9Zu0jLC+mwhQZMnqQvv3bCWe51S3ajH56C4CdmOG9JA3IpkwfQH9ef40lSmQQd6VuGjJMtS8VQe5nq4/VlZWUfbH63F+vcbfyq7C3LW5cPZUxHc8btjsO127QR4EVC3QRQTXs2bOqiljlw7dRXDPmarUqUilPIrSE9Elf/iAUXJ51cpeNGLcEBkQ5AyvKtVl92AOCHKgkbsE81iEnGxtk9Gw/iPk+sUqFqL24gZA3qKlIgfs+TUUXeLuztwScdT4YdGtgnwIQAACEEhCgblz59KePXuS8Ig4FAQgAAEIGFsA/eCMXQM4PgQgEK0A33DkxuOoY5FxoOH4JT/Ndif/uifHJOSMgSMm0g+ie2QaewfZ7fHoeV+6K8ZU45uWcECRk22yZFH2q30cZX+Rj7/94AV6IG7GkEzcOCGrc3ZNwGP9zuNyv8qfpev2KrMW/ZguXTqLPn81nHzO7K5094p/hKKkTJGSzhz5U5OX1j4trV26UY4ZGCRa2eZyza25tof0G04cTLT/Mi5n/56DiCcl/XnisjIrH9t915GaiBsA+YvuxTmy5yQ+Fie+QcnVczflPP/xFF39eVLS6sXrlVk8qkDAyclJBaVAESAAAWMJnDx50liHxnEhAAEIQMBIAggOGgmeD7tyzA4jHh2H1iXQfnxjXdnIU7mAja0tKTcV4aLynYqVxMty5y2oPNXrMfL+lI14HLWcufIqT/EYg0Dgx0+UPn36GNZQxyIbGzSg55rggLtLtuw6K8XRwVFnfnSZHGzkCUl/gZhaVuq/l8Rd08kxfNzWxN0r9gYBCEAAAhCAAAQgoEYBBAeNXCv1O329Y6SRi2Lxh9+zLOax6CweCAAQiIPAC79DcVjbuKsGq+ROucZVwNGNJRAWcMFYh8ZxIQABCEAAAhCAAAQgIAXQZAIXAgQgAAEIWLRAMtG6FAkCEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGAAQgAAEIQAACEIAABCAAAQhAAAIQsHgBBAct/hIAAAQgAAEIQAACEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGAAQgAAEIQAACEIAABCAAAQhAAAIQsHgBBAct/hIAAAQgAAEIQAACEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGAAQgAAEIQAACEIAABCAAAQhAAAIQsHgBBAct/hIAAAQgAAEIQAACEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGQBIKpEmVPAmPhkNBAAKWJJDMztaSThfnCgEIQAACEIAABCAAgUQXwCfqRCfFDiEAAW2BN+8/0/ErV7WzMK+nQOqUdlQ4C37D0ZPLrFf7/DmM9iw7atbnmJCTs7HF6yQhftgWAhCAAAQgAAEIQMCyBRActOz6x9lDwOACP9RIIY7BE1J8BN58CIvPZtjGjASsbayo+9j8ZnRGOBUIQAACEIAABCAAAQhAQE0C+KldTbWBskAAAhCIJOCQyipSDp5amoA1/lNbWpXjfCEAAQhAAAIQgAAEIJCkAvjKkaTcOBgEIAABCEAAAhCAAAQgAAEIQAACEIAABNQjgOCgeuoCJYEABCAAAQhAAAIQgAAEIAABCEAAAhCAQJIKIDiYpNw4WGIJhIaGEk9IEIAABCAAAQhAAAIQgAAEIAABCEAAAvEXQHAw/nZG3fKPMycoZ+GsEabOPdvT6XN/xKtcgR8D5b787t2hoKAg2rh1HXGedn68dhxpI13lVs7jydPHkdaO/umYSSNo7sLZ0a+AJRCAAAQgAIEECnh6lE7gHrA5BCAAAeMJ5M6d+46Pj4/xCoAjQwACEICAyQjgbsUmU1URCxoWFn4H0wvH/iZrMVr9hw8faI4IlvUc2I3O+VwiW5u4VW1yu+S0ceU2ypwpC30I/ECDRw+gqu5elDFDJk1+xBLE75lS7pP7z0bZQYb0GaPkIQMCEICA2gU83UuT14mLai8myhdHAZ+TqNM4kmF1CEBAZQLv3r17m9RFGjduHHl4eGw4ceJEUh8ax4MABCAAgQQIoOVgAvDUsGn6dBmIp+wuOajT9z/Qi5fP6eatG7LL7dwFs6lCtVJUyqMoTZg6lj5+/CiLvP/QPmrZoTm5lctH/Yf3Jv7cEBISQjPmTKHXb15T176d5Xrtu7ahJ8+eaPI58+DR/VSjUVW57Y+9O5L/E3+57pqNq2jm3GnUb1gvebz23dqIsryQy3T94fJGnmxsbIj3M3GatywXl53n9x7YTV71K8vpyLFDmt3d8L1O37RrIsvSZ0hPehPwRrMMMxCAAASSUoBbmCGYlJTihj/WMRHw5cAvEgQgAAFTFXB0dBzu5eVFSdV6kI/j7e1Nvr6+j0zVDOWGAAQgYKkCCA6aeM0rXX8fPnpAazb8JgOF+fMUoI3b1tOvy+ZRjx9706+zFtOe/bvol8X/o5evXlKXvp2o3XcdaNH/ltK1/67Sui1rKfRzKJ27eFYEEAOpZ5c+UqV/z0GUOlVqTT4HHX/o1YGqVK5Ka5ZsoJDQEOo1sCtxa0DuEjxnwSzKlTM3TRw9mS5f+YdWb1gZre6OvdtIezpz/pRcl/ezeOVCyp4tB/XtMVDOj5ownPr3HExlSpWnsT+N0uyTz8mjUlWaNHoKnTx9nKbN/kmzDDMQgAAEIAABCEAAAhCwZIEbN27sdXNzW8QBQm7RZ6jEQUGe+Di5cuWa6+/vP8BQx8J+IQABCEDAMAJx63tqmDJgrwkQcCubV7N1ofxuNHX8DOIWeOs2rZYtCdt911Eu7ycCbbPnz6TWLdrK589fPCNPj2q0bP5vmhaFyo6KFS4uZ0sUK0nJkiVTsmnbri1UsnhpGjN0vMwbNXgsVWvgQf6PH8nn5UqXp77dwz8L/Hv1Mt26c0uzbeSZRct/jZBVVgT+KpStJPPKlCxLA3oNlvPT/zdFBjIb1WsiA488FmJISLBcxmXp062/nH8rWj9OmTWJJo2ZKp/jDwQgAIGkFBg7vAuNm7yIPPcsTMrD4lgGFPAW9RkWcMGAR8CuIQABCBhe4OrVq13t7e1fHj9+PK+VlVULQxwxb968d0QX5vdVq1Ydf+zYsU2GOAb2CQEIQAAChhVAcNCwvgbf+7F9p0j8o5djDGZzdtEcz/eOL/Xq2lfznLvwchdg56zZiIN6YyaNlFO1qjVEsE+/XxLv3vej0iIgp6RsWcOPp3QfzpndVVlE4kMIffwUqHkeeWbPpgORszTPXXPk0sw7pE1LHPTkpAQqQ0M/y+fuFT3kI/9xK1iY3r9/J7tTc3AUCQIQ0E8AN1zQzym2tbj7Kb+TctdidEWNTUv9yznQ6y0CvkgQgAAEzEHg7du3w48cOWKwUxHdiOW+Hz/W/+aCBisMdgwBCEAAAvESsBZ3sbrFzcAtIfF58vma07nmcMlJHJTTDgzy+RV1K0aPv4wHyM9v+92mqpU96dXrV1SzWm26eekurV++WY43OGveTF4l1lQwXyF66P9Qsx7f2ZhTgXwF5aN1IgXlbGwjxaxF8FNXeiW6SCvpzt3bxC0XERhURBLnkYMcPO4WknkKYIy8xK1Xbj3oVa9r4u4Ue0tyARkYFMFBrk8kCEAAAhCAAAQgAAEIWIKA9fv37z9Ywokq5yju6ht+Vw4lw0wfa1evQ5u3b6R7D+5ScHAw7RRj/FV1r0Y8NmG9FrXo8VN/qliuspzevguIoMB3P+YU+QYfXlWq0/FTx+j8n+fk8h17tlENz1pkZ2cnn8flz7UbVynypNwwRd/9bNu9lThAyee0fvMa4vIhJa5AVdxkIXFBVbY33HAhcSuEg+nc2swqbRnZxThx9469GVqAg+Ve9bvK1p9H96J7uKG9sX8IQAACEIAABCAAAfUI2BYvXvynYcOGLTlz5kxq9RTLMCXZt2/fq9SpUx81zN6Tdq/clTim1LBuY9q4dT151K4gVytepAQ1adBU3rDE091L5vNdjrnb7oxJszW74v2mtU9LPO5fzcaedPz303IZ5xcuVISqi27ILb5vTKlTp6EUyVPIMQs1G0easbaKer8bpdx1mkYN5P2+7XCkPYQ/jXyqyj7y5spLVeuGj1PIXY9bNP5W5/bIhAAEIJBUAtzaTBl/kIOEStdUDrSju3FS1YJ+x9FuOcutBX1EK2muL7QY1M8Pa0EAAhCAAAQgAAEImI+A7YEDB9aL01nHXW49PT3N58x0nMm0adOcRHZvHYtMLqtyBQ+6e8U/2nJnzJCJ9mw+QPcf3iO7ZHaUNYuzHJuQN5j/8yLZ2i4oOEje5EPZifb+tqzeKVsOOqR1iHCcudN/lWMWihanlCNHTjnWIW+v3EBE2Vf3zr2U2QiPsZVbGV9Q2ejonj+UWSqYv5CmLMqNRz59+kTPnj+V3aqVoKFmA8wkWICDGRhHLcGMqt0BbrhguKqJHGDi4JMXuugbDjwee1bG2+T3ufCgLiGAGw9HbAIBCEAAAhCAAAQgYPoCcnC3YsWKLRk6dGjLs2fP2pv+Kek+g379+t13c3PbK+7YpXsFM8zl8fe0b+6hfYqRxyjUXqbMc2BQV8qcKYuubKPkJU+enFyyZTfKsS3loEorKNyF1bxqHDdcMHx9agcIxxr+cDgCBCAAAQhAAAIQgAAEIACBeAnIfp///PPPj/dFEt2LX8drLyrfaMSIEe/FOZ4TgcFuKi8qigcB1QkoXSE5mIRkHgIyMIgbLphHZeIsIAABCEAAAhCAAAQgAAEIJFBAMyicv79/4dWrV/v379//UQL3qZrNuat02bJl34jxFH8/evRoC9UUDAWBgIkJHN0TPjg/D9aPIKGJVZ5WcXHDBS0MzEIAAhCAAAQgAAEIQAACEICAFJDdihWLhw8fuu3evXve7NmzewwfPvxtrVq1ZDdjUxqLkAOCnERrwcDTp0+nFF2J11+4cAEtBqUK/kAg/gKyi6Robcbj1CmJb7LASWldqOTjUR0CuOGCOuoBpYAABCAAAQhAAAIQgAAEIKBmgQjBQS6or69vT/HQc9WqVbNXrFhRM2XKlMlv376dR80noV223Llz3/rw4cPHChUqTBX5qyxpjEFtB8xDwBAC4YP2d9G0HjwmbrAgW6PhRguG4E7wPnHDhQQTYgcQgAAEIAABCEAAAhCAAATMXiBKcFA54wcPHvRT5k3pUQQyZXG3b99uSsVGWSFgUgK40YJJVRcKCwEIQAACEIAABCAAAQhAAAIQiFZAM+ZgtGtgAQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGCWAggOmmW14qQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBC7AIKDsRthDQhAAAIQgAAEIAABCEAAAhCAAAQgAAEImKUAgoNmWa04KQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIxC6A4GDsRlgDAhCAAAQgAAEIQAACEIAABCAAAQhAAAJmKYDgoFlWK04KAhCAAAQgAAEIQAACEIAABCAAAQhAAAKxCyA4GLsR1oAABCAAAQhAAAIQgAAEIAABCEAAAhCAgFkKIDholtWKk4IABCAAAQhAAAIQgAAEIAABCEAAAhCAQOwCCA7GboQ1IAABCEAAAhCAAAQgAAEIQAACEIAABCBglgIIDpplteKkIAABCEAAAhCAAAQgAAEIQAACEIAABCAQu4Bt7KtgDUMJpEqTgm5e8jPU7rHfOAikFHWBBAEIQAACEIAABCAAAQhAAAIQgAAELE0AwUEj1fi71x8of1lXIx0dh40qEEZ5S+aImo0cCEAAAhCAAAQgAAEIQAACEIAABCBgxgIIDhqpctM4pqLiXgWMdHQcFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACRBhzEFcBBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQsVADBQQuteJw2BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQQHMQ1AAEIQAACEIAABCAAAQhAAAIQgAAEIAABCxVAcNBCKx6nDQEIQAACEIAABCAAAQhAAAIQgAAEIAABBAdxDUAAAhCAAAQgAAEIQAACEIAABCAAATMVcHR0vObr62vSZ8fld3Jy+k9NJ5EidfJrLx6/VlOR4lwWLn/K1Mn/Q3AwznTYAAIQgAAEIAABCEAAAhCAAAQgAAEImIaAnZ3d8b17934yjdLqLuWNGzcCU6ZMeVL3UuPk2iSzOX7j4m2Tdn3x6FWgXfJkJxEcNM41hKNCAAIQgAAEIAABCCRQIFUy+xvP3j5M4F7Ma3P2SJXc/oYxzgr1EVXdmPURtTTmnYPrL2r9GvP6Q32oqz6eP3++/s6dO8lNufXgwYMHU3p7e/8YVdZ4OR/eBK5/+eRNclNuPXjzL7+UbUY2+hHBQeNdRzgyBCAAAQhAAAIQgEACBELCggMTsLlZbvr87QNKmSzNOWOcHOojqrox6yNqacw7B9df1Po15vWH+lBXfSxYsMAne/bsy3ft2vU2asnUn7N169Z7zs7OS9RW0u4zvvNxSG+//No5X5N0vXL25j2HdGmkK4KDaru6UB4IQAACEIAABCAAAb0ErKytBv/74KRJfiDX6wTjsVJwSNDTgMCXRmlOifqIWmHGrI+opTHvHFx/UevXmNcf6kNd9cGlGT16dCdra+udO3bsMMr/iKgisedwS8fZs2e/f/jw4Sm1tRpUSt9mRMNONtZWO6+e8zUZV27p+Meui+8Dnr07xa0G+VwQHFRqFI8QgAAEIAABCEAAAiYlMLT2/w4GBX96ga7F4dV27dFZuvnkUqbh9eYOM0ZFoj4iqhu7PiKWxvyf4fqLWMfGvv5QH+qqD6U0I0aMaHvr1q0D/fv3p927dweotZsxl2vu3Lkh8+bNo+Dg4HXDhg37TjkHNT62Gtqg7Uv/1wf2LDtK/124HaDWbsZcrtN7/gw5s/cShYZ+XtdqaD2Nq60aYVEmCEAAAhCAAAQgAAEI6CPgkCbdWNF68BevQi3t9VnfnNcJCgl6kNIuzVZjniPq46u+Gurja2ksYw7X39d6VsP1h/pQV30opeEWhGK+U6ZMmRZcvHixyuvXrwspy9TyyHclFq0cD4lpi2gx6KOWcsVUDm5BKJZ3Wjlh+4KHtx5X+fj+k+pc+a7EVsLVyspqy/cjG0VwtYrp5LAs8QS6dOkSNmvWrMTbIfaUJAL8i8qiRYuM8ToJCwu4kCTniINAAAIQgAAEkkrAKm0ZPlSi/1+dvn/A1RzpC2Yr4lIpbVKdi9qOc+XB6Q93X1y7N7j2z0b/MoL6IFJTfajtWjV0eXD9qev6Q32oqz4M/frD/k1XAN2KTbfuUHIIQAACEIAABCAAASEgAmJu91/eeHL14ZkgSwThQNS9l9cfqiEwyP6oD3XVh6W9JnD9qev6Q32oqz4s7f0A56u/ALoV62+FNSEAAQhAAAIQgAAEVCowqNaM/NxCJfhzUCo7m+Q5CzmXV2lJE69YPNbi5XsnAz6GvH+klsCgcnaoD+O34FTqwhIfcf2p6/pDfairPizxPQHnHLsAgoOxG2ENCEAAAhCAAAQgAAETEOAWKjMPDP7l/ac3PYNDgx4ls7FzzmDvQhnts5lA6fUronLzlcv3T74PDvn0zD6l04je1Ses02/rpF0L9ZG03jhaRAFcfxE9jP0M9WHsGsDxIRCzQKKP+RLz4Sx3KY85aLlnb9pnbqwxB01bDaWHAAQgAAEIRCuQJJ8/p+3rNz1lcvtMn4IDK34ICsgXbWlMbEGq5PY3QkNDPtpa240cWHv6blMpPurDVGrKPMuJ609d9Yr6UFd9oDQQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBgwQL/B6xLUrHY8Fr7AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "52e3985a", + "metadata": {}, + "source": [ + "# Архитектура\n", + "![gpt1.png](attachment:image.png)" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -177,13 +191,18 @@ ] }, { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAACiCAYAAAD81HvMAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFB6ADAAQAAAABAAAAogAAAACNa65XAABAAElEQVR4Ae3dB1gURxsH8JciVgTsIip2xd4bKNh7TzRqrIm99y622KOfRmMvsfeusWOJ3ZjEqFFRsWIvWFCKfPMO7nnAAUc5bu/uP8+z3N5sm/3N3nH33sysFSEliUCXLl3CkuRAOEiiCyxatMgq0Xca+w5xvcRuhDUgAAEIQMA0BZLk/+rM/YMbBId+mmBrmyzVh09v85smVdRSp0pmfyO5XaozbwKf3xtV/9fRUddQZw7qQ531YimlwvWnrppGfairPlAaCLBAknw4AzURBwdnzZoFChMT6N+/PxkrOBgWcMHEtFBcCEAAAhCAQMwCVmnL8AoG/fy5/NTMTq/ePRmdzCZ5uqI53NPyATPaZ+MHs0jP3j6k528fUHBo0KObjy85p07uMG9grem91HpyqA+11oxllAvXn7rqGfWhrvpAaSCgLWDQD2faB7L0eQQHTfMKQHDQNOsNpYYABCAAAXUKGDo4OG1//6spbdNk46CgOQUEo6vNa4/OyiDhg5c33wyu/bNbdOsZKx/1YSx5HJcFcP2p6zpAfairPlAaCEQWsI2cgecQgAAEIAABCEAAAhAwNYEZ+wfezJG+oHNhl4qpTK3s8S1vIefyvKmztZVNmhkHBt0YVGuGarpPoz7UVR/xvcZMdTtcf+q6/lAf6qoPU31do9yGFbA27O6xdwhAAAIQgAAEIAABCBhWgFukWFpgUFu0iEultDnTF8w5ff+Aq9r5xppHfairPox1HRjruLj+1HX9oT7UVR/Gel3iuOoXQMtB9dcRSggBCEAAAhCAAAQgEI3AzweH/JrFIZe9JbUY1EXhlq2C3ePXfs5LT01p17nSsN90rZMUeaiPcGW11EdS1LmajoHrT13XH+pDXfWh/Vrt1q2bZ5YsWdoEBga6v3r1qqD2MjXMOzo6Xrezs/OZOHFiNzWUR98y/DponWdap9Rtgj4Fuwe+/6Q61xSpU1y3SWbt0350kyiuCA7qW8tYDwIQgAAEIAABCEBAdQLvPr7uZpfeTnXlMkaBiubwcPjzzuFx4thGCw6iPr7WvBrq42tpLGMO19/XelbD9Yf6UFd9KKXx9vZe/OjRox9SpEgR0rRpU9u8efMqi1Tz6OvrW0BM+cS9G7pmypRpoSkECddM2rn4zct3P9gkswkpXiGfbfosjqrxVAry4vHrAi/8X+ebP3Bt19SOqRZqBwnRrVhRwiMEIAABCEAAAhCAgEkJTN7be0rezCUffBl7z6TKbojC8k1Y7JIlT/+Lz5imhth/bPtEfUQUMnZ9RCyN+T/D9Rexjo19/aE+1FUfSmmmTJmyzsbG5puePXtS7969VRkY5LJywLJOnTrWs2bNIjc3twZTp07doJyDGh/XT927jqytv6lQryRVrF9KlYFBduOAZf6Srtb1O3lRJpf0DTZM36dxRXBQjVcWygQBCEAAAhCAAAQgEKtAmhQOmexs7VxiXdGCViji4m7/LvD1WGOcMuojqrox6yNqacw7B9df1Po15vWH+lBXfXBpuMVgzpw5vQYMGOCgxtaCUcXCcxo3bpwtODi47qhRoxZEt44x87nFoGOmtF7ujUo7qLG1YHQ2buXyZgsJCam7csJ26YrgYHRSyIcABCAAAQhAAAIQULXAp5DAyhnsERuMXEm21nZGuWMz6iNyTYQ/N1Z96C6N+ebi+tNdt8a6/lAf6qoPLg13JW7UqFFm3SVTd27Dhg3tnz592pXHSlRbSbkrcaFyeUzStVC5vPbvX3/oymMlYsxBtV1ZKA8EIAABCEAAAhCAgF4CHz69zc9d55C+CrDHh6CAfF9zkm4O9RHV2pj1EbU05p2D6y9q/Rrz+kN9qKs+hg8fPrdUqVKBolQpo5ZM/Tnc0lFMYQEBAa1EaX3UUuIV3tvmZsuT2WRduaVj+qyOYR8Dg1qh5aBariqUAwIQgAAEIAABCEAAAhCAAAQgAAEIJLLA58+fa+TPn98kA4MKRe3ata2CgoI8ledqeAwTrumdnUzaNV/JXFahwZ89ERxUwxWFMkAAAhCAAAQgAAEIQAACEIAABCAAAQMIvHr1qqApjTOoi4DL//r16wK6lhkrL/D9p4KmNM6gLicu/8f3HwsgOKhLB3kQgAAEIAABCEAAAhCAAAQgAAEIQAACELAAAQQHLaCScYoQgAAEIAABCEAAAhCAAAQgAAEIQAACENAlgOCgLhXkQQACEIAABCAAAQhAAAIQgAAEIAABCEDAAgQQHLSASsYpQgACEIAABCAAAQhAAAIQgAAEIAABCEBAl4CtrkzkGV7g1dtPdPHGc8MfCEfQW4Dr5BvP3HqvjxUhAAEIQAACEIAABCAAAQhAAAIQgICpCyA4aKQadLJPTmevvaBCuTMbqQQ4rLZA2tQp6ML1hwgOaqNgHgIQgAAEIAABCEAAAhCAAAQgAAGzF0Bw0IhVHPD+I5UvmsOIJcChtQUOnrmu/RTzEIAABCAAAQhAAAIQgAAEIAABCEDA7AUw5qDZVzFOEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACugUQHNTtglwIQAACEIAABCAAAQhAAAIQgAAEIAABCJi9AIKDZl/FOEEIQAACEIAABCAAAQhAAAIQgAAEIAABCOgWQHBQtwtyIQABCEAAAhCAAAQgAAEIQAACEIAABCBg9gIIDpp9FeMEIQABCEAAAhCAAAQgAAEIQAACEIAABCCgWwDBQd0uyIUABCAAAQhAAAIQgAAEIAABCEAAAhCAgNkLIDho9lWME4QABCAAAQhAAAIQgAAEIAABCEAAAhCAgG4BBAd1uyAXAhCAAAQgAAEIQAACEIAABCAAAQhAAAJmL4DgoNlXMU4QAhCAAAQgAAEIQAACEIAABCAAAQhAAAK6BRAc1O2CXAhAAAIQgAAEIAABCEAAAhCAAAQgAAEImL0AgoNmX8U4QQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI6BZAcFC3C3IhAAEIQAACEIAABCAAAQhAAAIQgAAEIGD2AggOmn0V4wQhAAEIQAACEIAABCAAAQhAAAIQgAAEIKBbAMFB3S7IVZFASHCwikqDokAAAhCAAAQgAAEIQAACEIAABCAAAfMRQHDQfOqSqpfPT/mz2Oqc/rp4VueZzpw0kqaNH6ZzWUIzWzWqorMs40f01XvXj/0fkFv2lPTp00e9t8GKEIAABCAAAQhAAAIQgAAEIAABCEAAAvoJ2Oq3GtYyBYENu0/Q59BQWVT3Ejlo0syFVLV6XfncKX0GnacQFhZGn8M+61yWGJld+wyjlm07R9hVGvu0EZ7jCQQgAAEIQAACEIAABCAAAQhAAAIQgIBxBNBy0DjuBjlqhoyZKVMWZznxAZzSZdA8P35kP9WrUoxK5nWiHh2aEbfIi5yuX71M39avTCd9DspFWzespIbVSsoWiXOmj6PQkBDZgq95nQq0ae0yuT9urbhpzdLIu9I8T5cuPbnkyBVhcnRKr9nPysVz5DG4lSEft3+3NlSxiLN8/PgxULOfhXOmyvxald3owJ5tmnzMQAACEIAABCAAAQhAAAIQgAAEIAABCMRfAMHB+NuZzJa+N65S9/ZNyd2zJq3YuJ9CRJCvX9fWxK0GlXTn1nXiAB23NOT1jh/5nYb17UzftulME6b/SpvXLqdf/zeZPn/+TJf/ukCL582gEeNnUoXKnjRyYNdou/3+I9bdvW19hOn1qxea/WxYtYR69B9JyWyTUadWdSl1GnuaMGMB7dm+gY7s36UUj44d3ifzS5WpSL06f0MP7/tplmEGAhCAAAQgAAEIQAACEIAABCAAAQhAIH4C6FYcPzeT2mrH5rVUonR5Gczjgg/znkZ13IuQ/6P78jz8bt2g1o29qFnL9tRzwCiZt3bFAvqmdSf6vnMv+bzPkLG06Jfp1LnHQPl8/LT5MjBYskx4K0IO1uXOW1Au0/5z5uRR4v1rpwJuxURLQleZNXrSbKroUY0+ffxIZ08do+He02WAsFqtBuR3+yaVKldJrjdwxCSqVKU6cf7+PVvp1Ikjsnza+8U8BCAAAQhAAAIQgAAEIAABCEAAAhCAQNwEEByMm5dJrn3f7xaVFC3ulOTsklPOvnzxXD4eObBbPmq3xrstAnqcz92HlcSt+pSU1dlFzip5QZ+ClEURHrv0Gkwdu/WPkMdPAgM/yDxnlxzyMXmKFJQ3v5sMDHJG8uQpKPTL+In8nIOQnKytrWWgk1sfIkEAAhCAAAQgAAEIQAACEIAABCAAAQgkTCDabsXlypVrmiVLln9dXV19xSG4/6lJTLlz5/bNnDnzPy4uLrMTRmM+W+cvVIQePbynOaF7d27J+fwFC8vHGnUa0e6jf8lgoBIodHR0oi69htDfdwLkdOLSXVq19bBmHzY2Npr5hMzou583b15pDvPflX+oWMlymueYgQAEIAABCEAAAhCAAASiFfAU3+su58mTh78EGOQ7Xfny5VfZ29tPjrYEWAABCEAAAqoWiBIcdHNzWyBKHCaCNmvWrVtXePny5Xl4bDpTmZYuXZpn/fr1RVu1atWaz6NYsWKLVV0DSVC4qjXqyZt9XDz7hzzarq3rZPdcO7vk8nmOXHmJA4gdu/Yj76G9ZKu+SlVq0IF92+nZE3/68P4djRvem5bOnxnn0j72f0h8oxPtSbuFor47XLVkHgUFfaIt61fQi+dPZetBfbfFehCAAAQgAAEIQAACELBEgRIlSnA3oKPie13BJUuW5DbUd7q6deu2ffv27TDxXXKhJTrjnCEAAQiYukCEbsXOzs5XxC8+OY4ePUqenp4pTfHkRLllscVjxunTp1P//v3rpU+ffqM4p29N8XwSo8xuRUqQpwgQfte4quy2myJFSlq4aodm19ZW4THiHgNG0kZx5+El4mYjnURX4D/Pn6IaFQrI9YqWKENzl27UbBN5xsrKKnKWfL584WziSTvVbtCMps1doZ2lc157n/9cOkdFcqSW642dPEd2O9a5ETIhAAEIQAACEIAABCAAARbw/uuvvzp++W4X4XtfYvOMHTuWqlatSl5eXl3y58+/48aNG3sT+xjYHwQgAAEIGE5A80+CA4Nt2rTJPG3atDSGO1zS73nWrFnOw4YNqylaQm45dOhQ86QvgXGOeONxiObAHGSbtWCNvNnH+/dvKUfOPGRjG171g0b9pFnPwcGJLvl+7b67ctMBevTgrmyx55o7PynBOu1988aRnys7XL/zuDKr81F7u7oNWxBPSvrf4vXKrGb/fAMVLmOq1GZ1iWrOEzMQgAAEIAABCEAAAhBILAEPD4+CIlj3WTSaiNJbLLGOob0fbqTBgUjxnXK6yEdwUBsH8xCAAARULiAjRNyVWDQFTy8Cg+lVXt54FW/KlCmOYhyMmnnz5p3n6+vbM147MYONMmVxjtNZcDAwW3bXOG1jyJWzOmc35O6xbwhAAAIQgAAEIAABCJiNwIkTJ1oePx7zj/WGONkU3E0JCQIQgAAETEpABgevXr3a9cqVKyZV8LgWdurUqfbil7MeYjuLDQ7G1QzrQwACEIAABCAAAQhAAAIQ0FeAWw/evn07l77rYz0IQAACEFCHgHWmTJmmDxky5GtfUnWUK9FLwf+oKlWqFFSrVq1Wib5z7BACEIAABCAAAQhAAAIQgAAEIAABCEAAAiYoYC2S6FFc18kEyx7nIk+aNMnu8uXLo+O8ITaAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAZCliLMSFSmOF5RXtKKVOmTB7tQiyAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAFCVj7+fnl4S63lpC+jIGRxxLOFecIAQiYh8CbD2HmcSI4i3gLfP4c702xIQQgAAEIQAACEIAABCAAgVgF5A1JYl0LK0AAAhCIp8CSQx/pb7/geG5t2ZulTmlHDUtbU+WCySwbwsLP/nNoGC2a6EthYQgUR3cp2CW3oc7D8NtfdD7IhwAEIAABCEAAAhCAQEwCCA7GpINlEIBAggUcUltTfQ83ypM9fYL3ZWk7OHruujjlAEs7bZyvDgErK6J6Hb10LEFWSFAIHd10ChAQgAAEIAABCEAAAhCAQDwFrOO5HTaDAAQgoLfAuw+f9F4XK0IAAhCIi0CwCA4iQQACEIAABCAAAQhAAALxF0BwMP522BICEIAABCAAAQhAAAIQgAAEIAABCEAAAiYtgOCgSVcfCg8BCEAAAhCAAAQgAAEIQAACEIAABCAAgfgLIDgYfztsCQEIQAACEIAABCAAAQhAAAIQgAAEIAABkxZAcNCkqw+FhwAEIAABCEAAAhCAAAQgAAEIQAACEIBA/AUQHIy/HbaEAAQgAAEIQAACEIAABCAAAQhAAAIQgIBJCyA4aNLVh8JDAAIQgAAEIAABCEAAAhCAAAQgAAEIQCD+AggOxt8OW0IAAhCAgBkIBIeEmMFZ4BQgAAEIQAACEIAABCAAAQjET8A2fpthq8QSmLP2RGLtCvuBAASMKPD582cKE5ONLd5WuRrSu9agly9fG7FG9D/0+ycnKRnqTX+weKwZEhpCtjZ4beiis0pbRle20fOcHB3o5b3DRi8HCgABCEAAAhCAAAQgYHgBfFI3vHG0R5jatVy0y7AAAhCIKjCwx/e0a+s6+m3zQarg7qVZ4c/zp6lVQw+q27AF/W/xek2+vjNvA95Q6fzp6fz1Z+Tg4KTvZhHW27BqMZ08dpDmLdscId9Sn6RMkZxevHhB6dKlUzWBnZ2dqsuXFIVr3rYRXbh0PsqhVi5YQ54e1aLkxzXj+s3/qFYTL7p7xT+um1rM+mFhYao619evX5NboQKqKhMKAwEIQAACEIAABCBgOAEEBw1niz1DAAKJLMCt8zjt3701QnDw0L4dMv9zWPhy+SQ+f1T2BT0+p6CmbV6+fKn64KCavIxZlh87dKP233WMUIQMGTJGeI4nliPw6tUryzlZnCkEIAABCEAAAhCAAGHMQVwEEICASQmUKF2etm9eTaFfxonjgOG2jb8R5yvp9asXNHpwd6pYxJlaNapCm9YsVRbRwb3b6ftm1alkXica0rsDvXsboFnGM7y/yd6DiVsphgQH07Onj6lfl+/kvjq2rENXL/8l1+f15s4YT7UquxHn//3nuQj7wRMImJKAk6MTZXfJEWFKmSKlPIVN2zdQnabVyaN2Bfr5l+nEXYQ5PXv+lHoO7EqlPIpS2x9b0ZVr/8p8/rP3wG6q/00tatSyLm3btUWTjxkIQAACEIAABCAAAQhAQH0CCA6qr05QIghAIAaBshWqUAoRtDh/9qRc69+/L9LHj4GiJeHX7o9zZ0ygm9ev0C9LN9F37brSSBHAePr4Eb16+Zx6dmpBrTt2l91/r135O0LgkLv2TR03hPbt2ESDRv0kxw/s1q4JvXnzimbOX0VFipWmJjXLUMCb17Rv5yZatmCW2H8Xqii6Xm7dsDKGUmMRBNQtwIG9HXu3aaYz50/JAvucOEKDRvajVi1ai6D5NNoouvXPWzSH+LXSuWd7eiO65M+ZNo+KuhWjei1qUoAItj989IC69/+RypYqT+1bd6KN2+Le1V/dWigdBCAAAQhAAAIQgAAEzEsA3YrNqz5xNhAwewErKytq1Lw1HdizjSpU9pQtAZu0aEvJkiXTnHvNuo2p3Q+9KGu27JQyVWqZf9v3OuXIlUfOv3j2hKpWq0MLV+2gTyKwqKRZU8bQzi1racehC5TVOTv9+8+fdPmvC3T0vC9ly+4qg4Cb1y2n0yJgcuzwPvq27Q/UsWs/uTlaDiqKeDRFAZ+TR+maCKgrqVJ5d6pQthKtWr+SWorXW4c2neWiAb0G069Lf6FqVWrQ3//+RX8cOEcu4nVWuYIHbRCBwz/OnKC3795Sofxu5D18gtzm3fu3NGbSSGXXeIQABCAAAQhAAAIQgAAEVCaA4KDKKgTFgQAEYheoWa8J/dimIY0YN4N2bF5DU/63lC6e+0OzoZW1NfXq/A1dv3qZsmR10eQ7Z8tBw8ZOo/Ej+srJs0Y9GjF+pmb5upUL5Ty3DOR0/+5t+ehVNq98VP68fPGMDopxDifPXqJkUakyFenPC6c1zzEDAVMS6Pljb+r5Y58oRb7t50uHfA7QBhE0V1Lq1Gno3oO78mnlWhFvrPXi5Qtxc5NzVK5MBWV1KlakhGYeMxCAAAQgAAEIQAACEICA+gTQrVh9dYISQQACsQiULB0eeFi+aDa9ffuGylb00GwRGhpKg0V3R+5+zHcfPvbnHUqdxl4u57EIq9dpRP/ee0+/bTkkxxvkcQOVtFW0gmrY7DsaPagb8X7s7R3kolOXH9LfdwLktHX/WardoBkVcCtKT/wfKpvSnds3NfOYgYC5CPDdu7t37kX/Xbwtp7NHLtGG5VvEayOtPMWLx//RLNu18XeqW7M+uebIRf6iG7+S7t7zU2bxCAEIQAACEIAABCAAAQioUADBQRVWCooEAQjELGBja0vclXj6hOFUt2EL0aXYTrNBSEiwJmDIwT2+Wcl70c2RbyDy8ME9MWZgWRnU4y7JFdy96K0YM01J2XO40uDRk+nK5Uu0cfUSKlyspFy0Y9NqshXHPPuHDzWrXZ5ePH9Gtes3o+0bV9HdO75ifMOrdPj3ncpu8AgBsxFwF4H3/Yf30lPRFf/Dh/c0euJwWrTiVypSqKg8x607N5OtjS2dPvsHNfy2Dr0Q43pWq1qD/hBjgp4WrXlfvnpJm3dsNBsPnAgEIAABSxDYsGEDnThxwhJOFecIAQhAAAJfBNCtGJcCBCBgMgLWorswjznIqVb9prRGBCn4UUnWVtaUPHkK6tZnKPUVd0/lFoOlylakKmJ8Qb4RySXfV1TFqzZVL5+f0mfIRPYOjjRl9tc7GYudy27IA0dOomkThskWgrMXrqV+XVvT1PFD5WEGjphI+Qq4kaO4u+umNcuoZsWCMp+7KHP5kCBgTgJdOnSni5cuUJU6FeVpFRddhBeI7vTpnNLRLzMWUC/RynbSl9a3Q/oNp/x5C8hAfJVKValVxxZym1ri9YcEAQhAAAKmIzB37lxyd3cnD4+vPTNMp/QoKQQgAAEIxEcAwcH4qGEbCEDAKAJ8x2Al8R2CbzwOUZ5S70FjNPNd+wyjVuIuwsHBwZQhY2Z5Z9UXz5/K5f9bvJ6GiPHSgoOCyDV3Ps022vvq2nso8cSpXuNvyUt0lbwvukZmzupM3M2SU8bMWWnXkT/p3t1blCmzs6brslyIPxAwIYEtq6Nv9ZpWdB9eu3SjvANxkHjN5HLNrQnQNxQ3/qnuWZPuixa5WcTrwSFteDd8DpJzAPHBw/siWJ+cMopAPBIEIAABCJiOwMmTJ02nsCgpBCAAAQgkigCCg4nCiJ1AAAJqE3BwTKcpErc25CChkrK55FRm9XrkOx7nL1g4yrrcvTlXngJR8pEBAXMS4NcP35FYV0qVMhUVyBfeejby8ui2ibwenkMAAhCAAAQgAAEIQAACxhVAHzjj+uPoEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwmgCCg0ajx4EhAAEIQAACEIAABCAAAQhAAAIQgAAEIGBcAQQHjeuPo0MAAhYmEBrydZxENZx6cLC6yqMGE5Qh6QVCQtV5HeL1kfTXgiUcMTQk1BJO02TOEfVhMlVllgXF9aeuakV9qKs+TLk0r16/ojcBb+J8CvHZJs4HiWYDBAejgUE2BCCQdAK3bl6j/FlsqVWjKlEO2vm7enLZ9auXoyzTzljwv8k0uFd7mXVw73a653dLzs8Vd1Id2qeT9qo65/kOxhtWLY6w7MrlS/LYr14+j5CfkCdlCmak/678k5BdJHjby1d8qXOvyZQpT21Kk7WKfOTnnJ8UKXPmzJQnTx76+PGj5nD//fefvNFFQECAJg8zCRdg45yFs+qc3r17m/ADJNIeilUsRNeuX0mkvSVsN8Z+fXDp8RpJWB3GtnWjKo2pcJYimql+5QY0b8Z8CkmiH0sqFqxE169cj62YFrMc9WExVa3KE8X1p65qQX0Ytz4aN25MBw4ciFKICxcuEC9Dil3g5Onj1PbHVlSishsVq1iQmrdtRIePHYx1Qw4K8roVa5Qhvgngxq3rKPBjYKzbJeYKCA4mpib2BQH9BDzFat76rar+tcZNXkQ8JSSFhYXJzf88d4qe+D/U7IqDcieORv0HpVlBa4b38fnzZ5kzZ8Y44sAep6bffk9d+wyR87H9UcoReb3o8iOvZ8znPicv6lUP67ccojJV21G+giXp0qW/6dOnT/IxX6EyMn/95ti99T1WTB63b9+mGTNmaFYxBWNNYRN5JjFeQ9EVKYzCX1vzf15EJ/efjTClTp0mus3MLl/fazYxXh/aePoeV3sbZR6vESnhKf56y7lE/BMaGkp9h/elE/8ep91/7KYGzerT+hXraczAsYl4FLPclac4K+/EPjPUR7xFPcWW3vHe2vQ29BRF9k7sYuP6i7eop9jSO95bR7Mh6iMamNizPcUq3rGvFvsauj6TFyhQgH766afYNza/NTzFKXnre1oczGvzQ0vyqFiFrl24RacPX6SypcpTpx7tYm1F+N+Na3Th0nn68/hl+hD4gQaPHkAB8Wh5qG9Zda2H4KAuFeTpLXD+/HnavXu33utjRSngI/5yEzf+1u4tJpNP3iI42LH7OL2CUzGdbInS5enQ/p2aVY4e3EOcp6Q/z5+mbu2aKE+Jg4m9f/hW85xnZk8dS9zKcPKYQXTq+GE6ffIo7d+9NcI6q5b+QhfOnoyQp8+Tf8QbduvGnlSxiDMN6d2BXr96odls4ZwpVK9KMaolfiWaPHYQ8YcbTjf+u0LtWtSU+XOmj6P3Bmqt5elemlas2U1WactEWw/cIqp91zF0+PBhGjZ8JF25coWWLFlC2bJlo2HDhsn89t28Y21BqM+xNDDRzHTu3JlGjx5Nt26Ft/CMvNrOnTupcOHClDZtWmrSpAk9ePBArrJ8+XIaM2YM8fZdu3alhQsX0sCBA6ldu3aUPXt2Ob9582biDzE87dmzJ/KuVfd87PAuxK+hmOouoYXOnCkLZXfJEWHiuxD73r5JLTs0J7dy+ahRy7ryQwkf68q1f6lbvx9o4bL5VKdpdfqxd0c6cOR3WYwde7dRk9YNZGCZM4Z7D6b9h/bJZfMWz6EajaqSV/3KNEG8Fvl1wBPve+O29XLZnbu36frN/+i7Tt/I9X7+ZTq9f/9Obm+oP/pcs4n1+tA+B32Oq72+9jxeI1LDR/w1yP9L+7RpKF2GdOKO867UfWB3mvrLFNqxcQc9uBf+A9XlS5epXeP25FGkCg3vPVy837+WBeIuZ9zKkPO5hcvaZWvD80M/04JZC6layepy2dSx00Tr6E9y2c3/blKnFp2JWyj+Mn2e+D/wXubzn+iOs239Npo77Rca3X80eQ8ep1nfyDM+4vioDwuoDyNfZ9EdHtcf3g/ktRHd+ybenw3z/szoDx8+pHXr1kl//oy+dOlSmjhxomxNOGTIEHr9Ovx/5MuXL2ns2LEyf8CAAXTz5k25Df85efIk9erVSy7jbZ89eyaX7d27V+5v6tSpERoOaDY07oyPOLze//eePH0sS1usSHFKlTIVOWdxpn49BlLf7gPEZ4LwVoAHj+6Xn4f5szd/vvZ/4k+83cjxQ+W2XfuJ7zh9O8v59l3bkP/jR/Jz9DLRw40/k3PrwuOnjlHvwd2plEdR+aj0xvpXfAfmz++c37HH93Tu4lm5n59mTpDrcUMa/lzeY0AXWrB0nlym/QfBQW0NzMdZwM/Pj/7+++84b4cNqOMXg7HiMUxM3l+em9wDBzY4rVizSwY4EhIkrNOgOe3ZtkFj8PuuLcR5Snr39g1dvfyX8lT8mvI6wnNe0LhFa8qeMzd927YzFRJvzP4P79OdWzc02/DMH8cO0d07UbvQ+hzaS4t+maaZtqxbodnu+bMn1KJuRbHPEjRnyQbxRfEl9RBBFU43RCBlxaI5NGDERJo0cyHt3LKWjuzfJZd1b9+UkiVLRv2HjadTJw7LPEP9Wb6ALydxMUUTaJr960Ya5z2G3N3d5XpXr16l48ePy3n+w/njxo2j2b9u0uRFN8PHcs3hHO2xottOyW/QoAF9++231LdvXyVL88jl4q4LtWrVooMHD1KIGKexVatWxL9kPnr0iCZMmCA/pHAeP//5558pV65cMmjI8z179pTnwefTp08fzX7VPOOtvI7Wxhzgje85HBNBcg7qKdNN8ZrgLgttxa+bKVKkoJUL1lAVd09q17U1vRAtdt9/eE/7RHB+/ZY11KFNJ3J0dCLeB6fDPofo0t8X6d9r/8h9rN20mlxz5iL+xXPpb4tpSL/hNGXcTNomgvKHRMtfbr34979/iWtlNDWs25gypMtAP/TqQMlsbWlQn2H0x5kT8T2tOG2XlK8P7YLFdlztdbXn8RrRaCTJ/8vSFUvLA97xvU0vnr2gVnW/o4JFCtKsJT/Tm1dvqE+H8PeqLWu3iNfLSpo4eyL92OdHmjTiJxlQ3LZuKy2bt0zk/SC32b9zPy3+X3ir+l7te5NtMlvqM6w3nTlxRnNiMR3n6eNntODnBfTk8VOq16SuZhsVzKA+LLA+VHDdKUXA9WeB1x/en5XLP9ZHg70+3r17R5cvX5YFeP78Oa1cuZJcXFyof//+dP36ddq+fbv8nM6NDd6+fSsbAPCP9PxDJ28bHBxM06dPp+rVqxMHATmIuH79+gj742AhL1dh0tvVJVt2yuGSUwzf1EF+7uUf1j8FfaIBvQYT/1DPn7/5M3CVylVpjfg+yWNu9xrYlRzSOlLrb9oS9+rpJwKJPbuEf3/p33OQzOPP0fx5u3e3fmRrm4y+F92WU6dKLT5vT6edYjgtDjhy6j24GzmJz+wrFqymPLny0ohxQ2S9tGrWWq63Zecm8dl+LfmIz/TNGrWIQm0bJQcZEIBAUgj4iIP4iclVTJw4qsPTODF5i8mkEgc2OCDFiYOEnPzu+YvgUVZy8+wgn+vzx6tWffEmN4Seil9IkqdMSRysGzF+pszTZ3teJ1eeApQqdWrKk78QOYkgRFzSbfGGzYEoJQW8eaXM0m7R6ilLVhcaNXGWHBsvQ8ZMVLtyYXomfumxsbWhecu3UPFS5eix/wNyFi20/rv6j+i6W5jui1ZSm/edkmXJ6ZqXmtQso9lnYs9wKyUO2PndeyR3zXUiJ1E/HMTdte8YXfppToyH/f7776lkSe7uOzzG9fhY2inysbSXRTc/c+ZM2dpv27ZtVLBgQc1qq1evpgoVKtCsWbNkHnc/LlSoEN2/f18+z5QpE/GvjNbW1uTj40OVK1eWwUBeOGrUKOrRo4cMJubLl4+WLVsmP5BwgFbNSWk96Hc3vO5WiCChUncjB/2Y4KKv2bhKfPBIq9lP9x9600PRhZ9/rTy867j84FFWXL/LVi2hkyJYlzWzs1x3+a8i8JcjF6USH0BmzZsu83gslSJuRenPvy6StZU1pRevs/x5C9AtEXBfPHcZlShaih6L/bo4u9C1G1epuldNud04ETz/pklL4paD9x7cpR3r91I6p3Ry//VE61pDp6R8fWifS2zH1V438jxeI1LER/z1E5OrmDgZ5P9l8uTJ5c4/fQwSP1LtpcxZM9PwicPk+336jBmogWj19/zpc9qydqtoKd+BqtYIHyP3w/sP9PiRP21avVl8WG9L33X8Tu6nx6AeNF+0MGz0TSN6cPcBrd+3TvwfcKIcrjmoRc1v5DoxHYdX4JaNC9b8Kt/r5Abq+OMjiuEnJlcxcUJ9hDsY66+POLCfmFzFxMkg9RG+a1X89RGl8BOTq5g4GeR88X4QjqvHXx+xjp+YXMXECfUR7mCsvz7iwH5ichUTJ4PUB++4WLFi1KFDB56lGzdu0L179+QjjyG+ceNGypIlC5UuXVp+Xr948aL4blFS9u6pUqWKbGWYI4f4riTWVZKTkxNNmzZNbf/vlOL5iBk/MbmKiVO0rrY2trRt7S7asmMTbRONXJavXiI3+KFdFxo5eKzMK1m8NI0ZOl7mjxJ51Rp40EvRG61QATdKkTwF8fLXb8JbYpYoVlI2MuGV+XN05QoesufOmfOnaPQQb/n5vYZnLfK7e0fur3/PwVStSnX52aVwwSK0eMUC+UN+7lx5aGj/ETT2p1FyvYmjxNjzGTPLee0/cQoO8gDyPAaOrnT69Gn5ZS7ysuHDh8umi1zZSOYhwMGT5s2by5Ph8co+fPhA586dk8/5y3zu3LnN40S/nkXY11mDzylvNrKLocGPZsADKEFC73TFqXA5F72OlCFjFqrg7kWHRau7VOKXE+5SnEUEGKJL2oG86NZR8rlLcs+O4dfti+dP6eypYzRj4gh5nMNnw1sWduraj1qJN28l8biFTWuWlU/v+d2Wgb8CWSMGmV69fEH2IuiycM5UatXQg1KnsZfre9aoR+dFkMU1T35NkLKACKjENbmXqxjXTaKsrwTuOEDGgTW+2QGnwMBA+eve/v3hvzYdOnSIihYtKv5pB+h9/Tk62It/YG81x1SOlS6doyYvuhn+xZEDf926daNdu3ZpVuOuxhUrfj3vnDlzymVK94MaNWpE+PCQN29ezbaOjo7yAwtn2NnZyXxuPh9TcDB1ZnfN9mqZUYKEiueAVmOoLnnGu3iL5iyjMiXDr2VlJxwwzCeuT+2xBwuJoDr/IszBQc7nwCCniuUqiV8jb8sWgPy8fetOdPDIfvlrZA2vWvJDCAcQuVtxszaNNPusVrUGry5TyWKl5OO5C2cot2tuGRjkjILimAlNHwI/6X3NRj6WYmyI10fkY2k/V46rnRd53pivEX/RYo27uhsoJcb/Vfn/0u+yP1HESzteRX71MvzHoHwF89LZk2fF+LdPqEjWiO/ZvM4d3zvUqWdHzTFatg8f2oLzu/b7+v/DJUc2uY8LZy6K/wOuMjDIG+V3K6DZ9r7f/WiPwytVrFIxwnudZkP9ZxLDWd+jyfrQd+XY1kN9xCYU6/JErY9Yj6Z7hSS//vB+oLsivuQmeX3EWJo4LMT7QRywdK+a6O8HPCSRklKLRhncG4V783DinkHaibscpxSNPjiIyOMWcuwgY8aMMoCorMeBRP7RPw4pKa/n6IoVxZVjIylFd+KunXrI6Zn4zrl+81qaMXcqVRCfpe/e96PSIvinpGyi4QmnF+L7ZGwp25fvxPzjhfbnd34e+jl8OCsOKlapW0n2AuIWjNqpY9sfaOqsn8Rn/KzUtGH4d2Lt5Twfp+DgqVOnZKCPN+QLYvHixVSvXj1+Shky6G6hw93AlJsEyBXN94+3ODWezD7Z2NjIpsJ8otxqh8cCa9u2rTxvJehgZghWBjofXW9q48SxvMUUFhZwwUCH1X+3XvW7yhZnkVuJRd4D31CBv+gqiVuvuebMKrd9ZhPxy5WyTnSPdRu2oL07NsogW73GEf+58DbBwUGaTf0f3tPMxzaTJ39Bmjl/lVxt5k8jqUx5d6pava7e/4jSOjhS0RJlaPW2I3IfIaJ5/E0xnmCuPPlo+oTh5CfGbjsqBp7NJt6I+4qm3pyyi8CKn2iNGCoC6jaiCyW3KoxrOnnuNFUuGDEgGdM+dH2Z55ad3DKN70785MkTWrNmjdzFpk2byNfXl/hHHE4chOMxRRwd09LTW+EBQ7kgmj/chVwJAiureHqUlsdq+8MYJSvGx969e9OiRYtkl2BlRQ5Q/vXX1+7jXEZORYoUod9/Dx/3TlmXH22FrXbisfTikt4/OSnGBUkRl00irKvcdOLonoUR8uP6JLq645aDS6eEG8R1nzGtnzd3PnokWuly8JTf1/n/9TXRNXjEoNEi73OETTNmyESF8rvRouW/krsYZJlbGXI34SDxemzx5XW6ZOUC0SrwDp06eJ74AwyPZ6KdlHrhsQ9vi2A7d6XgX1i5lWFCU6qUyUmf98zojA3x+tA+p5iOq2uZ9rbGeo1kzZKJHt3Yq12URJn/cr5xe5GGD78R+fjy/6Vr0ay6/pdGXjfW57+LbsCcXHJmp7TiR48iJYrQym0rZF6wuIuxrxg3kIN8BQsXFK3bw8dJ4oWH9hyirC6ilXwxNxnokxuIP3637lJlr8rEQUK/W37i/4B4nYlW5k/8HyurxHgczUoJm4mrs75H02Uu60PsQNcyfferWQ/1oaHQZ0aXeaLWhz6F0LFOkl9/eD/QUQtfs5K8PsShdV2bX0uk5xzeD/SECl9Nl3mivx/oCuSlSRN+o7sdO3bIYCAXx8/PTwYBuSHZb7/9JuNH3LOH1+FGCQlIhrqeoyuSXq7bd2+hqbMn058nLsv98Odn7gq8ZuNvdO/+PSqYrxBd+e9fzTH87t2R8wXyFaSLf53X5OuasbG20ZWtyePA4+iJw+ln0UusQZ1GdPvuLTlGobLC2o2r5Y/33Gvod9E7r27N+soizWOcwrMc+HF2dpYT74EDgspz/sKma/B4zZHEzD///CNbgyi3x16xYgUVL16cuEUiD1zJrYB4MMVy5crJQSl5f7yMB8xXEvdR5/7rPPA8D2Sp6246yrpJ/DhWHM9HTN5iMuvEX/DKlBF3NhUTBxM48q88518OkPQS8BZrhbcXDl+d37T5Tc47/Klp/VUCgxwU5OAQj7HFgZLYgoq6zrJ67YayVd+RA7uJ57VT5izZiFv9cYs8vpPxupVfA5La63HA4Y0YE1A7OTg4USXRzJqnjGLMh/yFish5bqmoT+Jg4uW/LtC/Yqw1fg2sFC2kenZqIbtVcmCwSPEyMjDIrQ2Pi3Ef+EeR0uUryyDnut8WilZ6H2jdioQFj2IrJwdpuSWfkjgoyAETDnxwaljXk1avWkHc8o4n7qrLP/Qoz/nmH6t+WyHXU/YR3SMfSzswyPV+dO/CONc7t+5bsGABKa0X+Xj8oxP/n+CBizmtXbuWGjZsSEo3H5lpZn9iqztDnG7pEuG/XPLYIxyoU8YULF60pM7DcSvA3b/vpHKiRW8uMa4nd33wOXFEtirkDTgwWKxwcRkY5AGReTwTDjxGTnzXNm6VuGbDb8R3dVu1fmXkVQzyPDbjxHx9aJ9AbMfVXlfXPF4j8v9iov+/fCpaRt4RQbsb127Km4pMHDaRxkwdIwLl1uK9uzT9+9e/4v1efIAX7/erF6+iPp36yvf7GvWq086NO+nh/Yfke92X+nbuR2ns01D1utVp+wZxQ5O7D+RQBntF12R3L3cqVb6U+D+Qmjb8toE+Bn4Ud0X+Oq5uTMfRdS2oJM9blAP1oZLKEMUwSH1s2LCBTpw4oZ6z/FoSg5wv3g++AsdxDvURRzADr54o9fH48WN5w0DuycMTNxzQJ+XPn1+uxp/p+UfnS5cuUZcuXejVq1fk7y+Gm3J1Je7t8+bNG3nDQBNqQKa3aynRkITH7uabh/A4i3yO/FmZA3KFChQiL/E9lG8mcv7P8F6XO/ZsI+4WrPR2UpyV4OubONyt+NXr8B4Q7hU9wr+rrlkmd/c57LNssThefMaZ7D1N3hxl5Phhmq7LyjH50Vb7SXznlcHj+/UTXfLEAPE8WDw/av9T4YEqeXD4wYMHy0Hm9+3bRx07dqQ5c+bIL6g8zxfRoEGDiO+AyxfN3LlzZZ/1H3/8UbZM4xtf8GDzHGnmKDRfbDxgPQcTVZDGiTJwgLCqVlm8tebNdlZpDWK2J2iYE+NrhRNfN948Y6qJv/hyUlqMxScgqFxD/JhJ3NWplGh2/Ul0eeUbiyh3duJj5BXdDyuLAEWbJl4y6FZRBPaui5uBcOJtlTdSd6/aNGZID3IQ45mFL4v6O4hyTLlCLH94XXfPmtSxW395bF49vfglaJa4iQO3CGwnxm/juyZvE78KpUufkZp+247m/TyRatdvRgOGT6DxI/rKic+Lux3H5dixFC3CYiVIq7QUjLBQPOnX/RsqU7UduXt4am5KopjxuhyMG+s9ni4c+y3yplGe85iSnBJS78pOvby8qHXr1jIIyHk8Lkn9+vXJw8OD7O3t5a+PSrdj7XpWto/8GNk38vPI66vheWx1F98yWsnfHHRvzQMaDxPjj/BgxZNmjJd3DJ4+4WfZmk+XWeUK7rLbcOmSZeQOq7p70g3f65RBXPOcuLsC3yFts2j5m94pvWxROGfBLKpdvY5crpSFu+8O6TuMxkwaKSfu7iy7NovXmSFTbMaJ+frQPo/Yjqu9bnTzFv4aSfT/l/x5c9H/FsuJzYuXLk5DxV0ClS7ClTwrUftu7al9kw6ySnjsvxkLpsuWfw2aN6Bdm3dTrbK1ZdCvW/+ulDN3TqorAoBbxU1JapcPv9655WGDZvXlkAZ9h/eRNy7hm5eULFdSbsevsZiOw8utrQ37mpAnF/c/qI+4mxlyi0SvDy4sfwfj7238f1hlKdHPF+8HCaph1EeC+BJ940SpD74TMU9K4kZA/Dk9psT/sxwcHMjb21tO8+fPl6tzvIZvGsif53mMcf58z6lp06ayJxPf+Tj8/13U72pyRXX80duVu/tOE+PlDxkzkMZNCe9Fxd14+WZ9lURDE27YVl18l23xfWP52Zd/aF82P/x7FzvYfRkjPa19WjkcUM3GnnT899OxKvC2xcVNM/mH/HJe4T/yd273oxwXfOiYQXJMwwplK1Gjuk3kmIU8HiLfwZjLqp34U4coY5h2nl7zXACu4CZNmtCIESPo6NGjxM1FOfHgktwi5e7du8QXBgcPz549Sy1btpTBQF6nUaNGcuwrpVUgDxrPrQI5wsytz44cOUL8YZjvdsOtWa5duybvkMN92A8fPkw8mCXvl1utZc2alXepV+Jyi2SoT1uRIcd9KZS3eGGEKYPr61VQrKQKAb4Dk+jymNjXi/eXk1MedZ2ryXQrjq3r8abTQWSVwoWKF3DWdZ7xyuObgDiKwF+yZHbRbv/m9UvRmsNB/ugQ7UrxWPDyxTN6/uwp5RQDuyYXb+hKChJ3ouIbqWTL7ir/yfF6Do7p5PG5leNb8csPBzu/vAcpm8X4ePTcdSqcJUCvbsVKkFZpJRjdjtdvPULtu4yicd6j6ft2HWXLQf5FkFsMcmBw5cLx1Kp5jeg2l/l8LO5Ky8eKLhjsUrA++Rw7KX8hjHFnMSzksUv4fwC3II/cdTiGzeK0iH+pe/3gqFG7FcdWdyHBYbJbcd0OnnE6N31XDngbQP7i2s2RPSelTJFS3810rsdjzjwRr0++Wxtf6zyGiqPoks9fviKnl6J179t3AfKubnF5XUTeT+C7j3RyxznqPCxP5EWa57EZKysmxutD2Rc/6nNc7mYbn89hvH9DvUbu3LlDlStVUEO3Ym8+T5G85V8df8bv6hLWvKxh7kr+8sUrcefi55QjV44oLZd5TEIOGnKwW0ncHf/hvQeUzC6ZGC83S4T3ex4z613AO9Ft2SVCPm8b03GUfcf1ccv5OTSmYdJ/fkF96K4pY9WHKE28vufpPgv9cw30fcv7SwmUxygFwvUXhURmGOv6Q32oqz6SKh7BPUG5pSD3MuWgoJL4sw5/buGblfDnwvfv38vP93HtGWSg7+dKMSM/en/JUB4jL6f5A9eG1e/kFSGfe8bcu3+X0oieMspYgdor8GdlPv8cOXLKH+W1l2nPc8tBh7QO2lmxzvOQQfzZO5UY+5DHQOS7JXOwMba0Z9nRxGk5GNvg8UqLD27tpyRuScj52lFp7YuHuw1zUvL4xJo1a0bt27eXt7jmfG5tOHnyZGWXcXmMHMSLaVufmBbGskyJMseyGhZbmIC3OZ1vQsdZi48FdwuOLXFgzhCJWwbyFDnZ2SUXY0vl0mRrr8N3TY7rnZM1O9JzJragoLKbVs2qUeECv9HsXzeJFnrF5c1HeIzBhnWryhaDRQvnVVaN9pGPlRRvbjxshSUkfevOUBb8gUGfDw36HJ+DrTymoJLSp0uvzEZ55DsV85QUSV/jxHh9aJ+PvsfV3iYu8xbwGvGOi0dir5suvZN4v3fSuVu+m3HkxF2SOZCoK/GdinnSlWI6jq71jZjnbcRjy7pAfUSoAaPWR4SSJM0To55vTK9TvB8kzQWgfRTUh7aGnPeOkmOkjBQpUsjWgpEPzz8aRL6RSeR1VPjcOz5l4h/beRzB6FJmPb7L8rZxDQzyNs6iF56SOPAal+CrrbJhQh5jGjyeB7xv3Lix7GrMt7zmgCCPHZUuXToaOnSoZhB67ovO/duVpKuVAd/4YsqUKcQt8HgAy169eskB6rnbcRxTXFqCecZh35HX5TFZ/MTkI6ak+C4tDoMEAQhAIGYBDgAu/WW4WGm4vBupPjcfiXmPWAoB8xHA68N86hJnAgEIQAACEIAABCCgn0CidO6ObfB4HniSA4jcBLRHjx7y9tU8AD53S+Ymp+/evaOePXvSjBkzYiz19u3bqUOHDnKd5s2byxuTcLNVAycfsX99Jk+x3jExceKg4F9iaiom7vTtIyYkCEAAAqoSULo8Ko+qKhwKAwEjCyivC+XRyMXB4SEAAQhAAAIQgAAEIGAwgUQJDmoPHs/jA/L4gaNGjdIUWhnwfvTo0fJGI9OmTaOBAweSi4uLHI+K74LM/c95zMHoEjdD5ZucXLlyRbY6dHR0lHd/adOmTXSbJHU+twysKiYEBZNaHseDAATiJaC5UcKXm8rEayfYCAJmKoDXh5lWLE4LAhCAAAQgAAEIQCCKQLy7FWsPns2Bu3Xr1tHMmTOjDB7P3YCV5OTkRAEBAcpT2TWYb1rC4wnyra+/DF4bZWBu7WP5+vrS7du3iffFg1mqJHmLcviIadyXR/GABAEIQEC9ApFbQ/FzQ4+Ppl4NlAwCEQXw+ojogWcQgAAEIAABCEAAAuYtkCgtBxUiHhi7QIECet9VkoOBrq6uchslMKjsK7pHHlCR74SsosAgF9VHTF5fHsUDEgQgkNgCL54/pfxZbKlbuyYRdv3wwV3at2uzJu/g3u10z++W5nlcZ7T3Fxj4QR7z7h3fuO5G9esrraKUgkZ+ruTj0bQF7t73o5yFs9LAEX0jnMj6zWuoUcu6EfJ0Pdl/aB/xPhI7+Zw4QnWaVk/s3Sba/iK/HiI/T7QDYUcQgAAEIAABCEAAAhBQgUCiBgdVcD7GKoKPsQ6M40LAUgR+372FUqexpyMHdtPLF880p3396mWaMXGE5vmcGePoyuVLmudxndHeX/LkKWjN9qOUSeuuT3HdnxrXj9wqSiljdPnKcjyarsDmHRvp7IUzmhMI08zFPDNr3gz6V7zGLClF9zqILt+SbHCuEIAABCAAAQhAAALmKYDgoHnWK84KAmYnsHnNMho8ajKlz5CJuHUgpwf37tCk0QPo/t3b1PuHb2n21LHEwb3JYwbRqeOHKTg4SAYOq5fPT01rlqU92zfI7T59+kjN61SgTWuXUb0qxYiXb1qzNMr+QkKCadZkMVbq65cUGhpK82dNoiolXaliEWeaPHYQffwYKPc3ckAXWrN8Pn3frLpcNl600uL11Zq4FZSjgz2VKJo/QhHROioCh1k9adm8NQ0bO1C8JoJ1ntcm8drglnwetSvQz79Mp5DQEJoxdypdu3GVJojX1e7fd8qWhg8fPZDbT5zmLfY3SM4HBQVRk9YN6P6De+R7+ya17NCc3Mrlk+tfuHRernPl2r/Urd8PtHDZ/CgtBgPeBlDnnu1p/pK5OsuW1Jl4fSS1OI4HAQhAAAIQgAAEIGBsAQQHjV0DOD4EIBCrwK2b12RrwDoNm1Ozlu1p26ZVcpv0GTPTt206yYBht77DqXGL1pQ9Z276tm1nKlSkOP1vqrfscjx49GRq/2Mf6t+tDZ09dUzezOjyXxdosWgVNWL8TKpQ2ZNGDuxK9mkdIuyPA3wXzp6kj4GBtGXdcrl+1z5DaM6SDbRv52Za8L/wMVVv+f5H44b3oRatO1HXPkNp9bJ5crtYT8wIK3DrJw4Kbls3gy79sVaWICzgAnkP7yLn0TrKe3C6ugAAG49JREFUCJWSBIfs3aUvBYrrePnqJVGOxl18B43sR63E62ey9zTauHUdzVs0h5o1aEE5XHLSd9+0pUrl3enpsyd0UbxueBzgtaJb8joxcbDx8tW/6YbvdcqQPiO1/aElpUiRglYuWENV3D2pXdfW9OLlc3r/4T3tO7iH1m9ZQx3Ea1ZJH0TX/Y7d28pg5A/tuirZRnvE68No9DgwBCAAAQhAAAIQgIARBRAcNCI+Dg0BCOgnsHvbBqpWqwGlE8GHmvWa0J/nTtFDMQ5aypSpKF/BIpQqdRoqXLQk5cpTQMynpjz5C5GDYzpa9Ms06jN4LNVp0JyafPs9NRFBjgN7tmkOOn7afHL3rCkDhJzJ4xpq70+zopjZIIIqHGBs07EHla3gQb0Hjaat61dqVuHjNG7RhjqIIEzREmXonkrHKazqUVoGBT3dS2vKzjN8MxIOEiKZp0CqVKlp/KifaNKM8fTI/2GEk1wlrmNuWdihTWdyr1iFBvQaTNtFN/7cufJQarFd3tz5KJ1TOqouXiscHPQTLXZTiC736dNloCv//UvnL56j2tXr0NmLZ8j/iT/Nn7mQypYqR4N6D5XHOXnmhOZ4y39dLYKQbeRzDhh26dNJBhgXzF5CdnZ2mvWMNYPXh7HkcVwIQAACEIAABCAAAWMK2Brz4Dg2BCAAgdgEuPXe+t8WyS683P03WHRh5PT7ri3UucfAaDd//vSxXDa4V3viSUn1Gn2jzFJWZxc5z2MZcgr6FL5v+STSn9uiZVT3fl/HNnTJkYse+4d3seRVnV1yaLZwFIGUoKBPmudqmokcFIxcNtyxOLKI+TyvVa0OVatag8aLbsJV3fkeWuHptp8vHfI5QBu2hLck5dzUIuAeOXlUqkqz580ULU9Liu09ydrKmv4UwcLT509Rk/rNiLsc58uTP8K2hUSg/vnz55Q1s7PMdxWvGyXdEzcT4omDjKEhIUq2UR/x+jAqPw4OAQhAAAIQgAAEIGAkAQQHjQSPw0IAAvoJcLdebtG3bP0+zZ3Qd4luj1tEa6eYgoPcRZjTgt+2U0WPanL+8aP7ZG1tI+f5j43N13lNZjQzRYqVoidawcA7t26Qh1ctzdo2Nng71WBgRrUCY4eNp6p1K9EH0WpPSQ4OTtS9cy/q22OAzHrz5g09E6+5yKl8mYpyDMKDR/cTBwr59cN3M+ZuyVPHzZR3NX70+JEcb5OXcffjazeu0QjRyjY09HPk3cmg4P5th6nht3Vo9q8/0yjR+hYJAhCAAAQgAAEIQAACEEh6AXQrTnpzHBECEIiDwE4xrlntBs1k998KorUTT607didfcaOEG+ImB9bW1vTh/TtNyyNbEaR78+olpRTdIUuULk+8Pbc25G7I7VvUpjMnj8Z49Mj7U1auUbcxbd3wm7z5Cd/oZPe29SI4WFtZjEcImIQAt9zjbsPH/vDRlNe9ogftP7xXjinIQcPRE4fTohW/yuU2tjb0+s1rOe/k6ETFi5SgPft3UanipWXXYW5xyK0Fs2TOQqVLhHdVXy9aIPINTY59ea0VFy0NdaVM4uZCGcXE3Z0Xr1ggA4+61kMeBCAAAQgkrcCGDRvoxImvQ0Ik7dFxNAhAAAIQMIYAgoPGUMcxIQABvQQCxc0K+I7C9Zu0jLC+mwhQZMnqQvv3bCWe51S3ajH56C4CdmOG9JA3IpkwfQH9ef40lSmQQd6VuGjJMtS8VQe5nq4/VlZWUfbH63F+vcbfyq7C3LW5cPZUxHc8btjsO127QR4EVC3QRQTXs2bOqiljlw7dRXDPmarUqUilPIrSE9Elf/iAUXJ51cpeNGLcEBkQ5AyvKtVl92AOCHKgkbsE81iEnGxtk9Gw/iPk+sUqFqL24gZA3qKlIgfs+TUUXeLuztwScdT4YdGtgnwIQAACEEhCgblz59KePXuS8Ig4FAQgAAEIGFsA/eCMXQM4PgQgEK0A33DkxuOoY5FxoOH4JT/Ndif/uifHJOSMgSMm0g+ie2QaewfZ7fHoeV+6K8ZU45uWcECRk22yZFH2q30cZX+Rj7/94AV6IG7GkEzcOCGrc3ZNwGP9zuNyv8qfpev2KrMW/ZguXTqLPn81nHzO7K5094p/hKKkTJGSzhz5U5OX1j4trV26UY4ZGCRa2eZyza25tof0G04cTLT/Mi5n/56DiCcl/XnisjIrH9t915GaiBsA+YvuxTmy5yQ+Fie+QcnVczflPP/xFF39eVLS6sXrlVk8qkDAyclJBaVAESAAAWMJnDx50liHxnEhAAEIQMBIAggOGgmeD7tyzA4jHh2H1iXQfnxjXdnIU7mAja0tKTcV4aLynYqVxMty5y2oPNXrMfL+lI14HLWcufIqT/EYg0Dgx0+UPn36GNZQxyIbGzSg55rggLtLtuw6K8XRwVFnfnSZHGzkCUl/gZhaVuq/l8Rd08kxfNzWxN0r9gYBCEAAAhCAAAQgoEYBBAeNXCv1O329Y6SRi2Lxh9+zLOax6CweCAAQiIPAC79DcVjbuKsGq+ROucZVwNGNJRAWcMFYh8ZxIQABCEAAAhCAAAQgIAXQZAIXAgQgAAEIWLRAMtG6FAkCEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGAAQgAAEIQAACEIAABCAAAQhAAAIQsHgBBAct/hIAAAQgAAEIQAACEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGAAQgAAEIQAACEIAABCAAAQhAAAIQsHgBBAct/hIAAAQgAAEIQAACEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGAAQgAAEIQAACEIAABCAAAQhAAAIQsHgBBAct/hIAAAQgAAEIQAACEIAABCAAAQhAAAIQgIClCiA4aKk1j/OGQBIKpEmVPAmPhkNBAAKWJJDMztaSThfnCgEIQAACEIAABCAAgUQXwCfqRCfFDiEAAW2BN+8/0/ErV7WzMK+nQOqUdlQ4C37D0ZPLrFf7/DmM9iw7atbnmJCTs7HF6yQhftgWAhCAAAQgAAEIQMCyBRActOz6x9lDwOACP9RIIY7BE1J8BN58CIvPZtjGjASsbayo+9j8ZnRGOBUIQAACEIAABCAAAQhAQE0C+KldTbWBskAAAhCIJOCQyipSDp5amoA1/lNbWpXjfCEAAQhAAAIQgAAEIJCkAvjKkaTcOBgEIAABCEAAAhCAAAQgAAEIQAACEIAABNQjgOCgeuoCJYEABCAAAQhAAAIQgAAEIAABCEAAAhCAQJIKIDiYpNw4WGIJhIaGEk9IEIAABCAAAQhAAAIQgAAEIAABCEAAAvEXQHAw/nZG3fKPMycoZ+GsEabOPdvT6XN/xKtcgR8D5b787t2hoKAg2rh1HXGedn68dhxpI13lVs7jydPHkdaO/umYSSNo7sLZ0a+AJRCAAAQgAIEECnh6lE7gHrA5BCAAAeMJ5M6d+46Pj4/xCoAjQwACEICAyQjgbsUmU1URCxoWFn4H0wvH/iZrMVr9hw8faI4IlvUc2I3O+VwiW5u4VW1yu+S0ceU2ypwpC30I/ECDRw+gqu5elDFDJk1+xBLE75lS7pP7z0bZQYb0GaPkIQMCEICA2gU83UuT14mLai8myhdHAZ+TqNM4kmF1CEBAZQLv3r17m9RFGjduHHl4eGw4ceJEUh8ax4MABCAAgQQIoOVgAvDUsGn6dBmIp+wuOajT9z/Qi5fP6eatG7LL7dwFs6lCtVJUyqMoTZg6lj5+/CiLvP/QPmrZoTm5lctH/Yf3Jv7cEBISQjPmTKHXb15T176d5Xrtu7ahJ8+eaPI58+DR/VSjUVW57Y+9O5L/E3+57pqNq2jm3GnUb1gvebz23dqIsryQy3T94fJGnmxsbIj3M3GatywXl53n9x7YTV71K8vpyLFDmt3d8L1O37RrIsvSZ0hPehPwRrMMMxCAAASSUoBbmCGYlJTihj/WMRHw5cAvEgQgAAFTFXB0dBzu5eVFSdV6kI/j7e1Nvr6+j0zVDOWGAAQgYKkCCA6aeM0rXX8fPnpAazb8JgOF+fMUoI3b1tOvy+ZRjx9706+zFtOe/bvol8X/o5evXlKXvp2o3XcdaNH/ltK1/67Sui1rKfRzKJ27eFYEEAOpZ5c+UqV/z0GUOlVqTT4HHX/o1YGqVK5Ka5ZsoJDQEOo1sCtxa0DuEjxnwSzKlTM3TRw9mS5f+YdWb1gZre6OvdtIezpz/pRcl/ezeOVCyp4tB/XtMVDOj5ownPr3HExlSpWnsT+N0uyTz8mjUlWaNHoKnTx9nKbN/kmzDDMQgAAEIAABCEAAAhCwZIEbN27sdXNzW8QBQm7RZ6jEQUGe+Di5cuWa6+/vP8BQx8J+IQABCEDAMAJx63tqmDJgrwkQcCubV7N1ofxuNHX8DOIWeOs2rZYtCdt911Eu7ycCbbPnz6TWLdrK589fPCNPj2q0bP5vmhaFyo6KFS4uZ0sUK0nJkiVTsmnbri1UsnhpGjN0vMwbNXgsVWvgQf6PH8nn5UqXp77dwz8L/Hv1Mt26c0uzbeSZRct/jZBVVgT+KpStJPPKlCxLA3oNlvPT/zdFBjIb1WsiA488FmJISLBcxmXp062/nH8rWj9OmTWJJo2ZKp/jDwQgAIGkFBg7vAuNm7yIPPcsTMrD4lgGFPAW9RkWcMGAR8CuIQABCBhe4OrVq13t7e1fHj9+PK+VlVULQxwxb968d0QX5vdVq1Ydf+zYsU2GOAb2CQEIQAAChhVAcNCwvgbf+7F9p0j8o5djDGZzdtEcz/eOL/Xq2lfznLvwchdg56zZiIN6YyaNlFO1qjVEsE+/XxLv3vej0iIgp6RsWcOPp3QfzpndVVlE4kMIffwUqHkeeWbPpgORszTPXXPk0sw7pE1LHPTkpAQqQ0M/y+fuFT3kI/9xK1iY3r9/J7tTc3AUCQIQ0E8AN1zQzym2tbj7Kb+TctdidEWNTUv9yznQ6y0CvkgQgAAEzEHg7du3w48cOWKwUxHdiOW+Hz/W/+aCBisMdgwBCEAAAvESsBZ3sbrFzcAtIfF58vma07nmcMlJHJTTDgzy+RV1K0aPv4wHyM9v+92mqpU96dXrV1SzWm26eekurV++WY43OGveTF4l1lQwXyF66P9Qsx7f2ZhTgXwF5aN1IgXlbGwjxaxF8FNXeiW6SCvpzt3bxC0XERhURBLnkYMcPO4WknkKYIy8xK1Xbj3oVa9r4u4Ue0tyARkYFMFBrk8kCEAAAhCAAAQgAAEIWIKA9fv37z9Ywokq5yju6ht+Vw4lw0wfa1evQ5u3b6R7D+5ScHAw7RRj/FV1r0Y8NmG9FrXo8VN/qliuspzevguIoMB3P+YU+QYfXlWq0/FTx+j8n+fk8h17tlENz1pkZ2cnn8flz7UbVynypNwwRd/9bNu9lThAyee0fvMa4vIhJa5AVdxkIXFBVbY33HAhcSuEg+nc2swqbRnZxThx9469GVqAg+Ve9bvK1p9H96J7uKG9sX8IQAACEIAABCAAAfUI2BYvXvynYcOGLTlz5kxq9RTLMCXZt2/fq9SpUx81zN6Tdq/clTim1LBuY9q4dT151K4gVytepAQ1adBU3rDE091L5vNdjrnb7oxJszW74v2mtU9LPO5fzcaedPz303IZ5xcuVISqi27ILb5vTKlTp6EUyVPIMQs1G0easbaKer8bpdx1mkYN5P2+7XCkPYQ/jXyqyj7y5spLVeuGj1PIXY9bNP5W5/bIhAAEIJBUAtzaTBl/kIOEStdUDrSju3FS1YJ+x9FuOcutBX1EK2muL7QY1M8Pa0EAAhCAAAQgAAEImI+A7YEDB9aL01nHXW49PT3N58x0nMm0adOcRHZvHYtMLqtyBQ+6e8U/2nJnzJCJ9mw+QPcf3iO7ZHaUNYuzHJuQN5j/8yLZ2i4oOEje5EPZifb+tqzeKVsOOqR1iHCcudN/lWMWihanlCNHTjnWIW+v3EBE2Vf3zr2U2QiPsZVbGV9Q2ejonj+UWSqYv5CmLMqNRz59+kTPnj+V3aqVoKFmA8wkWICDGRhHLcGMqt0BbrhguKqJHGDi4JMXuugbDjwee1bG2+T3ufCgLiGAGw9HbAIBCEAAAhCAAAQgYPoCcnC3YsWKLRk6dGjLs2fP2pv+Kek+g379+t13c3PbK+7YpXsFM8zl8fe0b+6hfYqRxyjUXqbMc2BQV8qcKYuubKPkJU+enFyyZTfKsS3loEorKNyF1bxqHDdcMHx9agcIxxr+cDgCBCAAAQhAAAIQgAAEIACBeAnIfp///PPPj/dFEt2LX8drLyrfaMSIEe/FOZ4TgcFuKi8qigcB1QkoXSE5mIRkHgIyMIgbLphHZeIsIAABCEAAAhCAAAQgAAEIJFBAMyicv79/4dWrV/v379//UQL3qZrNuat02bJl34jxFH8/evRoC9UUDAWBgIkJHN0TPjg/D9aPIKGJVZ5WcXHDBS0MzEIAAhCAAAQgAAEIQAACEICAFJDdihWLhw8fuu3evXve7NmzewwfPvxtrVq1ZDdjUxqLkAOCnERrwcDTp0+nFF2J11+4cAEtBqUK/kAg/gKyi6Robcbj1CmJb7LASWldqOTjUR0CuOGCOuoBpYAABCAAAQhAAAIQgAAEIKBmgQjBQS6or69vT/HQc9WqVbNXrFhRM2XKlMlv376dR80noV223Llz3/rw4cPHChUqTBX5qyxpjEFtB8xDwBAC4YP2d9G0HjwmbrAgW6PhRguG4E7wPnHDhQQTYgcQgAAEIAABCEAAAhCAAATMXiBKcFA54wcPHvRT5k3pUQQyZXG3b99uSsVGWSFgUgK40YJJVRcKCwEIQAACEIAABCAAAQhAAAIQiFZAM+ZgtGtgAQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGCWAggOmmW14qQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBC7AIKDsRthDQhAAAIQgAAEIAABCEAAAhCAAAQgAAEImKUAgoNmWa04KQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIxC6A4GDsRlgDAhCAAAQgAAEIQAACEIAABCAAAQhAAAJmKYDgoFlWK04KAhCAAAQgAAEIQAACEIAABCAAAQhAAAKxCyA4GLsR1oAABCAAAQhAAAIQgAAEIAABCEAAAhCAgFkKIDholtWKk4IABCAAAQhAAAIQgAAEIAABCEAAAhCAQOwCCA7GboQ1IAABCEAAAhCAAAQgAAEIQAACEIAABCBglgIIDpplteKkIAABCEAAAhCAAAQgAAEIQAACEIAABCAQu4Bt7KtgDUMJpEqTgm5e8jPU7rHfOAikFHWBBAEIQAACEIAABCAAAQhAAAIQgAAELE0AwUEj1fi71x8of1lXIx0dh40qEEZ5S+aImo0cCEAAAhCAAAQgAAEIQAACEIAABCBgxgIIDhqpctM4pqLiXgWMdHQcFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACRBhzEFcBBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQsVADBQQuteJw2BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQQHMQ1AAEIQAACEIAABCAAAQhAAAIQgAAEIAABCxVAcNBCKx6nDQEIQAACEIAABCAAAQhAAAIQgAAEIAABBAdxDUAAAhCAAAQgAAEIQAACEIAABCAAATMVcHR0vObr62vSZ8fld3Jy+k9NJ5EidfJrLx6/VlOR4lwWLn/K1Mn/Q3AwznTYAAIQgAAEIAABCEAAAhCAAAQgAAEImIaAnZ3d8b17934yjdLqLuWNGzcCU6ZMeVL3UuPk2iSzOX7j4m2Tdn3x6FWgXfJkJxEcNM41hKNCAAIQgAAEIAABCCRQIFUy+xvP3j5M4F7Ma3P2SJXc/oYxzgr1EVXdmPURtTTmnYPrL2r9GvP6Q32oqz6eP3++/s6dO8lNufXgwYMHU3p7e/8YVdZ4OR/eBK5/+eRNclNuPXjzL7+UbUY2+hHBQeNdRzgyBCAAAQhAAAIQgEACBELCggMTsLlZbvr87QNKmSzNOWOcHOojqrox6yNqacw7B9df1Po15vWH+lBXfSxYsMAne/bsy3ft2vU2asnUn7N169Z7zs7OS9RW0u4zvvNxSG+//No5X5N0vXL25j2HdGmkK4KDaru6UB4IQAACEIAABCAAAb0ErKytBv/74KRJfiDX6wTjsVJwSNDTgMCXRmlOifqIWmHGrI+opTHvHFx/UevXmNcf6kNd9cGlGT16dCdra+udO3bsMMr/iKgisedwS8fZs2e/f/jw4Sm1tRpUSt9mRMNONtZWO6+e8zUZV27p+Meui+8Dnr07xa0G+VwQHFRqFI8QgAAEIAABCEAAAiYlMLT2/w4GBX96ga7F4dV27dFZuvnkUqbh9eYOM0ZFoj4iqhu7PiKWxvyf4fqLWMfGvv5QH+qqD6U0I0aMaHvr1q0D/fv3p927dweotZsxl2vu3Lkh8+bNo+Dg4HXDhg37TjkHNT62Gtqg7Uv/1wf2LDtK/124HaDWbsZcrtN7/gw5s/cShYZ+XtdqaD2Nq60aYVEmCEAAAhCAAAQgAAEI6CPgkCbdWNF68BevQi3t9VnfnNcJCgl6kNIuzVZjniPq46u+Gurja2ksYw7X39d6VsP1h/pQV30opeEWhGK+U6ZMmRZcvHixyuvXrwspy9TyyHclFq0cD4lpi2gx6KOWcsVUDm5BKJZ3Wjlh+4KHtx5X+fj+k+pc+a7EVsLVyspqy/cjG0VwtYrp5LAs8QS6dOkSNmvWrMTbIfaUJAL8i8qiRYuM8ToJCwu4kCTniINAAAIQgAAEkkrAKm0ZPlSi/1+dvn/A1RzpC2Yr4lIpbVKdi9qOc+XB6Q93X1y7N7j2z0b/MoL6IFJTfajtWjV0eXD9qev6Q32oqz4M/frD/k1XAN2KTbfuUHIIQAACEIAABCAAASEgAmJu91/eeHL14ZkgSwThQNS9l9cfqiEwyP6oD3XVh6W9JnD9qev6Q32oqz4s7f0A56u/ALoV62+FNSEAAQhAAAIQgAAEVCowqNaM/NxCJfhzUCo7m+Q5CzmXV2lJE69YPNbi5XsnAz6GvH+klsCgcnaoD+O34FTqwhIfcf2p6/pDfairPizxPQHnHLsAgoOxG2ENCEAAAhCAAAQgAAETEOAWKjMPDP7l/ac3PYNDgx4ls7FzzmDvQhnts5lA6fUronLzlcv3T74PDvn0zD6l04je1Ses02/rpF0L9ZG03jhaRAFcfxE9jP0M9WHsGsDxIRCzQKKP+RLz4Sx3KY85aLlnb9pnbqwxB01bDaWHAAQgAAEIRCuQJJ8/p+3rNz1lcvtMn4IDK34ICsgXbWlMbEGq5PY3QkNDPtpa240cWHv6blMpPurDVGrKPMuJ609d9Yr6UFd9oDQQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBgwQL/B6xLUrHY8Fr7AAAAAElFTkSuQmCC" + } + }, "cell_type": "markdown", "id": "ef121b7b", "metadata": {}, "source": [ "# Архитектура GPT-1: Принципы работы и ключевые компоненты\n", "\n", - "![](https://ucarecdn.com/b2551e49-de5c-490b-a371-9c4a81e35329/)\n", + "![gpt1.png](attachment:image.png)\n", "\n", "Модель **GPT-1 (Generative Pretrained Transformer)** — это первая версия архитектуры семейства GPT, основанная на **декодере трансформера**. \n", "Она была представлена исследователями **OpenAI** в 2018 году и стала основой для всех последующих моделей, включая GPT-2, GPT-3 и GPT-4. \n", From 21cfd79c19fe994c636d7880955d1408ccd77d3d Mon Sep 17 00:00:00 2001 From: Sergey Penkovsky Date: Thu, 30 Oct 2025 14:40:31 +0300 Subject: [PATCH 4/4] refactor(assets): update and reorganize GPT-1 architecture diagrams - Renamed GPT-1 main scheme files for clarity - Added new diagram files for attention, decoder, embeddings, and forward blocks (both .drawio and .png) - Removed deprecated files (gpt11.drawio, gpt1.svg) - Updated notebooks/gpt.ipynb with relevant changes --- .../{gpt1.drawio => gpt1-architecture.drawio} | 103 ++--- assets/drawio/gpt1-attention.drawio | 413 ++++++++++++++++++ assets/drawio/gpt1-decoder.drawio | 148 +++++++ assets/drawio/gpt1-embeddings.drawio | 148 +++++++ assets/drawio/gpt1-forward.drawio | 192 ++++++++ assets/drawio/gpt11.drawio | 73 ---- .../{gpt1.png => gpt1-architecture.png} | Bin assets/models/gpt1-attention.png | Bin 0 -> 127371 bytes assets/models/gpt1-decoder.png | Bin 0 -> 51222 bytes assets/models/gpt1-embeddings.png | Bin 0 -> 51147 bytes assets/models/gpt1-forward.png | Bin 0 -> 63780 bytes assets/models/gpt1.svg | 1 - notebooks/gpt.ipynb | 61 ++- 13 files changed, 995 insertions(+), 144 deletions(-) rename assets/drawio/{gpt1.drawio => gpt1-architecture.drawio} (56%) create mode 100644 assets/drawio/gpt1-attention.drawio create mode 100644 assets/drawio/gpt1-decoder.drawio create mode 100644 assets/drawio/gpt1-embeddings.drawio create mode 100644 assets/drawio/gpt1-forward.drawio delete mode 100644 assets/drawio/gpt11.drawio rename assets/models/{gpt1.png => gpt1-architecture.png} (100%) create mode 100644 assets/models/gpt1-attention.png create mode 100644 assets/models/gpt1-decoder.png create mode 100644 assets/models/gpt1-embeddings.png create mode 100644 assets/models/gpt1-forward.png delete mode 100644 assets/models/gpt1.svg diff --git a/assets/drawio/gpt1.drawio b/assets/drawio/gpt1-architecture.drawio similarity index 56% rename from assets/drawio/gpt1.drawio rename to assets/drawio/gpt1-architecture.drawio index 7f1e6ca..541f48f 100644 --- a/assets/drawio/gpt1.drawio +++ b/assets/drawio/gpt1-architecture.drawio @@ -1,54 +1,57 @@ - + - - + + - + + + + - + - + - + - + - + - + - + - + - + - + @@ -59,13 +62,13 @@ - + - + - + @@ -76,67 +79,67 @@ - + - - + + - - + + - - + + - + - - + + - + - + - - + + - + - - + + - + - - + + - + - - + + - + - - + + - - + + - - + + - + - - + + diff --git a/assets/drawio/gpt1-attention.drawio b/assets/drawio/gpt1-attention.drawio new file mode 100644 index 0000000..97063b5 --- /dev/null +++ b/assets/drawio/gpt1-attention.drawio @@ -0,0 +1,413 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/drawio/gpt1-decoder.drawio b/assets/drawio/gpt1-decoder.drawio new file mode 100644 index 0000000..72d7a00 --- /dev/null +++ b/assets/drawio/gpt1-decoder.drawio @@ -0,0 +1,148 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/drawio/gpt1-embeddings.drawio b/assets/drawio/gpt1-embeddings.drawio new file mode 100644 index 0000000..e4b7362 --- /dev/null +++ b/assets/drawio/gpt1-embeddings.drawio @@ -0,0 +1,148 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/drawio/gpt1-forward.drawio b/assets/drawio/gpt1-forward.drawio new file mode 100644 index 0000000..24110ee --- /dev/null +++ b/assets/drawio/gpt1-forward.drawio @@ -0,0 +1,192 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/drawio/gpt11.drawio b/assets/drawio/gpt11.drawio deleted file mode 100644 index 9709f61..0000000 --- a/assets/drawio/gpt11.drawio +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/assets/models/gpt1.png b/assets/models/gpt1-architecture.png similarity index 100% rename from assets/models/gpt1.png rename to assets/models/gpt1-architecture.png diff --git a/assets/models/gpt1-attention.png b/assets/models/gpt1-attention.png new file mode 100644 index 0000000000000000000000000000000000000000..4229b4446e9dcf8dabc0f77ea83c2d33c3a52bc8 GIT binary patch literal 127371 zcmeEP2RxPk_qUTh%M6KzdCiOLj1nm$dtW1aQ$$&nL>ZNokVq66B}H}_A(fE`Atf_= z{Xduc=$87{x3BuCf4;r$*Yn)RGd|~>_c`Z%&gb(SS5;9UCZHq0z`!8hskmbw1_mxZ z1_tIRJ|5U}mzDA^_#dY8J_Q+!8;==!F)$_!T;#M|Y(31aY!Dc1{IZL`vGL2X@k+Dt z@go26%bHmkTR0ipf(<)kTLc^b4mLhM1yyyhE$w7#Y2|`2b#ZkNAdH)Qb5?-B3zt2!GNJoD}Z`JlxFfH{{pFU?jPk08+%jhr5pNGkjS%xJub#pb_nD>Aa8lOS}bYQ=X&wa5Dfz*BE z#;+9i*M;kB@9MOmrQi^L6oj}KJ6Rx5kc3iw$S9vCwkO zK)}od5yF2YJbb1ZkP@JWgwVcKq!~E2*88|gaw89;EOGFADiJ8lPuI(kU7D(yIU78{?%K6R3Bw9a6xWJ!DTphGzX?~um+(q?cZ`-xNvv}k^rL;mNi zZ*_QJbS?*lPrs11`Dcs&2A&B*Sv~}4pC$dj1A?K398HVl5g)+{jX{#PcXBs&S^}w0 zVGIH{wBuC}F7EbD*3dVfAHSk_wv;h^hG$DT#_CY@6{MvEM0mMH1cd}(AShe-{3e{i zxJAIU2Vo)9=i>3J2F;fD#;Mplfk|usMNR%Vp$qYfaEpit3&BKq1(2VpL>+}bkT*hS zCWX1-!Y~0oxFG6txzr&(^MB*RP*3pv>BtXEaQSnHN*K!Je?n9)iu4z{%s5 zJtmq@`U?h2^9(=EVHD;@H|=kNfdKFTi@1UMM7e%+AMig#1K9GpFUuSN!p=+@Iky+^ ztEM)_&dyfIX)0(_8X;~0n&zgB?1cTs3^?>C8DV2$?=JVTSh7lbrO|_A)F`2Yz=}~3 zXuji1#5A<;yC>28r|_B&y4+HD&Ha%q;N^v(G#>I?E6-O52#RnE^6|rYMNprM>WI1> zF6j248~7c6i_e0r@3k>xIT&eg|JKIrom?#KE$r=#ZC1CT!B8nbx}`zB>A(Bi zRb^`YfQ$PWC<+S*q0|JW>cYsl^WzU3)tU+^{$I;mU`Ijr5B>YX8V!&(p+z--_gn7Z zY;3>+7sz?t-yrpjogEfey)d`(K+dmUC7x;pb6fzt0PxYWm(P?E6~CYv(ii9Ren!gt zQj!javXoDRzAE7M&&i5VTJZ@=qmcU#Lumm4e(sOK2nbA27Jx!&Kn5+s$aZYTHueOu33NgSWMO!r zd*l1lGw58l9-o($!B`4`8C45}B=Yl9OoD-)fdvv5@c-Xfn`$X|TKWYUMSXTTK|Vfi zw1f;YSJcq0_|-l`*dILq0vom{h3^^hUs%89Ljm|d#wQ=ykR8jH99kWqh0c#apoI=( zf8e}f=rKPL-QRp-Ap`sJs$Za73-Sr5c=9>yLd`L&Ih}yO^b?u?+jQcOiB6!5`VWgv z_=E(w`S}C|;V^y?L4E=F=P~xrj!uwi_eU;hS&aW%MJLFyq}ZHq(B+K$`iJrzix4O zAzlBRi}>Lz<`+i8AQfDEh?UW|C5mk+@z(~`$fb?1umInorKq7s4{#R}_1|4@g^-ya zGMqsvks#F4^7Hgo2)YDxN$3`!Oa2ae%Lhe5|D?Bzi!P&=36M2%^u>J_w$T>%MQ)=n z?z>P^|G2m>a&u{MU!+!ly0|a$Ym_y8zH|#8@27`?!%%`p$KnMo{{fYT7K4DiAxg4K zl177SAqXhZvHE|zNEl266<~d(C+f?^Q#3CJbwDiO%=cDjmvRCiv<28gA{82a`4z1C znEWH9{VR0oAHDaI9iYLOu!ab-TDFT`fd-7ROxR~UMS!8V{;E+BL8;n$G@rp zCbpw3H2oFTSV*{jbJh6gMdkj2$fxUnqr07d10oBBgWp?IAaq0v9kdqRHkt$aPxHZ{ zw+bwqg=8jVA|&|fdZfR~jV$X@_%sbf>A(+2778{{@eEq50ku}5hZ@j6DA@e9y$R6D zlW3yf4^7u_b_I)#FHS;3pTdE*du5emB^C|%?Ue@=xk5qds#YEmRM8X-C6KY1+Sk_@ z`J-b@6iJJolEW6)5cvTRSw%4>RGa<=MmR#a0b<_27y%fJpXOjb!-(I?-=HAl8@hyC z%4%U%tG~MRRsQ4)0qYOo%$Icu29YtV+5hnI{?`oWi|*)Kif18h4ygl^KFSHYBk(D9QaBO&MwW+))MzHHSva8$>k!0_nd3(%&P! zg#B|B{-65be-#b=1EuiQ1$E2e1HuawJVBdKd1Mi`SNDp5u*EU{WL>sB{|zEOThwal zHQoO&3Th~h>hsnxsBH^9-$K>gR!_18O@RDLEVdj(mO2KJ81k_X2io|ZyKta3_D@1D z;Xj~&4m}uJZlz{wY=ii3HvcOb6EiC(u#y0Bl~Mj32xDjDTO^#2ZGek=K>oXIoltYQ zDZ&)F^3E~{GJy*U0RHG7TK`s*y5@&o!-Db{{9k&ZGsI`10|V5W54o0KT6yP#Ryz6$ zF#P{!VW8DTK0%7r6}kLW`ug)E3R2&Hmqh*l&CwwJK?mfOcz?m_hUBHCPM1OQ(&DI# z9_eQ@MK%=_d0EQ`y_A&GJA@0j25E7fRG;y;imLMyd@iorjJ2n~3oXBbvT^h<3flKS38P@pd#?UTm_NRX z*017mz5&Q!zB*De-@_q)R)AXFvO_H`^G~w-*mjJR#Wy7R8B4PCDuZSIP{Heg!2D z)$CTcE6t4-1d3D?T^8W5+xz*p04%q0#Rl}i39!U`$^WL>|NA}sHl`s*5gnAkx{9zujw z9TW(C$AZd#gMu$d1RzZKuAt!eP=vpP-vTd(-v98QSs+OAzZD|iSipw9slr>yH(Sk^P}t3qD5#>8x?xx9@_W6>Ddte z%iMkek5@p{P$dst)X={Fk*HUin_Y!{RX-}Y&q8Z7lZ9lqisZP`OzWQ~N63q=ZaJBEt__tDomF7ABJSc};@^2;9m1Zsf zJh4I^`nMA6Uk-8wVH+iR$i7##!-lw)e`2cs|23(sP}2NcDZ*dcYXu?T%blyg2O|6> z#Xk0=eYpwkGZ+7Rh;^kovOi+h>5l?E3fUn=SlupurCGKA*OLEoPX2o+!e3hMr@Q#y zLlOS6bStk2kmP?S*C2wTbH1_~+jlS1_;DSe-+7@%=&f*{Ed8^%2H6j+L9%)l!RLe4 zzW#qJ=1(QMkl_4GiGI(yk>#AlNiL{WeR)xl#nLL#C?Hu{sT}H&Sov4j!vsEir3VTY zpgZ6f;f4!}Ed8Lqh3;o@a98)*#C)*t$Z8RGW?*?kdv~yunW>Gjv$GX)ozHK*Um6^O ze7W#P+(T|42M*b#^>J0(j|i##r>v9)M-AyG#3I#3uh~8iV?fY(2 z{hnL+stpQ3U4|$NfUXXy{K}i)(mUFrOZ*;I^&NGC->zl#M>zo~GlYw9i--sd3keDe zEqtP~E=ZNWRL2+O<>uw(jq2+hOAX3|Y?z)oDgP~QB zWbN%tja~j>nmbZ1-{^n-SQ!5KLj8_qz!x9p8>`sy!4@R{1M-AoKYp+p>)OGKvV}r6Ww7pud!MaRG@8 z@|_3^tQlGi@UJ=pmMuprFV7EtfT4b^pz!Mr^JfD*v_d$VQ3`)z5pal-Ly!F+Y7sJv zUmN>D_l)M?AuU2zp}*?&?YQx0s~418pwJA;Vt*@b`%)juUoiWTEahiw8>C*4?_9nv z@9M|4FVTX3wQW^t8%n((H}pG!nE)yiLJOIY)Pb6d=K?+Ph58yQefc-E$*+%+et`b? z`Ao-u%1geH76=G%iwG_Khnm^|MPt83j<7iXpS+uKx0M~j7zFtM0(sFC^kYo_m!|(x`4*gps>o!*x7P{9z`k#T5aq*c#R+B)zJVSA}i37BWT~R zAuu2s9_5sTplt{Yegb0wT>`o!6m~(E{2lOzkMB!i{aRI>8#04@qtj*zFrein2E1A`f3=MHIg4}-poxLWE;Ol5|7c^HHl8F|$A z*14@0I&nh3LB2$$v`D_Rzkgldsq6dIOUk%Q`Ufu5bx{z;=&MxSm>=0bJ~`7U!tdNV zF6r!cSd4s)%e8pl%*>HJ8U*n&X8Rw!cp-MG?|fMdOQ}*7-ClxyzEsS(ikS84Qjz0t zBkudXJv=+-xqD_}?U}<9GeV(OyQp)Y@1(qfuNcAGdrg?hu!U)_MZcn&C--o%dJJF9 z!F@BwyErCUqL|d__emxBZZoV^wDZL*vZ}v&nu`6ZRKeld%hb#>v`&vpp2ojDgLMUC zs}w;PRvib~X2i}Ysk(vK;61y0KTN%>KfShtZI|vA-O`BE2Si)>E`$iyv`Lf%-Pf%7`49jv#CJSAW+JQ?odsNa_&&UESFVNg`W_4!Vw1UyfF@ zm2MIhR<=u`+Kyc+`TPfU-i7hG;!C^jG8MBKzglX2lleSl`(^Ik zGfbDJoW=v@xya2a&M^5Z9zJKhpW;31-cQeJOhCpgu$w1AjgnbFM^xE}^U9cyIV#790 zu!N_vhZC2^Y7HrX;ZSG{Y)R7<79%7iEDvRp)byI2a+Ro~^L+dCn*FBT=W6Zy8Z%z* zxUTCmdS1*STfai!5krC3oX$|^bWKrjG+eubeu$!E)LQaZoPqvYvJ@&?9DEH5oo*9+ zvI@>E2nC=RKtBc*IKWN1wDr%_3pvxizP)Wk!Mbw8B}OBs_Q!>Jv(~#S;v#8Ym-|!% zzY5ZHysVK6gjLFfRKdH=cXD&NJU+bHYe7$c!JdSKWXQRzB2gneUMo2Bi-g8%D$sUW-I&ghMiM3^w<%N=V2KOk1wclPD zVLd8?<-bi^-dB|^4#6FW5m$9|pBqY(eX_8eu#48_9rQHYWB*PubIm*bHpB=2Kmwf4yLSqCKp@<+1w4qtf1^W0I5;ysu01I=S#f{NL{K zRZYZal}bKS%eP+ESJhm4tJtDRACc6-%*AZ4l4bScRO@-OcxOV^@6}&D_6dZ0P-}=a zJ`8<$!n!x8dCppY10>=#*NHEPoD;ThJvjQVq2`L~A;GK}V9fVtKlIjbBe$Tqb>6Qx z^~v)}L(!y1y$5YxQMH$KPaxI#>Rm~V+ljFE_1Fy*h@@Yg+DsSDGTAj*7q-)z_8jS+JpNRnnl}Bd#YL5|jT$?h^c&A~s^xKm0f&#h6xW?3 zXO7_1@1uxzGClb+{KD8v9DL;$k}2XS3(z8XNQ~b!r>VSablp1^+~n%AOaq6sp0ufP zuVLAONu5a+sVylwxX=xR#>oaf<}|o>N9}!cc6f3#FM`u%tglH@Rz~KYT(sPs65Elg zDiMB>uC14f&0NK^r#ou)Fco-YYWt`7IEKL_c5mar@@Gfvw?wQZi@s{FZjHiQ7&Wt0 z@+lr2%&k~hCYYG6@yap#w#=2BkVJynT!Bwp_VYB|9{x!0HKW(c&B<@*&3Qa-4BO&75I-!|^?Rb{-G7!@DMwC|k- zcQ3x;aoj5pNi$}6*KdexpU}G*clF*qcpvur4?_W!5zifw=aUyWi+AmeUJ+G-@tO}K z77s;?T`r$kuu~+CJ8hBjRVAS|eJsntEGH$!$xP;a<=lP(X!J;(+sWxp)qqED;E;Wh z1Oul^JMs4H4dXRCd{w>kuI)gLMgVd&(jOFLZU%$$c%M>T1?ja>{nj07$1P4ig*qksHRLI6fVjUnVr0zfSChb(CvTX?UeCu9@tC9iV5k46 zFZQMShFa@qdx3W}S@$e_(K|law4jc*UsgwavTgPI$(hxWw-<>KH?a;3VH;}-3(BIb zIDif?&I4sh$b7mlYgqQcY!w?L=GF{fDkLc5;79iMf>R`1Z|VVH?fG(LH4p zR2msIp7U~Af=Vp^3KvIUEOpQNoHek?<}}zzH?-uX?XPqd3r(;*&Uaek0-qf`-)H_* zfxfue_+`Xw#T|$49ap?wxV*(|7~>Q`La10|ZqoU3m z1sPX-1&}dk{nngo_+(|8(w+ki6{McAGBYhpo&ezRZYB`u(CSx9>=(pn5AN9mqBr*& zh|>5bUb_k}^~uU3^Ya3|Pgtdo`k!_gV-O>1%l9b`+Z%2+4#NI@2#y3f`XmR>&3jH$ zT&uqluD$_NW+&g?jVPes_h1th((x&O+uk*ZrD!xuwyzt4Sq#amJ6k@O_i`9;OK&#kX07=Eci61 zC&7n4NecP~&cbV^`CD}BHc(#W*)jO;tQVef4JK>G!CtQ`ijj2KK_Rjsq9JCXw9(RA z@~%XnFcD)bnF`X0;NSp=c8StCp?O#_EjITGD>K`=u#F)6^TUYa6KBMfLAVG`>t*Bk zAHkeU*3ab?g^x>L4CLZH^j6E?AIEg`c`*YW-W1>n`f!T~?SUhdWu4ir&5v ze7f^0t403|&6D!A)i2~~y4MG8OmpAbC)+sYQnYzu z3Wy}wcg6VkgmZ*)9VB)tO(}JDoGLLEu&<|edv>5WQPy;KYym;3(%By0bk({uZ(7}H zNcvhU3KIvKq|6>4;IeKZV~)^JsW`a^-M&=Et{`2|Q5lp%UslOFu12sFNP?%E+6J`x z&4IDp18ebMt(vb%k9g^!GUv~5BX28F7T{kaK z@vH=Eneu4&d~Egb$R$BqUDB9NBm1T@>@B*5Bm-^tU(jP_g#Do%&wdOJ6 z6INEW&q-K4-)Hv7yn00Y?qQ}1jg%8y@AkhMFkp0m4GP98Kdj)lf#*>(l|66tjLsEi-?VOSfR5V6 zaa>ahZb)-S%(07Q&7tW%1`1;gxf4A$A|p9|>%(qJwJZAarm&SUNgl>OThsrZp4a)7 zm>Xkm)ySLrL^h|cY&rgN6$Y|7=V{_Io0Q8W-!;as3kuLbNOVTf4rEi?HY4O0vneS8 z5M-H?rBG7+gUQXpeA8WepM>c9a|+XuW?yjaHeFSi00W_yfPr^EZVlIL}maQPA10Pi(BP zqSUH)^{7A4@E&cWq?nlOl|QP!Sbq?cy=%Zb@=aYrdv`aUuCA`V zP?Y-SC&gz!2{H{HrDDcKMm~F%s-0;*GB~Js<7uTVt#16|Y>lyDvFi#iT4>7YRpA&1$iH*+*~-*r8~L7hluQ!_w1b8=z|NwH;wlf;a$8tDm%@6 zzpnlot>oTw`h8(x=YyZKC^vsNh}k|SyZ&@Tjw<|k(+2nY0@ot~OX;cNF(ewu#!w!)?Do&are`p%?;>V3>>n5DMt-$N%p&OVrQUnyEIdeCbg4^1mSrGwYBEANI3(>;MC^03gUwcA# z=+Lxzfng7?i73E*Oi3R6knF32cv}%SLCG+jH`FZ3H;jwJ&B4L)4bZ)v zv`twx*}Kp4*&E(Jn7y5sH$7-wHaRBQfuWYG>g<>@YEHp#cP(1E(Fs8NsFw=@pYw(@ zn<{N)V!p31wr`D(AP*k?#h94>mV9sB)Avad4z0u5XM(vEnPnmaP0DCC=BFK9aVN$1 z_M}`GCXouaasU~XTg%`uJ{jE&+LzK0iqOOZtCM}oCy}Npb;8$IOG@fGtaU&`Atf|- zDQ^XTGOrTSuab%FPs?u}(-J4UCJE@x)xGk3j!tQ+aYbieKMKFy1`Lxf+gi?7)wYzF zCln*DJ-Ut&0$g7fB!9JotFxYhS-?Pyt^a8SDVG1PJ5~oh4^aEy;IAdyR;M#H`fiQA zz5O#E-(zpJt4PRnw6tdO4vxOX>UP?)(?$BBIeCuV%jWr^&hnIj;~={_-Y?y{eJxqV z_03%$QBfT!Cz!O96e`QZ!A}%5YwgWCA&KP=!Z1s1@S#fG*xN~Xc57N^Nk&c%iQYXA z$H$VmWTGM>FYkI!yKy7TLPYmt`5)l0^YFyMCvG^|kK|GpOqOUbI6un)+Sn*x-=XHM zj!Bw_frN^b>nqi+Pq0cUg1dSyqZmUb&48g|yJl7Hf$YtAm__IA*NNg{%A_$~ z9vT8nXS_Bb(=q;(F^ekZ0e<=Lb?;Q6(-p4#_OK9xK7tjZ3a+ zj5(s&ls@WlUlfh?Xb10Zx5<6hqeUB~w!{YQ>H?`PEyCwibSPYbdrNrk`JO3p+k++V zv_wpNmW0 zq2f-#yh+MZWoS3Zf`!-OCog8fAi`4*suH`XIi%nlh7m`>6%0O7kcTGk);sTV187$U z(EXvi3wrK+HyncnQ^xs(1+d^dJO5cJBaw$9Ix4O>vw{5H8wWq60o>D2^ZELVNCSyh z+fE6vKp6`Qg#`cwpRtUnBx%f$BQL+Ba-&qTf69U_QSN8I$N^5)$0}uc58P8o!{eC# zO+Y(qV>-?Q`>>-RQ(XkzHJCEjNY1;9rgelOFVCj44t%JyAr<-j9ll;YV3?*%m@=KN zY~W08-7cFk0cYAxRRhq(F?>l)LH6PL@Ls(YWXiVy2*qtf9$HZnxf96`&`tw&xe4y6 zGn+pNX5#-^yi6b6-N7>cz{CiWcw?DgX6lVfUskrBJkZ5Q4 zrgb?tx-swzyypWah9ZunGqrgaWu#fW64;cKzCnI}M%#nkckU+byhw1fpDE(L0S-Rm zth#;R*B>?!5Oo8cRVV^<*Y=bY&wdnNN3&&ma-?UE24Takbok6^798fM`_^pJjmBEw z$wsvV9wc(**z1HK=*JRlO6Ns82rc%+Bku2VNN%9wUzd8?-0qyZy=?2{9hY3-hdM>} zCGIjEob3yIrqt8f*gkvieP&_u^yo{o3SVBOe9=2zrA&Yrj#MUPR>dkX?FWj06SN6!ubTs8prt?Tv|B}>~r_MFrP8fJ#f9Zo+)O8*1sW^MXuuMxi=Ct zJeR}^OK2rLW~bQ7Lf!<`Zzf?iJW@m>P=uWmaAMfWVh>~R`wI=s&QUfG%}&$Wx8=vt z`WJY!N^LRZx%Pp=6c7Kp=C!~L`Ul^oeVF31&ak{D-0I^IDnA;1*?s)5SMK1*`kGfl z#+y_wiD16)!sX4H$ESK|7}k?v-9}Pn@G8K=u`|x={E2gUmg}mSPj1`<2!pKXLQsf>_c?KWp28=X9= z`tF-DO$2UtyoNZNg|8pUQ4x3Sc}`4%Ursa-e0@K+QSIPb{DThb{SM}oXDE%IW;T|I z$jE+G8P>F~W33%_-5pOc0o#|yv5WW{E}8UySlf8t7W;Ysb^<^fSiV&y*{YT(e|CeP z!|)rHs#p>79=m%F_O{)pfu++QB&7?uX;|>UxsO-<=F2buctwrE(fA_CnE3pNEUD@P zBynsO6=7=;N|8Zrb+VRi)#M35A#&UoT4><+cyt7<{aRm6#YtB-E1u`0zU%5#IHXq2 zYtg=2PsA15zAf;w*XX`CjaT^zn%0%U_qgBl8a;}{)EgLFu&DdNwHH{v4oX&ViH2!7 za2^iYr68n9*^)y`l?do`e*DoAQf&Y8nPxpw{qGuXIxtFNtCbO#=iO#eydZ&%bz{B~ zvmG!Q=~Xe2^Xol2>F6|h9*uKVMX_$~+toNYO?TTe^wq2V6EnT6Pb|`3`KD`3-)PKn zq|Vs@53+eKGRaw7Cb+A3+=iLYBDQlPi_JadzRJ%7CUc$l8c6*Rj(U6Y4QHq9`IqSLsy*|Uc z_P%V3WF1lA?dF_Cllz9a|#j z*rP7J{7zEIc|z~SLypSrG8!Kv26;H*O7zJ~aQg5vqC)>(!oAn+DCZ{QMbsSHTXtgk z7d!*emZ4!19`nfq$1}Vy65R0~ce@j`Gm2A$J@h=m*}2E3H=L0!bzWb?j5wk0z$9_X z=kU-lu7Hh3P%brV8`KMcR17TtVOK&}_YNs$`Qz%!mm>kEu92y zo)pYan=$LR85WZOdlK+XZzFS$s5*JxkvGJl~O-^|ycKA&G}yFHy<+r3l7hg62x zN-ye&zAA|fQjFS;d$TUh*E+r83^6z3g+aCO7xS&RL%4(w&%OmgEXd^Coj@uXnD#E- z=8@Bz&L^>w4Hty%CtCe(w%wC|!Oi73_YlEr^zg=o+gM>ue1uUqwU1tJm@7ScK6tY2 zc3-2vgx?`D;Il!PG1kiRmI%aGTXOv4vycoLj`N)FCY@3cbpUw_@DP{x0K4E-e+TU1 zzNOc*hnumgKDhMw);f>zMQ|BCn%B%!F}2Yy zV33`H8$Y^xUojG(E=cih*VM3DyU}|nZwT?37YW_!92K---!Sm^>fGkULQ3hH_u0K_ ziVAN~*4(ko+Z3Pi-3m?eN5hNlG0z zn-g-GQOx%JGjC>Z6VA`HJ}bXvUCcK#(NB5GRvbHtMTGj1VejtVurrNYcVnw&;9W+R z&1eYm8*bH+l#!CTS6{@zn+An@+-xj6OTaHh<53*TB*oWO=@)BKWj;&Iqd@{l zqb{W|9=!Z+rNE{q#yP2Qxs<1a=koD$N1Erb{Dm)#6e~4KZ?ci^D6Gfyk}S^G*9{_o z88vFTycfr*iItF_HWwtPc~v86>Z%w4hqYnvy-{iM9DXHTdF@lde!{zYqrB`)Iwm$J z4@?czQIG}RBbIKEP=Py6(cIKKeN+x+KP983ZC(aYqt4mrcI~eDm+o66*Pg#PSRKVQ z&{`1gqnU7kt4}N|2*a3)McS9w%{BnKq&R@_c z_3Lkcca|qT=MmSnh)|~1&cfNehh|o#nDPBnbMNW<+wuZVo==rI%dAwPYO)c_pCaId z+%5mLlpEm>*Mo@hlpJ?OYl;B#$!lY&v)jF>N-Qe6({l<3#kTViY)fATmiv=YD!sqI5;)(cahbNQ(H5G=c%z-`i^pbZjwkG|6SRk4%odBY?Bh# zHtK_CbM2hIJ#cKjvU_>&)T7KO6A)Q$ zw-tI9Gvm^EdDW(6Hq_5Cyd>8sxcVzvepd& zt^1?A!_-?COb_qEEaKRY4fF0lXw&vS2(*rD)JUO9?lB6=e|aHJ^@twqxzetqZ!nCn z?mi#3-P1|${z2;Fl=GqtuK|zqFji8s^`566@Ibq^%0vltOZW}eC+&HtyD`Wh?Zzb% zso~dK&FWw|=NqFQhlEt#X7*{t!n0r#W>!z|_V-rwPNK1XDPP4%_WWiG#%(OSfM%nM z^>o?v&*U2<9v{2;fRvrw@2<-YKCOIL+TnE%tsU+u-Iu% zZ^SAx-5hFksfK|;-0@rzk9I1R-rWyHh8igf*YUCaF6uRR=sXbA6Lq83b+g%VznS>- zCP#{Z2%=an5V4re-6Y#eysvB9UPlTl)nx2j*bnBMgRc^>^ZPk`z_FjBNeC2u=gqLy zmzVbeQ#Qvumbn5?t1NqE)lAz>!~0USx`cBB=P=q^dOOK!9EjDrITh}wl)idm4`+BQ zC|5fxhGZ;loVtRaJL2KzeV{oO^?vRU2_y4%*HPG$tCh?wCMGKJRLmd5+%^P-UJ8A( zM!)*G&34~0eSKJSHMQ*vSE=r*^FxE}vYdwb3<>ffMNd5KESm&o&K^Cshb=J`TshOC zW@3E^Ijj6&-%b5Iz&O8{t-c{N-;E(Hnci?3)-pL&=G#SZe z*l8*?xyoAPG94ygk6K#bU6ODosD2?_6f)vI*gLYBYHKW$g%{68wK79f<3t`1a&R!P z_$&zV(Y}_ZOpBopy=qU>boWQi?5NyPNb-gR!x|%De!gl-DsCsH%Sk}0{IZ-RKivH~5*lyp!*=hH|OCsbWQMT=|hHz)B;QL9Y z-9@gom_?~gw!9Y2a4jwKBjqRMJZM}M`%>v7xix zJ&!L=@-v9J5&6uHu7AvEu=(YcBfYssEp-%lF6j!VYKh}o&TigqoT-HRMz*&vcq zzcr+)*#|VLq6G=HZ$a zT=w6b4L(1Tl%Un#(Rk0B^_KagK=Tlt%ks~38t+>3ue+(`pB*f`ac}$%nzusuZq(P~ z%>~zhM7FfvXMT=YgJXYj`jH#=9?FBjRk?C(&|v#|LUZo2vpj~#B>2*HZ~ucN#4yu- z^}Z$-sXAJJSZQj^d)Cy)u*fBqJ|9t+&lAGvo73BOOp{SJK*zOc0OxL&OIa)bq0?-- z=6bmvxZy9igN&9@J?o}#VZYyLQRM^aUA`k%Ys#b9tO3^2W%bo!rHN&ifdX9m18dCZ zT)IIZFO9bgzx#$iirZNkk1EXJ7aFQ?sAOXIdb z=WO+LO5_-vX*_UAgwUcW!&8@JdThGCw8W}&=*=Tm^(|`T{j6oIb}?{=z7{NDd)x;% z_Guihxt6&(Ofr;fU5);!8{RRs>2{{6FS77J2~d{lET&e0C-JFR(Le$Ohsp3cD=&@b z1#|m(D-Yp4j*$%67;qv!Pi;>G_g=itq?3i6n?rd`J8bgPly6GEoGdwFry?#B3;eIN zVWvr})-J!3-do@Hq#vF=C;@LEE_-(K$St;QjhGpRtX{=WB{psmpp|-fNqUWNV*zLo zmBnZWO%M)7HA1P)Z_5)M?bMhM9F2vhAKDnmB)o^oSn*tnPY1hC_8ea0W?VIx5BCsd zrXm|-;KjPA+aR0JZQI_MAr{3GU2Q?G5}mtAz2ELVUHrlKftF8h$-Zf$VXnH^5XIyC zTz}67@e+dACL?})pP7jx!vTB=X=;0(rZnIXnk$!qZ2#U3%!WBR5KZ%zId9mPsN&ap zQTKuO69xmk%7$k4_0c)~{)vS5;7`>F$Zj?58q3ZLd@i}s#_6rdhTIYA^02sqS52VP z)3Ln>ms2-~^TP%Z6Sv%RBMCMq4#{!MxFzaFUwvd#-o_|uO6C|z9|_Hy1|j1EZKma? z7~3(7RaMF618xCs$+GDdTdWlg1H(yB_cEE881j0~GL3KsZLNbNBYt^#VtV@eB2q4H zZt`U(X(!Ky&rXkz)Y!kAvfpZ45=4PZc1zozC`;GkcG1g2?JPGLeAC@;AAT4)(y(5@ zt*M*Kw@*85Z?2~H>*{bO@r%>11|1D2I1P^_98&3ceo@!*`3)AERNLC@1j5Jj&KuTJ zZh8Q3IR0kVoz&)K?%E5QcCsulHa^tn6dSW0>N14uhzSOjzj>q>$tQSs{N2&D3GD4W z({CSY!#O}r`P2=@yacrikCR_!;W?Sr99gHVQ*1Gb1sG0EN2z4AIH-BxHFxU=c12qcx8~ReRbWf7iJ3K&qFf23JLVK zJDuMPzHCJ;7v>Y+C+{Bp*Mt~N0Bble}-39N^!_SW=LT+bIwlp z`kXdF=rIDaKz)I3p>4jc*NlT!6CvJL9&SGI^v1EXHx1)G6QZ^lUd5`2;9M{29ESPe!07b{*YwxVVdpm7v%+8N=@&`Z zVEk;VYcNJ+Eyw!Q!WZKMwK+;k9yNo~xqQ^B$u?{dyuH))-xsecAIBU$u+L4 z%bqo0gjG6kcq<~{3z(HHx+&X{q?>JC&VzwBEPZWngT&nJi}UT|JWgGB>~n>wrZLu%vZs3**(h9{;($e2$?cHcE*Ei#YC4q(T{cXeRx^Lrx|XFdGX z<8<7Xqwj=6_i?_Y=)7NkGu}J^3+~n{LBY23=sr(=qqgJL$$KRV%%o@>k7qQzt~-Ot zav||FSDvz^xNPga?#%VH%q@UJ^XgV9ZYOk~xK$-~+ivjgh5`nhsD5P!-V;x@S^) z;#E`HeHfm*3t}gxKak~)=c(EmR`u+!E6?({9EbTu*a*FP6u#M$(Pf&lHP1biCtz%N zxT8SeR)|m2ElVNRGu4O9*1yOL;R-SGu`t}NMcXHLj#(P(ehn)Dvsok|VRP}(qIT>& zqtgn^45H}+n*;UlCX)0%xvG%Ddq~V}pe5L6t7TiZ;7m=+>%mig#ZPi!g|-x&{MwFE z9vEF-J!4L+`|9!i7wOmaG1rIc%QXvFP1=+;D_`dz!GC7QWPI_&jkFzW z@UsuF9>tVlM??%L<>FmV4Z~W83oEw3+kh)xbS78HVX){(+w83V(=^rfK|IrO3VD~( zuN&aLTr(5hoA1^u`nt-x*n6D&M+*=z#*tOXzLm4rI|-BdWKP@hJ8Rm5&(>r(zB`y7->u^-*^ulkW%D_M?0686$54Aq`()<5`yRQb z3cIB`r<99vllS_DDO29}p3Z4iw7|~2g{YLDI>|*oJvS@Ht{iRl#+_d72}jmu`ID}Z zz_6-zgyDdB0kYxj${x0jJpD`(UQ(dSt~@$p+SMVVl{16^`lxCN@tbUlL4!@;1!)>;W}BuP90y%y zsBiNaZkN6FdTSWmk-~uF!V#K!icW2{vf(Cw@|%o@=b7ayBF=$uEhp8ma0IbG$!^xj zI1-o8{E$i8kRi{S=j*#`VjeO}opVYxuB?a;7QuVecv4)b{**old~jZ<`B&dDZ2;{d zs>!M>yq0BA4|nG7OWJkhm9RZ4oAL!AL6umEV7=UpOb3gYH(X#W%@+Wz8UY1NIreR* z_z)F?;y{@R@nB8EM*8Al90Za7*M>AEo^tXeS93X`Fg7;_}(bI2yRhJE#dAjb7YTj%a!Y zs%=ki>?I8#ppp;jx1Bgk>L%_pM8tNTsxT)zuP)<|E>W)}!!+r8xoaJXP}#9Tj6#YDRXPOH05 zRE-rr?kvE=w%O{`UKJq1Y(@r4aUyv?)V1c??r8qH%NF%)bK)3+Z(AE%Ugy801rs=g zwh#^%Gv^Yiq_(rL;WY^62&?*BHk5u#n(SkKx=^zzJ>#IuS#_z0IW(p*LHd1SA}^F; zY}HEg&nn!*Bckzb&bBt~eUjLiZj5cQ#>NWfcT7~uW4vEKpH8uYt$D)hv9CsQ{i93! zFJ_Pn1@me@F`Jps9H_AtNy*8(>5hwWMIvSC4)oZ7+XU;LQ-!Xk@aPQE( zkd9RHblu^e*7xUxUhsdI&QtQSc>O4Hy|+HzU{gSS&+fv?{XAh@N^UKrch?i(yP9HE z?v8?c4tibjei(w~&q>y}-qS6k@WoMF!aGfUyJ988nbhU)1rpI>;YDm07f+l>^Pt1U zWO<>$T_L-iQSUGsOE{CiwKHgBcFpyft_MEXOu9;N@XvC^1SI4i$}kyWxm14p zrlI4=lm^u{O^WbxqSC~XBwpLOZDxuY$!()F_RwX!QXnsm3g6 z=ls+{?|2UG8E4E)@g9~;jdgGG)8CkrZD@9+5^;WAbiBU2HbsrUak%M5kHl9!Dn`GaP*xpjzPikqoo8z*Q_kmZ|XAI=FLpCIve$1YME!0yso>HtbJ4d zO@5$tRBCD5{h(J*6DUOmU5mOd`;hS*-Yy}Qaqtlx16luz44w)nFLRzKY_hWB8GC8Y z`p)pG3I|va$<2EYC*_9{dtqRQbHH0o1mh<7Ye@mi3-U;LtF9ob4J_1Tw*c~KO7=a$ zlyT$nJJNThbJNbl7w=U*V8T8E^54 zH-%6J?ZHME8Z=Qq3mi7aWFaKV;r0fE-^?2up-#WOeeMITjt>N!UMrGNHa%5~I#s>F z7+XfjaRFaEz>pe+});_#=b4wu6tgBOct2qAVlf~8V)|z`iJ&cdbk| zA~3OI{`y2@e3n)g7Ukod#zEK8-5)%=zJKzNIfz@#*WxFPsGJhVAH^&J31GZ~r!J^u zod5|_d*g9d2ijWdvwIAR1C)ALF^hKAZyuCYY?Sb~)ye8q3Tfhru<>-9a-oIWR7H!> zw*-ZDUf3i&P)nm?n|C=>$tS-=YYl!=-_woMHn2Mbssi>c1pM8*yOQ#@dMh4}e$U!> zf#s@`DS%C$>=(z3e0iJ46Em=D>0GZT93H`&nCjwqd~tiQV{uurYdnWemOaVKBWy~y zIi(BZ1JXTmNF}=(2hQ+la_by_Pw!@Qw?@EgW{{jXMc{QNNhrhi6O8okMipLr%x+bb zNSkDfKC4YJRZ@RwNbVgpD&46W0<);l%|WAN!H#EloWYlx}iy{x*+FJg*lW1{K* zQTEnhQFdM1I5X7H1CmmM2m+GQJ%ECMQWAoMh|&m>(nAO$t%L{?B3+V7hjdE_NJ)1~ z*Kd#B-uk@X_q@mN^A8UWj^VoYUVE*z*IxTP&p}13G1jSYUu#jWr}3{aV)B=2x{Hq( z@Ok$fb(4xj17j*Le(1Ye7My#`*ukGVb6)}@@(^}agme$+?v%shij|i=K zWStAs2uaQ0MJyew1S-REfz}&Dp0RZ9@OC~wwX8cKPRdm8#G0OtEH_b$I#U~wb$Y2M zNSJa2I-Bt%Oc|LvDu={5x2V$31xBonctj*+H}6Rs8(BK%Pqw5<+E4RV?4CMZa;^|q zx^HyI!)Y+*_jYA}dnBMnJglCzr9jt9S)02dbE_69INGuau0*W$3!@jT7I(MCuiT82 zK{rv33HhS0V#Bk?<*_jR(M?kt6u8epeHI?qdVigCz*3E1Enzg^ERg5>fzg&i(QMnnE!nb-@4;p~BC7V&s}6kG^8lgQ%W z4tra75Swsgx7;K5mZyIAcbpFIFANnJ1?Gs1lEiuPgcHMy1{GI#K!>}&Ypu3iBV_19 z(0!22LCL>;iaXL&27SO!LUU|9c{<`OV;ztZrCblLA(|9MH?EKQMRZ*{0hcc3hSrL< z;4Y#!RoS*iFJpg_+oJ%vH!l91{8_@^r>^hc%Bp*F{#iMPay7A^<6 ze}ObqmGAh_-yF_T5T_IKKuz`#%Z?P8@N>lEgy<9)ZLg&cFST3KIPT&&pKM+zyAiSe zk^+8BgdFUC4)dK;#ggDG(@vblgF^C73_}O?(Xh2V_c8g zqdbtUIPRb`zd+kptQ){-ROU6_*QcSxxg~&K^Wp9uX+~mzuPnF}*_Kn29Yo)3_3ge< z=T=-WT9ob1+DlNUxQq>Nj*`bm2>g&ql6LnUu;{xa^1ySKi60&8vBaxT43Rsw$4Xs62 z`^{7%SRAw&R(Oo6XKPiKtpW=SYa2#gm^{MC<+P#KbK}X8)UTQ=B<9Q+jaROu>3f3L zoGF!(`d}D`Y$%)HBx~$??rsYjN_qQOixzDW)qFNoWdvE2XBBeO+T!f7%I1)Z>g3i(?Zy=XV>g9A6EgkL;-o$`@gVB*~Ye;@U)QY-+J zVtNw3ry^aZbVXc?!z8B_!S#H5)z7#@O(zLPY8F?IJvF7L6)4v6LqS`fyV>i?CB#FT zLeLnH{uDUd_HxI@<&xoQye_JHRpE~6aH0rk`P_X9W!^|;*AM_Qkdi2+==bE z8F%SX$j1(R7|lVjrJSqK=MW!h=R)=j>mcgNVJUS8q}J=vpaCap7*7NcM|3SJy4FUN z1G?q+^l?i)caYrrdnVQ%x zxmr0U{_%ZQOqhwi93GPTPTc%q8!DKwF$as z_}8U08zZWmEaou$o1?52B`;w#yk5>l11mhfNXJ59M6Ni3-xP+A8gbwkxAg&7*Q<8N647!%uTx8?tZ0Ri;GhJkgvs0DUr zmNYy^8qGDi%8ER=r-Sp&F)&L1lO0n#(cEVSjlNoMZ!gRFP+H-GPU*5*#HfE_7tX_# z{t>A=*0nN1erk+}hgar{stI&J+g~$FW9wSHpj80q2P-;{!jNo&wnC>-^^F`Dvi09L zTEnKekAZlm=)GkG}SQ^aOTs$RM(ksEE8P;lSl^&^IBFG7E`# zme-Q*&b(^FA8n1iDu_m{A`DhBUJ=m>ZI&*BQ=EA6x8rB-1U!nx_Hw*m-KD@&=vv%2Z* z9Zu_t3|O_Fmw69S&X#id10-lDe#wVJPhjvH_U{|dUJXS`21*3FP;0QWK#Ye+)GNf= zM1uiHlSxG(Nk|B_IpJ5Csh>mlM#wyjea6h6vc&YWQm$StboA?bSlMPZt~0aI#7S%7 zpk58`1D?**!0&ucbbHoP)GHp*!+vT@dolp=X`G8G9Y9!e5rqctx00)wS5cT0|4W?u zg;+`eiM9Fz9&7LNvq!*qSX|*+(LeD@@^+8sUY2hHo-!bgHf806M+zC>Bu@9%&{GQ+ zNfRfYIdQoC!cIJ8;}sCVXqay)QxNf<7s01w_qnY2J}Kt0d7OHh4nAByfj;f3Q8(KB zb1!^{*JLs={d0v@Vjj!Ky?o@_q-}dQXpjuUI8WX?MdxEp=AGh150c9wXrKxjz{qCh z*Y}DBBAZ4b#Oa-Pl1$?taQHAktMoVB=+1wEaQdrRXjYTI5fw8|&k#Q%W(Wn49K_-o zeTl911(Nk~dBCTO_FSEUVzfMqOz&2pYB>j?M)zd=!r)j`>>7&K8@b8)xH>O>!t;=42X+;S@ z(|2_l*G)xD;brE17tMN-8fv(_Zbl$vE+apAb?9;GEr;$iPNb?=vo4NTGp6^%`Nr*} zf4=sLMgC+BXQRo1&*dBRVOhIx;j6LD^;7YuA$yIWf6!YcXVRG93>#o*|^^KUhzx0lca#<1Rx|-?vxM`6JHdCBuRPHO;(FP zI866r1AJs7G3&Sd0N&hHw{Eji=oL-UZRi~!*ij|7Q`{CEn=$G#eX%=1Bn0oVAFthk z$ZVSt471|njhUD=(OiI8y~dp&>H|<*)4MrT)Ei=`*gNSGqi+Tdl<|^sKC$aF+k?vHD`OWI zNQ?r&ZCq>o6=^rI{rahynoZprxWaxyW1jfOr-wpcg%-bk!3M}haM4j>DgMpbB51bl z&V8Su2Wai6`%|-6{+6X+?*dFZVnJ0(eHUXJmqL z+B}>N77_1`vNfw=aObAXly17qH14N>YQ}So{D$4>e6y(!&8soHwMk`W z&k>UGg0iv`_t*Mv-+U<&r2eiA4>oAYXv`S(u|7#U)Xh2Vam6pH%TI<5&-DIT*pu1z z*Eq>X(IA=W__w_Z*Y@fqlyyDf-_-{|^yQ?c<)p4>3g&>IV8sTJy|BRqsA!*jICRiZ zbW`}*-VvaYXWqShRm$_Ib)Wv^XpSIJg1F)SP>`KH4V(qRsh%wXx?z;;4=jgl1Mv7M zZ-{wZ4!_}HE&db|&M+}V0HYmb>oPVe)!TJVyfTuTV=4&WoTbI}@1lR(`{{=JS=^nR zZzsGIEn(b+FYdBn7&qeI!16E5wtF29DvGrC67KM8$k*I9Vvdd$!PoIFq$u4uRs%tD zI$q;0uK$eYyGb$+Ct}RuK2>^8qHq3NeY;tI#_8suVCW%%{qXPy6%&tx14ytAXQPiz zpxlmSU%Hg#P-dVkHh!wyzL12f^O7l7k#~l2JcELB()VImX!%cn4*xI*2(8V#=j$nu zOps@OF>jmmz4>A*ffCN#`=7i}R${Pg{|6T)Wse`Gnj{iZ7JBa6^JW~ZxKwz~TD=(?&P+Afiu3Qm>#4l=ny)+Qp38Nb(DqR-D zd*+oB)A_j`T&$Y!audVum9AVAyAz4Q1jKu4xYhD$fKyLYd*f=+wWlg!i(}Q|&1X;x zTN_Y4QjP(*nzO1t+li`rKmrmOARvGl;nvE3!7n?hd#N;+vneSw!rp>=vN!c3CHOw> zJ6;Uexml+(ns|zqm`gnShR-%8y{|+4PXl-BC%SOe3tYJdoXk1)*E$Sa=>DBN464U;NjslcRpK@ zO`Tqj4hAwGtDDu0W+y~zqcknt;|f&=TZfY)5Y|-;vNG}!z$^Nsniy=R%9wH|_}k(a zZ;@qTrw}r5YYwj+ZEu=9ADo_8m;e7!#fh?1PTA%L_NqJC-W0vv2w=!1$g&J?)V zGJf>vnNl^m0#J5BEaA-XSnOS<5h6=1Wx zQtKb-e9zJ3kQ`@nrNq3ShA2Dw`U}mh!i`VT=^>2use=!d&;Bp{UH-i zjrhXVKE5_0n6%ds>=@XEPYwjd2z!IUvB*^8l1bGWAzgQT4O}}Wj?dx<3r#r_y;FVI zS#JS4;P;n2PTZGql9)8!*&7R34M63N!@uuy->ZJT!POeWRxEc5P;Oq#hu)i7ea3%M z_v(Xkh!ZMed?;O6d1691f7tXx0N8Y5IGbs~0gx?n6R!lSfrZrwg*HPQUQk^1JzbcZ zGSp%gz*aTdaE9zMo~MhMoJPg2bOSJLcF40Qyg+@{Vjsc1~c`%5H;B z>otYFk?KmH`>39VYr*gJnddVqgVqA69nXo$F5iMF=j2wf2)x`DV2#Y$ka>FeLb@;g zwpC|pjx$L-HWl4$@OwovS_4+`VOdQi+inWAqxS(D%&5jghS)0JuCOcSQpU|h-;Y<= zsW8L-=~#qHJ-x0ZS|I@Drmn2_?HA)xIWX$xE9F*AELc+!AdZJ%`xk1df*tl>!LHv2 zhLE)mna1N%H{&I%2xWthFW9~?8f5IP*Q(4982luZo-f`!+1*Shg!Sv{e9qCSZ>Xf^ zG1T{$5Zi9Sl${EFk?sq4uQvvyZ!c>;bvjR8)k?h+@{`>9hc&reBK$=;<9d z?FmvjB>Ib1ss0U2eF=R z68Agx9b1RjGUlBQ!S>-H-jm?2Wl-Ed}{=YYGJ=w=yEwv68}yB=0Sx645J?$1^jw>tNoSp z1_^>=s0pa>BRQ_4sdeV+fPpQb0NM+SFo-Ov0T^!S)jzAH_whPkd&U`(kkPTU7p=?C z-Utl!lkE>osAyx4{cE@L2%({1f)NN9RW zD0;=c#@ilbnZYMX{|{_dt*3yC@Tu@TK+I%7&1@t`9^>-fOAaE?Z@~bx z6i-QZ+|Lxrd&Zwk`NjdIiuKv-q5eN1cS3~{IT6Mf@q$Hss;ZxAW~G z$hpZcX#ttCD$u{>a%P8=HiokvT4j=3vtW?97XZ!P!UCqb`?=5osSqvhWgrgFUXWEo zhZb!3DK_Y5`acx~fQyr5_mPz*;NT0VR)#<2|!3F98w#g%k*sB0Aj(1frq&~cq`Q{FvxkdkkKb|y)*s4O$rx2TS#%#5UQZ99eA!OD zE=5h#XLj8v7V@%BSrKhEApCisrRl2D1zkw`=~U_h(Zo(9@X6F5z~dGq7sNdlGnlG$ zsL34UZ*v1d*CO<#3x6vCZRzH+Ti=v^PAkkU<#B*faM=H(*H*gwz~K7H(=DRDA3&2>#C?hopNi8L z+?=Q0JUqEy7bYVzKKbgh$^*5;BeIocPwS1Pn~e8#O=BdO(VeBdh$sjxU9p_}`&FkF zM3CoNezGSni{e%HOD3`O7Z6b`_t3oL(j`CvERdB&#|$tnRXuZ zfLef_DS17>Uh-5&xPWS`BNWc9adL*94~HoTsiiR3lD zB;x#-xS-A9i;JCVf|xt>aA)|zRu#pfWTyCe1}xI_r? z=j6f+ajeUQN8EZ2weXH!|F!B-1%TNsgkf;>F*RjbiebmFyWFgp{v7!LQ<_kZ;3jAqh&vK z69;8oLe>Obdgxn$i?=TdDa2E*9cVnLHE7xTK80Db)<-tM@1d4|3!9uHKKA@{^rLO2 zb}fFwHzyg%z<|v+!bD6=wjYcSwQt3*1<^QUyz}mnX$9>Y`4E~HdwJsTRQES0i5yYj zGCaX9@gIeNmI2*Yu2QQ~$^=&d)fWy>w1K0&d?Ie!FqOBWKB?}iPmrG;tX(5q+!Zb| z?QTvQOmVXbad>O)$O)PR^oaL!P4a<>4}_I;oq@s(!y(8Fsi`;1fiE@#z*PGp*sbsPvaTAGxuh zACs+@KaT_ZjNf8-{u9!c`Rk+95v)?R;O>hEX_cF4gd7`sLSd%K6Sx$MFo-lHP8PQZntq)vzCbK zyvSFc(FW;w0Z*te19rVt->TijGKR6tsO;34VfIrRVh9c5;W7DR{lZXh!zvA?601R< z4Z){#%a71f0UyuG!_{XLHsky%Dmd>|V=?qM*PnOZPBj6E=iw5}jhbFXc8u-O2#{5C z&3!kQxxL7y!95@p^#m=tSRvo3^;@nm=k^P7cGf5kEsi0e^8AK_)Cb(uRP3yeSMCFu zX(wrqgH1P<_K25P{%St4S3jQubjyqRacVBFX%P)=rjPYO^%yVpnnOK{%Xti#CwH$315YX>zXC1dFN-G?Q0t@X9*kM8r?2GI={ zKISoUJ6YV4Lj%^OO^RuF3~TDlm;$OF=soDfm;&gq*VnvoC@K{6eq#Y@yJ}RhfrCQ@ zb40(p)d>z*Yf?a{)*Ark4743-@sT|S62YuC%QJiD!<83A;+N0EXOa|kIo$W&0sw^h z#}LYQQG$vo*Y(aQ*eRa9yh(P0%*!H@Qu$@CZ;4tNrE-jQ5Zk?x(8GO6(SAYG`9$~i z@&%6`(SqZrKMoEW$C%G7If&n!4Phm9o6;)mMI@wZT^qAyr|daA)_iyI1*4keTZy zQW_@{Q7*INinbX&_e<^wLK`j&zVo~pwzu!RTqhbt#fvFtS}khTB`?|S=H?{mFwaHH z&5{nq@(+5_^;8QAaY@LVXv%TBYh$Dq#vIXiHR2tE+n^tcmv6(-hX58#adq!Apn+#U zV?kK=r*{?Q-TRmr|9UENS8E)Ip44n*--;7bG`uLGp+tU_UD(B%Wk}yCPhWq9th`Xp zA&zh94*R`|1X6f*m(su+|M`plmR-`N>))?1c1B)H>qz(Z1hS6J^9`(|ZxoHtXJE?iL{8;`^TN2N?b<-|@W|cj?4)~g zXZzc<%>j%qE-RdjT_?Q<4rd;RAuYZ++M+`+=pb{)T!%ITqX)t+=AI}lPr)2r{T)|X0>O)L3LG*hNpilxMu5FS73 zTS67mn9Vr%=r=zVvQF(wa|v>%eKqp%9C*sE_x^Pkeh?hqObP!MFn^s33syvSFW{z; zQ-+(9<;6;mojwI5w(q?1pjCI(jd#8d(4EGw&r!UEHS>f2Ga{4)*@CZ(n$0S>{@MX9mX_Jp->TH@6JPcZlOEhX54|%e<{e1P_!57P z!_+lv+})X0oZigiw8kbUbHx8qM-2a0sUO=;o8M*BjWhMU`HH-qzgLk_6GRW7j_p^~W{tItiCUO9K`f>IBdf%!babXBRt zhez9U9hFbNT;zeu@*FKKxRb$64XZ=KX>xk~M%26*md?v0w@IHAH*>HV??s(kDU-l^ zby29^x65#N#fizjsc1Cj-M$LBI2*8^ujh*dhh&6aTj#nK^ z+;d#<1&ZZ+8Hrp}5&Yj>K@6e!u&u4_^H8p?!+vVG)RB%K4pE3g*lCGS3O@GW3VOEZ zUBZ*IS$d_*R}Ce#=|r*cU>A0XmS(j8PSeV?Y|D3xp?;p=%a(-5rNrCR1LY3kd2ubw za}4C+_b$QJAW&Hs{1q+44MegI;(NDw{{nZ2bagZ1Z#x&@dmzn=qPY!@o(&8P=l z$CX$kudFC)m4yPm!Us*I$9rqyc5N)Ngn)w5PTM_MKS6;9TPrVjrG%t7*$5eZcsw^3 zsbbwwXVPM*9pTOlmq5SMQVF>jRyEYu8ZN^B;_rkIN!j!o~;Y4PjWS=+%1jzpWMwc46k?K@J&w+2{eZq0{QU zROha134i72vb4W}MGAgMS40GTxB=4wD-25s{WN>B|IOc+5w}9Dz85GVGrfcGV5+&1 z<;3(d5oa?)U6gN_nBoUNWp!7>VF4JB6hL+OC-K>tl`J_>H76O)g#V6i9a1=Jv*4x< zP~)s^#PUBHdQQ2_4ou_r^_ezPaw_`IwLrkNj4T^eWd{!KVb6&`*{h-K%PBgNU`9JC z3dq;gLv=>cD7AC43t(={dYKu>+4ZlTLW9NfCHN2^Kmi-i^4IYp_dyx@pu|&eCsp#E z{kZ7;+ql&)z%G>UQ_BHKIb&f(oD|6K7F74&b>K~NzI{rdKu`+jm1`)GBq%i}2}NQ+ zB(c%YBLL&-*4~)blFTjRVQV41xkPdEcLHz`18M6M&RI5?PV8&c=H$gftHLvrXv#|{ z45$|c0;CW7|0R8J{O4cSq9R(Z?=lutd{oO*zFWKXb`_Q9o?^}j5l3%i-CDep7z#DWGuvNEaXM(sZQAGJ5)Naae$IvX*-$3;_(`eRe;dr z@g7X&$61jm{M5nMCb8C`FJ$k)?bLx!(_4dq|MyA+U9AwEXz_c=omE>Un6eY*9UrjkN&?KPmpag!iPsQfH=Sy$9ULM$$OXV zd!Y%~Dy-l)OE4hD@1C7kOZ^vbB8`%0_}sG)M;V3UWjpu%G!~xhAy?5kf4C;$fvI%B z+|2P>G0ULe!Q>(eburjsf$JsMX|J);5W}$a(Gd)F|G#E$1+{G$iF6W(mL2Df^BAl- z+P?GX=XtmcH4qjF0Ilh}>%v>MRrdvk01mr_2X^!Yvt3}h9F29l1ue<3rMFTpOuuV5 zW;R#RXyr zG0H$8CU_v2J>65jgyny-E&Ou?USrC?E+Es!EOFwYf~0=#%`UKXU9E;maLO@{20cgt z#O&6Cp#Zq>3po^#<8q2?GMDJ|a|&RA>zz0Sw1<*8)@G2?M#cip{!UgL2r*S$UMBq>j^rM|!?s<&z4t`4!&b64*{CoA&xsve)0g?d*F zmM!eQg~1Fi>SFnG%ZPi#Be4A?@|QNhf45JBWj+~ONJ@?;a+a7{NQX6YeRo72jD_HO z=WAuv>)zOoc~NO2Q(m`ME7Z~8RIKe}%loNl)bky~l^5>1Bp+8cc2ED!9TkpCFYN)R zWMqHLA^gCJG9@sntJuTcz5IBT-NM46n8(7S2K;(T!Nja%+|O31NCqk!d&a_yaK!sI zHTv{`b#@WBwx)WxWjCly0-t@NgRT>74i_HJkC8$$uo8%2xE>ypeabHj@>GxqM$fcQ z%8*`@)mvTe%lp-XSrxj~#JeKu?Hz7+^X{pInVc;BI$Wvcxh`jAG_$g>l&*s2m0_*t zq$;3h&VZlImIT~;1w3-j15H>I^}g2B#BAuta^0G%G z82#lb4VXDgUFY4rb{P}+a}HoD5xeuT}Qv37oK>B z3wdpk#>al}ytpe8+1=qb%>7aMCJw)8pPO+dxv5l)ISa|o)J z#XQhf4!Ow77AuE2kGT;KX|>9d1Yp4t<8 zdw{u6SP^mHouN&6qxk8#r}lAuSrk)3E7PBn%&_} znPQ&A)6L|yS`Iu*po#8#|AL2ZEv~=Bi@5KQhPhJG`?*$k@Gtrz%b-CpSc`{b^7xsb zyU_#6l-7OPh0_Yxg=Iw&L60-9f`CiA2dajFZchb?t15VYSEvfj8_K0m+CY0_dHq|d za=d|0mk=fAUAsBOD{p@+b-xwA5=JL#AEvXx?!2BO#H}cqptoN);rFe4UX*L7{rxMI zBggYeT-J$Q{rC&|pnlUFYZk@w7wQ!dY3hM66=w@jBL(U&Kp4dL{NKi3y03^Jg``w$ zCC81&#B%AU4V0(xbeLr^K_tva3MN-aHy2)ng3(UwkX#;+yPn~OW%tQ!l;w9J6#k)_ zv3GJ96e=b=MV+-Fe$Z2^yg{p7i_1x|`@ZT|ETAG3xak=P^}Ai59wZ0(4+TW9ph1K%iljGL8rf>wS%9|3;o{sDjLB1R zTF|vU)6BC^CsMR8Om9kTij~3O!|1E$60wz`kk`)K)l`F(rZ)ZRA4${chCneD|jm#`em=xASucpr-g_KLN3m= zsh~or0#{n+;Gkf`Dj~I-Tj(*9_PVc@sP7ugAW?PR=NY({kac@w#=14Dd^=z1wxs>{ z*;n>^9v`NXEuI*5m-c4`S`Cb`U4Vc!`s|A?R`vW)?BCl-%FysOPL3meYi5UGJ z6c>a+vaG3D@jo7g1s;XajFj>>xW8BEgsZE=waV;sCe8xtY86F$dQiUrv;6vR^BLIf zc-pTsleTKq>5GR74p3i)iCnoa<=hz{-5qDo^7n^(@1js@Gt<2SSnpt&3YP{~Wop7{ zIAE9MQ7vH?X4u>U_hrxfe}^nmMnO&G!ZFhCPUNr2VNN- z+yi4cHIUW||1$;*XbT8T8vI`dZoC3)xOMnM=&xtNo^k>Yd;<9-38WZc2u|52)KCWW ze$|5geeXZkr4m#;tELG)C@QGMrG^SW!&V1XtOpmq7tRb2EOm-tS*{3{Q$o98nZ3yqg$BWI z%P;B3U_i#Pp03{g_@bBLuW`x(Q&LY)_dD5OKP6QEIbJ%d`(+<0fm@C~eSDAkY2{1d75)6=#2pj7@G!d=Dg5+yiTdT;Vn8+ z_46&+f1?o{6?EuIHtJRI&pd#LfP=TIz^+o=`1?aFNMx%BvQ8W#Xr*@AV$w7*h!SW1 zt^+ZpKQ6T|q5aEJL?D6$Iq`4fhoTOL5fEc@B^3oyyIaU=+X0gnlNO0`_+Kjz$Q=km zr^BVHK&S-wB9qidc?1Hw>ctQt+eh@5p{l^gepEom7=OLT46NfYjY7WfpP)f5f|!xh zu@?(L{|X|m$Ix|z6~y#_R}79sM51e!n+Exz ze?1WiCW5JVw<0YKRi1_PF@PU!~e27lp8qcCbVBt6?=e_e%Hv{ zj3gUnx2r%P!R58NTd<%iM7tX>Qv~2LI+T!}%Wr!hpD=$1x^C;FF6r zTq+_Pfa;wP#)qUx3U@0##|Wpt;vXISSG*<1f(N5Zi!(~K@P%EeGONN`_i42iP?*X5 ze0;7y>~%Q(&`dQKQ;k0PAB#gk7aCT|h8c=PyhguqSqW+06Ix8hk?bq`mE{&2ACtxoDUE??dY5pue zNJ_Pj>d%MkQ>bmYTPk9Eh1o^FjsMGyBB&u=A5=rG>JWt^*`zP$eCLs1asHGcYTvq? zWn|{A4wVh;D%XDp!bwEENT2GjS;PYOGr(DJ_PGF?OLgufED;WSrE!O)T$dgU(IX-4 zBa&^BV3!*&PwubTQ~;YfT@AaA;bVfHdVnt<|A$9t8%uTf8Pz4I8zd3k{=q}Zb^XuZ zAT&^@h%FRK(nn2N4|Hj5d*MG9&j`=|sQQae^t-~pvf6dv%-87P&kc~C7>V@rO^0|e z6Gnk$!e3Uqhc5PPmdr)|4Rs{C!u_oMhog^#;%=D@V`x!}Ukk3m7;R?)$z-b7ln zLp`tqdm2bx{IdhYDZ&2sLGz857(4t(VG(?m=*q8GxI-w&0`{mlY6=+W|5P3@P|+B( zwcolzY6teb-oz_Ey$U}Hb%Y&!6kf-x_9%`2&n&#aO8;=jwvdK0fa!dbyMicLXx8;X z@5y!1QN({%@4x^&Y=h$c>0`VP!(RTNO0PBs76Q%$1>;J)2-VdRd-iWm_nUX2eL>BKAy*jqLWHb%N!CDcV^n_at0^b>Zrm;(VhOP|V7DIhL#P9kaoH zuKjcj$P{@D8Mqj1MUe|aIM0R>L>(T2^W?or@AFehS|RI9x^s$DBPO=f=M#5~=#8bE z$M%!7i=|QuloU+=-H{^l-QGWn2eT5_7=TnJH9-Ze?M|oZDYn`#$S^OVG(G>a3R@`bk zjlLBOeE)Sn(1Wd3rwc%R0773@Kp^iRdX`j3falu#Ga<+$OG-)_xz*#M z9-h34TJ(e0sMHjn1Ap~z^8qQa)C3Q9 zwe(h`ptcbImsL^|sO*Z#=d|R0H@_3_%lvq!MsjX{YLMh|5Q6jA?_3k{{I@aL!63He zkx$><0~c37^-2MsoDIp8Ro8AFw?VUZ+{Y0`(I* z7%wAEdThW&_x6u|)efK`+F$#0CRF&Mk+Mp+m#Yj2j2WJXU^-7)@l{;@OlJ(#yN)e! zl?QT2&rMC99q-dGmbmv6k>(_?P@6^{y-ttXX2PYp0VywXCBIUILnogTocLb?^~<*Q z=&O&KUQlRcYi4mqf`l7d83mgH^y=MKvB&g+heGQgB!HKRU$-Uc1 zwjzfG6?ViN+6SN~_6f_faMDu^+*X?JN#cn$bjt#V{p&!&?@7al*AlKpK-HU&t8-+9lZWcm-C5xy_{k-=g z0loEhE#JjIdnv~N=QgU*?-pI46MedwJlh$!gS82CMccpE`#l;ddSr-e6$5Rs87)(c zymZ5wh|U!L?SaGeWeV~D=OEY>jPgH)IPxh-`k(K)yD?k>xx~FGZ0^g{2VDO^62_Rm zG-YKFTWLUU#J*4QN?K}8OZZ@gzoqs>rg|zmK`L~=xQ&!_&NXy+ARe0f#|_{x@O8|_ zA}cBd=NDj2As4`NrN1De&c5;pYkRs_KGTl?kBqx zpi_O=;#~M7zLs>!S@6fJ!ryL7pE{QRa7h?E*}Ut@A|&MPle!p`0(dB z^w)n8K}fa+QjTzNh~T(P*mR@`-cW-JgM~W;i}`&35=+hUm%$xxB56LCVb$HopQdo) zM4miI7pFDLeW6^hS9W@EyiuEG+Vv)m__dCa=O9daP^GI!a$i5juRYCcn08=FD!3)= zvw^qUpN%de6a&Ka8Pf-jj`OS6ASt`3O>niy_m%EsyMrgRC3w&ZC{k*aS?eBt_am7- zS}6$E!;1ASwZ@dCI0M>OT>WK+_H8Uht~;jc#e_Uno3hY`Op3uhR4*q_iVe0o^}jnY z${DyXIqB0YIEi*e-m9C}MGBT9s`VX!=0e~!mjDK(2*eR)M{R4Pf!?PA{XOnoW=nAq1glT)*)jYT8SbClhXu+E-VbSMCa{w$ z-yb3mzK?%w4}3KdGcrTH(nb@D8;vMj$J7|_%$F^>cS zr5fF0E1c>pd%B*Y@LbWa;UPAU$16$&Ec&iLE}x6Z9DkC`7&rb|Y4TlJDCS>vD-y$} z6Wz_Ag83us+E5>?V#~I_M7g}T39Nj-kD}_|P4wI*rIDN#wRmda;QHi8C0|ZDuK(4K zif7Pg52TV%y_CAMiYwROS3UpHb&0K02r*XcT`O_2`8iH#I!t^$VtFt}!6sR*UQhp2 zEp)8ZO2_Tq;2VGNtvs=yMnI?dDngi6e9ZHkq1Kk`>#l@s77d{btn~1r_C1BI`jMWPPkN* zQ^vbGHz)IsqBiS%F#9T9HhzfboJ*T^(~VR(<#fIk*8zJaS*aE=w*Qk|<{UxTV15(7 zX(zl?U9luq?zDAPDBJecjYj>;d^xZh!f|gjqPoMp4OH- zld&#RZ>}^cN5#a1az}dr@x=^xhL^VUp4wYW$@z}sC6mR*X7rBW?PGu(SF$yuS;)f*Pl-L;)$Kqy)9&>M(nZh0|klWRYI&b4Q$VD*y~AO(~WiTK+kZq~pSAVEgwB_x4HewMbbr@<^?#-q)ZFheq8o zWNGcx=Xr;&&jhL~VhSG{kKjjNPBXnRQ#GGA+L3P{KKtG0)LuSvS{^x^e){&B)AZBB z@BPm-$~;(1VvKiisM=OHzTV8bHWwNf5UX{S#S^FMa#B|U2Q~p!q{1=bH8;1OHLlQe zCwrm>C9XRULtoV=H6ef+V8u(5DcQUl>1fYfp3>kapq`oqx$TA9a^ZchEckO!5Iz(^z@a|Z zvHaO}gkw}};#*y=mbFn(y=BJ?2#dTi=@rcY&u;NK-gQHI8J?x`5!kK781)Ma(Hw8@ zTua`lT^UT%AH2)pZvTN?Dm9Z7{-!{YpQ^Qd(5k(Kv4&^grDDmSW0zh;KhblU)OG&Z z7yB+Ju8>+r{s$j84G(T3pt9knaMKtJy*DzM4D9Ru3$;NN9RByfSGC>(iMr-!`D*!U zQO7&43{jDtZfEI%+!o8hY()Su4QY8NeZ0yqdc0a3`ZmP-Xz2>O#{1{-AR-JSJ?{jw zWVeL64v1K4iTo+(!B0h?;r-C#p9vcI zD^JN@E0uQkjKTA=Q4Q3-KJMA<+z=~`6>NQ?wEwkkrn3~oo;Bl4kEMJvKI}@@k@lIe z{qvI|x3ns0lbWrYTWi9CFAKcKI5XZR4rPA*rgioG!=)noeH*S2gIA+26+H(PZevdu z!lXfs6>1T^KAzNdx@h;n_^VfbW{iMYG zY4I8;Bqy`xI|c4lQY%c@cfAp8R;dFxt#@BHijVBs?gr;D5>RnRUCsX_3u=l>!Bjj# z&<2-DPaSlf?0T}*Qa#ZmqBohV;XwCqk%F$a?Giw^V_q@`J?Py1p61JzT-=6uFc@Ri zv9@}Al*I6kg^6?0w}giS@pnQMo@pUJ%`eO~<6JHvq`klTAlLNNz-}t-Wt8K~E!g%; zLGe(9fWg$y%Z1ZbhXk!Cs^-?X=$tcJ_*vEXaMg92>+ei2dzIafE=-)lbeTvn?7?MR zx#9vO1FX+IgG+1&)xPHHJwADBDVIN19x4cb`!wtJjVe9A-Z_PkE;GO4(atMik7o4P z^pV(V1QN+4((iXjE(+YNaM^gAMMsR~|72foEhJA!TRoi0WvTB5!_)7OEUlav^tq_W zeol!Ud?&;}jYu!Zea30F>Z8q&Ka~_Z@%=n;1SjM1y7RtzAtvg_8v`kJA0jqke#QTS zoL`9Qa3|abKi#JeZ1Ma9)gK;6O=%g&AJn={eNt|by$_l_da|mK}15N zQ$Ubz35iWecS=ilm-I#uR7$$LTe?G3K)O4nTe{($?dKfh`~Lpn@{-Mdo|##*@?Q6H z-PJZ9FG-e370|I5FCjT5y^A`=HpgW#kpGl+W3({VX>&w!w{{8LP_|8+)a?rjYH_3X zW?*!V9ok>V_)-%1eh;vb9|7c0DZH>xAwY?es(-Tb;{^HZH&8HgJPO2TS*dw#ZNP(& z29vuo(UE~?n+KO}k+&)S>Gdtrpdt~OJyiPoZMGzF(C5% zIfV1F2l5e6ArFBWI&SAHu_5B2nN8ZLW99c@!^kX)gwFOm$cTud@+QM#bzI^(EXQP; zuMVVn_8Jc}oIj&sou6_RJVgE@3V}kI;60&(*$*lad=XK>o`n^TG4|LWd{g|Y3W=Lx zd#)yb%{y&~?Vx>FFCK}@bhW23n^!D*2B!$ZIb5sxW*s^HV-=pA%3%X<8TDA`NBgDr z1HdlW4Qwz|zrbZtPaLZVugmrmJl$96W%j^3`F}4OEHwT-0@jaGXf)JrXA@^APmZ&0 zA*0)PCQQkAGGULg+MBs;9Txd}*_^Z^oIZu%lZ<%DfBAD2K(!lTCao@?fbi zf8Cw5c#wrLK}zRAp%QMDg4CLfI+$yp&bM04Mch{^5~W@0f987i2v42S=88uXa&~a< z+PJp>hwarDqM_yYhby}!{Mm|;F$Y`i&JODXLiuspkAdiHr0hBjF>tChXg>>+4foC&> za5abqcTp@yKrm_M98|eu7dzM}xfdLHw=^swI|vsaZV_-4bm!qAcXf{E;`_9mO_#3t zWa@sv6K|n6fxO7keonx;Y)-42QHh4nEB5rZUg&0`T6Ncbq3npMg?05Y&*coE($@E> z4LxN*vWVm_$Z#%q=g3WBtXSu<^Cs7ajuc`BBvjm|CHq|;;SN4sF0DvxV&(g&8oHgm z^KB2UFH~cS^ll>kP^|T|+gVntTiP!*B0rVULo|QdVzsJ3+&z z`t9SDJoD0Xp65oL>|xzer*j-7g}ODa8+2c#V`9_;1!*dpFI;8oKmg3spu)5V--dfE z8cG_XyPB0%nf2ygG5;{(wS^opRuoJO#Wgh(u5K>(Hgo~;N-WpBr?OZG;bXz89|)G1 zysQzmzjJKBe3;QdAbC2HW|;7O_r4Hf$|dp%<@o$4!K&0zYG^JqmoS1%EHzKBB&K?^ z6Bdj;@U$Lbk%rUn_ZBglJPistymPu|UL^QpuS=|b%4Snw5Wa0(yoKt}q(6#_#>Yl` zsdMpjx%&!RzKb^_!O=)&xznI0EPkU^txuYn-=LN((N<+@%nGfvbgL>lJBH>>zO&%} za#2O+hKIRX^Q>$X4)1tyriY2cY=9i*R0osz0+W*9hUX|alDV_e6&;zI>a7V7YRerE?f!8 z$1SlT9qD_U1KLut#pLowWOUu$+7vY$4Z^%m&3e1L7jfE7F05`p%Djg%dacP$Sx zBg&awAXAsOv+&Pf7pk=YXirtzP?6RScs2O8szP;%Ox{tW{Y?@F_c>38;bZ5Og_~=( z^T@sBR^RIlIM5=nXXcUY$$6@57_gXKwbk8E?+t>)aFNt-@W)+gvF+a$ZkmF1-UK%D zeu`VEaT~q^xS6f$Gp4e#K2`N*xow?n=yluNNv{i7VD}=8xD6pTNK!rv&R{cI)@tAW z%)I7FaqHR<(ms95h%X5I9??#oUQEO$i5QD-Gs21pOb7ClzeyNO1ml3nRh?L0p#Tx zUnl*}ae~^2%{{6Mzqsk^MQ;>xkY=TTZ)1UAV`^fcB;#X%LI|S2+{2*%L4yAEgdk~P zX$Y!vynX;i1$;cQJ8+NS(v!oNlm^Um&6E88_6C7h*4YaAv}<2O{DIGlh$A3Ccg=1^^)hgIVeIZrG!MWb+PAGW3UF z4aM{K3_F16^4v7Vjk<-uce~&HXi(hM=jMEk%=2=m=5|Lj5=w-WO?EeJG2&169n%2B zahQ0iC4sQQv2HO528y!sI$^WaK8!!8e-uq9_NP2y31G zT}f6Xf5y#s#QcQUYLb%X0GW{T@EXD&R=b`N)NVcBd|eLqjz=jN6^E|q9AvsrZRVSs z0uuSrr37aW++e1-@nDVKH;|x^O5w|Gch9d44WlKu(jBj1M_3a6 zZuFN@_y=wtbVgh>`#b&PyACghdN_v$V3gD)Oq{J{cC%J+(f2 zPN+MsO_%Ie9gKfa`H)#r^9~vbC7!OPcmVn~C7I7zGZ-zTw_BUrpgmn#1#~0Cruorx z8;fy`8?FPSrCZm!(m-v^wf9RUTriI@T~)-*dpS`l%j~Y3@x(vzKQ0O#&VD?qYyR3h zbUc_#<+{r^RH0=G%P{tw*<}=IR0$L6%uBfo95*g^>ff5{!nds(22uX$DS;Ho6*EAX z-4YHVAZDO)V_}x)Gzk-q=9}~o6SIGJ(>R({XVc%r%OHjGz8=*-n99>z8pBD#sktz zMj$(qb&HKbcv^Q>?yl%n&I<(oDGALVU=CP)^h^T$xA@nLe3S_sI|_2*3o9~>{b41; zoln5o?F<>$WvXb=qRj4!>Oa6*3K)MHOZV83Fn#tu<1}Hf&)F@n#GEHmmPhH0*pJhT zFY+)~F}Ne9U!Lg+d-Ij#*ljuWb-1zPePJ9-fmf%+O1a)5l$a`|r*njqKnS8d%Z!?^ zFvm(jOwglU%r8sNAIss>e4yi_KigR*dP zs#>TsQzD~pbB&Skd9Hu3nms5ydS#I2)Oh)c0ii7cPnQ}PS^o6VkW$;n{b(ePZL5@~ zID#5E-qkO>ryE&^p&vE;f`UKp7g&~Xm7MoB_Gfz)-YK`(!lEQ^EVC9jpQ~@$cO{wT zc=}Y?++%w7>8L0QiuJHP#b04H6dDFJqn8Rp!h5KW?<<5hBydDpiF&k#G@cAJsh;J7 z!5B16jMBJ$u^W0dGX z(y4_0*x%JzPM~HS5^32l4TP8>SU@V(m!yx1jF(o#~=nzcW&){z|$|32G);N3wR&?XE84G{)1w^K$4 zr+-)vfJhx38h>hgaJK~j)Zj=m-HaN3A6Cd5ru>Ph`9B}J0dSHd^(He$crXJS#kvfH z#sK>DyP^j>I?Nw1)Ynf~#zz2nGz$uW4v-T4h09x4L4Wce767JIWPnyNMary0nE)?Q znMn=2g$eF^f2D9Bt)^hx1?cg6pSOmB?AFk~Bis4Ov`Jpw?t z{4;&AmdD zYcbe1{oJdcKTzU;ztxH=<%-Eo{egm_={6p5JeH-qj5S?m)F&KHKlN>)_|0TlqQj#< z{|fe}4;UekI5Yi{Fz6*bU7k|KEDAEVt!+TSrd;?ZeG`3y?^>Tp{&>*Or+s_`4h11Z z8FN6U6)iLFQ;xiTkERitg=%pRi(=~7(1X7p;;R76azOo+)7%<7omGOD)hb~H(zT+D zqf2gq&hlmH`FgpayAb{Vxxet>L;lWv{U6z`y!xQB3<{;%(cXu%1* zwa_9Y3~057w^)szauO|eR3}RuK#6ORS3VtxN(%kk2JOQ7CvE#kzyp0>AW@ixiV0{6 zoTlC@J25IsApXl`{Vx#>4|k2&(;+)r|Jq;hVpKd9*LdcK=(P`Lx5}G<&94)K*-DiN ze;vpGXv0%Dgdc1ixcjl&dR=PQEU=fPcoe9TmS7?M<#CcGR=htTdq0J~6bPk{rFi!> z^UJ=ouG-AvTMsb|C+xRLvSv3t6)cK1F2jE!reUXo2SiKnUFOI3cc%i zvv5*!&&U%|11XS>Bk59J8l_u@8JX)h91bRpMc_0wYrab$vSD}PzyBylw1nt;i^!HJ zTPW;=Ls)?K=}{)qpO3*DfPka%qZmNcLyg-)Eod)1o_O^L3gv`j=jf^Rt0BNGuc+Y^ z5B*yu5rd$>DLCTZ8yUzO;?1w2Umnr(&C13>maW=?eW*EP@SoxReI-Rfu^kCT6pzL9 zUU`hB6MZNI;Ncys^_yhI*p}_RX|e$>{twmY4`8+|BP+RwxJV-j=2pB0SV5mL?Sxv< zc1CXt_GBH~AEl??JDY+3b0x1~8`hXGlzE2Ov)~J15fJYaYi0E9R8Y8{oRQQnzTfrW z9~)KQ%Rd7KXerPzFqq}uM<@XUCOR)#_X_5Z7m!|-Z7&9v<;&?M1G~Sf(gUEsT%jdl zfZ`Of=eU=GOVn;}cjhh};ta0B{8sq<-YPTF$VG;g|92P8TCzV^WJU?nE3&j^Z-d}h z4d2pXzI+-U^kW7U?miOR<#QpmXLObmo(cXimHSig!hU=K&Mtn-BlRDF|0Lp_Wy)1P zfFnWd8BnNtT=DV4WB{+qyQjZD3=}L3-5RRs@JJSEgwo%HJMSsu0!*7v;IMpdbEkN4 z?w!#rXJ)1zefXyWYlU@-^h-k!9x$}_d_qKUbVC$odfE3>B|ZJZak-_i@z&qdZoumg z6>~)au1l=cV4oTMreEz;w#s#>ruv5v@r-x-ry!D*fSZeakl$VPr~YbH1P>ACsf!DQ z-~3$bp5Ji=MC>1U-n*iGR2*EAN;^xj1iY&6s{dHdzmej6hYpwNY97LRYtv@!c7AWxbYVK1En6V`X{8d0#WEXYw`TYoS7hYtWcc2p?`)kl@p|ZK+n;@dp$U zJPznq&{TnvjMNj)?(fH|{;nF_89eya-EW(7oAySB;YNpB;d+M|UNhK#%BUwy)nppH zNy}eF)^Z_77b@ETt}K;ktLLrC7C`~0CZ(SUyNpa{NZpe^CE*O#BimASPqQ1S+|936 zpVCxgZorA7!>w!;(nNJhGB?;BNluyqTV zX>%w10sn_$gPo9j;t=uzaRgZww?FK8@K4~ZEuxB9o^JRSegQ$C1ue=k1@}=7(+tiZ z&+7npkA!CBH5UA;m5@mq3j>f#->f1<$x(mF|<2horxoxWtk z+i8JUZ+-6DIqAQe%6^#;B>P?M4?!S*sR}l&;9)rMNjL-gZ~*!Ffe`j+f(qDcA+m=-)UaQZ-iw3N-!r_mi4)Rq z=fvQ*p|1G@Gf&P3wqY^9Dw2OiBq=gM`=_%7xto`!08C=GNv60>sKE^Z?eE=2#FT&n z`vI?j;3$aagkdB=^H(iTyHPwrU_9j@%3Sut{90B2wP5DiVBHS@+dT*7L<3;R-N zD15y2tBjj#rSx?7GOYKZs+qFCcW??gbr$LmtO>vL2w6)BiTuEm0K(HF_%_JS>QDoYxCyf{LozEA;!7TzyCYOK@uei&86F9ctNkd82X{`T|?jLs|(xIP+gnFDnQOTd11G@WrqYno)=eh=h| zFY*BzOORdn-m^6@Qo!4JvF%NZE*REpX+`%^`~zs#YefQ*b?kK)RR?no_xBs8fCQ6! z*WPAtFUGS?ztDN%VyC>hCXcYWa%1TZK#|pPrs+_=b)E+6hF2@rbY6&*7x<==BNJ~A zkeIKK)#=R-P4IM_25W6wuB&Iki_|lNTx4!eR$QdGweG;GIhe*24oZ^SkQVQ22N=D} zOvdvd&qdRUh9n>upB^aKCRt!VJbn)ll+GT0s;2J0@_znuK#A2p#t`=YT!)fVXCG4uDz!R$xBx1$7XM}61MRPP8fPF0H1OM$Gs zj`sjC$m;WogxZEy+JZ536JLqNAdy zaOl+`N7jFcE`hA#o!vh~J?Mf1V zAOl14f~=ar>p278nbUP(N9f_DUXL(Khs*`?Zu3)E~Yx zs=Ku|CP29}JvdK)R1$QtVg%n-OZOatk4HuW(~T+j;w%XYQjsWpT<(2kzRN$J`>TKq zK>@nwT6tNapA>W)TBbd~Z2#Kv4V(uw27Z+pz1R8edAwXV+u)P`G+Zkg{1r>SX>t$Q z1wvEFONJv5^O+^vF~I3-dw$|O_kC2+-7-*hD$iZca-DYBejzp_kS6UR%zf!FdwtGa4o*1W&&7}`zl}sXN`h&D_+b@w7NGlgmP6> z>V1(b3+a?{I&w}ey3NB5-QP=1d*WG3Y}aEY zGQxRSu(Lg?8Q^%EPw*){5+T;|m(CHulNiCs5-_!|I$sTabCs5I{~1_?VFZ+gNnlUD zImc^n(skC&v}+P4h<7MXGWGh2srnOY{kpl=WL#ZZwxNK~!RRRI6&4QWoU0>AM~S!E ze&pA0A<-k$67_ohE3yea;t{<%5xvLvRn0oZo`i-NG5zuc&!m9_PP^x8;B5xllRger zLIw-ILkHW%xzr-~w(6Qn`MO$74ROLu_%@~Ihte-f03S`~$8QG|Fk%^t@}P$E?ygQK z%K={O)dTisHpgGhe`!rX)EXXlooRWv?(Hr$U}3ha^8If+Y*6)H0Tc;Q016{Y$Yom<5pTRjf0oHW? z9Q*ehG^3-iTQ(99j&=V)L~KC}v3+9qYat8y&=TK(+$ZR>d=C0{flLH*-Jmi{mkpr6 zl7NXS3lz8SXadC-%<`jp+J^l`xfG=8^}3>HDPb&gL{Hb@^ue870eNChc(voH2G>$; zfQ~M=7^OQ0fb(qaItP0K3jsgsl4c%zHaLCH_po<+{wxv7lAr)M3X6D+N{sWoZxo;P z##s^{94dH<`2XG?b#QNzO;fJ>F}`jF>T@c8;Pfau7n{v{JO=$yTr(GeA$TYK=9{LD9MBSnWrWZ{RjPpu`x|X6%W@aj!&;<2U(JrZ`3IgqTcP)iS&FTTJo1&IK^o%m`ZT>Aa7gX0;V9P3 zF3;#tw!N&XUoK~IoRs44vPb787{6=|z1ILrxV;3gVc4A_y%t?>0HIuBHRQxD0WCD; zh8^f`peZ4kAOIPi_ye#C62PKatG6ye2eg+Qyl@{CQo{YL+<`T*+0OA9o}^*3Bg@(W zUba9|xbz)c*(Fidt=`?8NB_#x}-wif_$?+e&+UH~k#fxjQ97e(jDCW7nHNC8^V zYWCx-nmx~#eUV97+CG8#uHU4Yn~WMBkRtmR%&y9y9j^rorGvM%EN!ATO?Hkc+fCD4 zvj4I0sk(_RMFJAX4~A}eiU5#oFWD8NUcTd6ADdApW_L#+!YJA&K+pFDrE<>mP?lD! zy2$f%)|KsL>pvg``xeUq4E)`zg(_GZ9gM2$Ndn&8T<6`nUFy6ys74e$)8~`mB3Zqu& zkA6#T`K^bykilfXb}9EkY{lyM$n&%8Vq+=vU)c`1hrkXA(Dl5O?lm&3e(6-&6UstH zq86}7OG7feyncP)KgAoxi!h%m%Go03J9#G9S;5V%vOfVyHIL z&D_EOnjk{*a}#>WIi_s{a&|h=gdHOvRBd#FHCpr4UxQx6?v313(nwVkWRD+kJO?7# znsksY**7RCOGE~L=z|lVy-$~Vp7+Q0w*MEH+`~S$7iyd~Q#D*sLZ##sO(b z`-E)dNFvTSjtvM}ZQlZI|DSdTuYY%vclt`BL^mK+h)tm0YU_K_FAIbS2*ZAy6%>4c zT(f+$5;7HQI8XGXw?r~-z%EVZL@9RpgoZM@+X%z8f&!&9ppz*|u_0cwhpbOAwF5x9 zysM&*n*J7OybKnvT5>Z74JNCJ^S4usAR~g`zitp2adwoE3U1o$lLkr-x7(mn>>HkE zh4)w4Y@)uWk`DgrcWQm)3;Mp|8DIArenG!qVn}5Ag1}JG?~5q1zeVH&aQCHSnTBfZ z4Gl#iU+9wF@mJhQiW9;QdXsF(c>%R@ZZAx>nGy&DRk&n(3U-vG!yuQZaQYnS+qb%z zr!8l^-}fqdHI@tTH2bJdxtNRpi|qtaUfi|48VGwajbEpKrvk}vw8Et^dZBA7T69G7 zwRxG1lELwJi#v+|PRIuk_yN!>W=WpPUZ>N+WH>X^=y7(TfP?JtnSvq#D+gq65k=Fw! zv`=$!y;lsUY|CA{_XCRHfx-Lq1{IH)#r}2KG1$!Tr$}MSLX}lo) zfwWQJr@H@;#OsupIlv7F6c|gByuv?{1>6KkFk|-a21;zWHG(W$>}?ND#1M&{cy|S@ ztuEQt$NV;wh&DwLMARaeG`hGK*fjcA4kiZ+4i`nk8xY7;+B_a|#l~{WyHj zr}Q}aV5ph@amrscyNh8lwhH-9ZvttznB=N@&ZOhv5e5rfEXw ziqgmsDIJ4~B}0Wr`D5W<%}ldMZJ3y1eYhhw)~vJ062v=>97dAMXl>jVao)iD0k3@p zwaPS}vQ`1T^_lOna$gZ(_L)s`^lsPGGQM7^C2WQHwjdA(4sIm8{#m-* zHMHH_QKznieW5JX@Fsjy0OYk4BYPRua8!OtH`bEz z(v!dQVmsTmIlS5jw8|ZKG(M$NJbmk;^FN=;D+9i5adv()QoDG@OVvWP%jL@Jyce&0 ze>}v&u}~{G;HKKRVtb}axv$7626RxePq+8qzA~R`ZaLvoa; z+i1kMZZf^(Jxt_ROZ_`a6}xT+Clja3x zw3N-?oUxBkw#)UC^EC*w+B=A4^o<+d(Ql+=xjalx5#qMG;;Y+Re7tPh&ch*c6P5$@GF-Z+CM_61V?yklT2;lqlQfbCB`sa({N0hG{qQFirQ? z(k%`4d{V+=Vs?~d0%d{{gFXZG+d^Rx7dbf;_WvkVe1n109sEx8E;r#vu$QXTzhChS z^y3cWj&j?9#K++M`8FK0vCYjfUA2u*bHtF@JLHH^jRC-tObP(&nF&)9_`Lc zdnephBsmR9vRN%-Y8-qvIG=yZ1)O2pcgcky@vGvaw)L#A^+T@lwwc3E5+`uo{s&^0 zjDlvu-2*X>F$H;Wa{u5y(dEuvlw@tna45?hR^0VD=o0TA2MuK)(?GYTtE4f9CW z#-naimsu4>r_uf*$Zqm|YSt3}&hoC@DPROA0d|_cY}m9gO`)kL{*A@EvWt>j&Hl;Tl=DaAp+ zJAJ5!&-x+&&4=k)Nx5A<^006`%3&?)!{*x9hjBo#{RR~mynMjU^?c$Mf!J;Yah*L{ zV&^Ns%lfZcfrU6zv7I&doj6`@3}$u|Bm#G&XL;FZ2QpTqK?(9hCkdbjAt_&HNi^#} z9st_MUz42D)alm%c8i49=|zS9=R3()K#um`gY9tpGSQr|%Z?(b_oKLI`l`^$YHntI zIj2}_rC+CEW&1r22#u2_U6P{b{tk5ad@&%s*1&nUnJ3)(x3 z%hCkdSzR;Ex>z_lUA1q4q)BR83EX0}psU1WAyH?rx^7I=J!TGGH~p=rN{2}WLlurR zb(i_M*^0?i4yUrkcTtw`!HLHs`->}uNo<|;8c&~C5B(?*b8rZaH12EcHy+HSzf7lALK|m)r|gMmGT9~NP&PG*iNK+Ls+*8)!gGa$0}RBjCNH58_C1c~Q_q-u*QwyZ3WgXO6rn0f~0YIamJBvb)CF zE+P*XkH%a)tFl=0Wl0a|vj8YdD5!yZ00ZZn{m$wS?4q?l2E6&v_W{bPR{MG_xLyY&e z`Q=Vl|Q5LE)`KM&DPk3Fy;H^Z>JOXv^)*?`z) z(e^myS1J*`YslD^P45$ftJBc+xn`Eyb#4NXKmT`jwzmTLs-^WD4JCDzHue<{c{1}D zbn6vJ-5V2w$qq}(%q0QP131nKS6<69!j4?VW2|V;H#VqXYlIBIN)&2}UKg3Ftr-~i z828_`Zu^jCZx%{JB|&l`Z;+E*rD^lD>&cSf;qlkn+i%Z7OXTi73&~=~f-Yoc^vE`( za$QwlS*eV$`yjQ#MXPbK^uX=7DxA%_eZ;9V*Zr95DP7qC2y-*Ou>Nw<1YyZZMH<2C z2JOO;O66yquY9*KHsq$?5=m}O>4QsGIy2cgEw?!|$#?GKaZo#V zxYHA}GhH#;G%*51USJsor2-vAwh7itYpca2{q1|U(bk?;7UTv#A{M+C22&`k(Ed|S z;XyqQKh3~m3dd>EI;8)?dH5nQKNAUc>2-sjtOx@uXrpZd%OopqV~4CKP|tp1LF z;h61*!-Sd-oMb*!*+Dq$ylzySswKN48a9^hew7V3Uw%+$BEsn(l?g%cud$XSzM7`& z(Hw7S(*i<-=x@W+T|s`j)Zi?7xPO%Zf55Vpd(wHVqKZ=fujC0VBeg3orE6SqXI3r7(GLQ-kubeUV>^sB1~=B|qcqAgXny;jdP zek$-zTdk)sXN=}@etfu}pVpbFn8um8lqOp`CLFZz0SpF7Bk?c1$Qj^^9O(Eu+_-`0 zpMdvvRpWs|1qvX3%0j(|eXc}yG}>hHzVj;h6o_A#z$du$f@y9njnp!mL3rWOLd(5o zahL5W#wFzYQK;Ec-zY^ux6|A!Wi|O!YUB5KVN>>a;9~*K6d6j?RTZaq=kEdA(H*q| zCn?z;X5ivY%0ADayzt>=tJSdmJO-kFj8ycBkUgURWM~U; z9ZM6rB>iq}_jDJmicSPWZ3iGvDh?O}5F?rifJ`bZ$#$w@DA8 zt}!suR(cZ68?KPEwJ{)CM@k+0Fc4M5&p!UVCdJUw%p|4hRMTV6bnkkyRQ-0zHl-@1 zYHsV3ZF5D+T3u7NXPH5WsHkWX(fr47pU4J~f3i4+uV2njXj^RM8P=1l9;n zk*m^2N9PqhvopbQ^>|J5BrZU$4wCi$;z(h&WHYK+h(?!!4h%fASiDNRKd zV-mp9SRE3qJ~Kt{x4fl9D;Dm}Bos7^q#Tch801lP=$ZfT`lMKj~*@^V=lwe?*Fj z`|29}@yE2FLXY_p2anumD<^WU6S_VyNhA*33dgXZ&t<-qt4^huJ`>!i}Oj za91q(@k3nUOLXX(=Ze2y1gO99tI<1?1tdtWL2DK(pP}Ft>4>+T7wadH{4G4M#lylw zrfZ}-YPms2RQJKFu-%CAS7n|_ywaOr+o$AaGu@h}Ta?>E;O z4Z4j_lp^~?uK`+;I(FUIGn11VCFCdMDu!x~VV7RwHP__Uw-4=q?IRQl(yq(AKcc}l zmKtr0>%o`UHec_bW=&w$za|4!!KZFK}s8U3B?WXH(lbr15su zfmW@kcIOK`K4w8#{&}Iez}W>dcQrck{{lepa{jNOg3bH)k!V&IU<_$%CY5$EP{ZbP zD)NyA7EgRkTwaz2=nu0o)^m<)%Z-V)8x23CfZK zZrB77EkG4QN(XeJs)bp39TgSE zXIbCg$n9Pfmd0G#?ubJ2?182o>rt1VHJI^8bB8-1OTFElr+?pL?By7VO@50k8VfE6+-X z2YTtkZ}2iRGALYkrdH-~u|87*QjXOVP=q?_J~}$$q4=&MD9%6rUMu*RNf;d6rT2|S z#&mV8YpzU8=UbHciwk&y!In~v=G;Qhq>J}gdVY7Ru>p7F;|D)?w92q*g|W9t>;0(d ze$HaRZ^MTvd?y{`HohFo7Wp4Dh0 zx$V+8m+>)dzOr+61P7x{f@0*mXnJ)ql|nV^U1fRxm3xB9pZUk-BdKLqO8^PUWr1p8 zC=R102b+K{fBm=H)XGYZ^YzRyxnR&Pm!X&`<~Te&oV*SS>z}gq-8)h@ZjuNwy~}Kp zozAB*Co3%8-xzp&2Y)5_Ry{Y?zAgq&4hom(i1bxTCrjA>Q?ig(po8GT zK3TO)V>u(kb+pLGhd?l;dO&$cTX4^=FFrEJ;6ctQ7a#Q!QUfY7U={IJH!#RBywZKO z_~!HE zuaXBhmH7_ct$~ckHYCqFiv}}AuO~lVf+mN%cj5Hm;L;;J49*N65NJr*$eB@|3QjyX zX*nvO3L$#*4Lhgv{y10l*ZW_gENEMt)6T2^d0i+NaF=@mZJ$4_Rm_AxwKLg3RX@&G zxTa1`?HV}OFZl6ac1QXJNWOdU*vejn zl^pG}d#_6}&wtTv8?5C+eyj0%Nnn~eYzH6vtttAHtRj;CWi@m6TXUY_>piI*Ud}6- zG|&cXvjdW?TTG!1UrHxnZ0CUFz#?xvi7&%*@Odd0E+FoILOi_f?Sm!4Nn| zJAmsYF9Yt_8auaU8{Pr-+0?H;xnhFcB-i-68oY+9 z5$kqZT3YIB8Qu6gxu&KG&TkbpO1wYif_~tqT!3xF9S#y9^VWCX&74i}7-YMp&OzWG zzSeQpU}ZgbEhxRYNj&*tNomQI7yVGHm9ZTFOTwG|+`A7ABeOSG)L#VIul5kcUr#Z- zdlwphw#sNd&hZeTjiqSZYCQfwi$%_dm~?dCO(G~z{}TwIljswm1BX>$4Xr(YzQtXX zCP?=%l>*#izH)BXxX5X@sh&3lb8sR<2oYy^$E|?GSk|r9oX?U-zWOQe^gB?5dq5!A ziYz$5DImuC-{vfUBKgs9JuvP<6@Cic;1W0rfMxc`AiL*WQj#CNWNqS(f)3o{Kt}Yp zK(U}%{_Z;eQCBTPp!b$pE`@|&k*QQ^v{(`gv;M2m5jnhYW|Gr?&|kMLC5|f?sC`Wa zlD7g>BTwoQd>h>L#n|EwL|fL7Pl?_4eJw(TEU@Zp>)B7uX=$5!ta zl$Fq{RXf>s`1#eH^d^ED{Iy#&;m4w;TkOhLZSu*W-dFp|rawRWRkX<_Mm*FmZ~mL#%P}pg%XBqXbbbyMAq#3lO%XyE^h8DOy7Jz?BH=j7Z8tlf3M}Ruund2 z{Iq;mIqL$4(`e`jDN&v-DYW~IIT#Elm&{g&AhUidcAQS5)2k+$cpuY?Gh>{9yJ z(EtzSN2*twDg*n7{+bbp{waq9UI964xq>avK>$)HyGLGxt)n5cE8*ne<2xht;xNZV zBy;II^H|dzREts<%w3I!)%dYPJoMvHp6!eKHCn;4dlD+w=XB)3O(m-XQy~^B9@iw# zyk$&!Wy9ex1Q>w#@T{gsuT+a3FSd4K#}spS;%bTAt78`Ds(1Gslee`Y&t!DYpYpW zZ=lHl0TQ| z!3#f2Z)@2tgxa|bP47rWG2Dn%$Z?%*Urb*dp9Y@nP6*bF=RJdWxqkO{kYrw8t#m`D zvGU)x5#J9#ueC#f#wVTwhQckMs_03fyyp^-b%NA==yb*K?YUW%-v{V`$5#l5B))X- zZ6{4HG+(YnY;rcHLf{xNZa->`_4}w!G3q`T@aYC)xnjoD;nE35rNdfMJV35>WvDxt zKYd}w$me=b|J-7d*UikJ2CD0W=BQh?J=`Ie91-p_&+ zm==^dQlz0Q6~mCf;* zGy3}R+6a_|hDO}w`lCDr6Vszu_53{7a1iISql739Vf|Z7&?bLb^g^`S4sI6uqt{jK z+bn-TSDK1V8NvT2zzB9T_hqYi6MlLGh%z&${a9qUM-Q`eheMG_IHQGg@-?yt#^*BvK&vz zw3sZ<28C^L;DF_H(>zbY!7P{_6*%`&YIkYfga>--?j1IA6-sqxdRq00_NqYFon{eR zYM)9bMLG+^vOFb9O_{{~l6--t9T1pl)!kMd8bk6fz{m3y>Sn51ZcaazZS8%Jc>GjM zG#cN2Z$Jyd8zyc#^YzCG1w7P^EaL6*NsQt?&rFK#H}WLhY_<)D_Iz75br>iNYITQ6 zF-ZRP_#x{s7tEZ|`JNnSkB2*YWM%)5vE_vUEs3hs_h(1ZK}_`$YRt)xo(Jh>abo)+ z<#IKYs@Rv_(6fBlry^Iul;_*`S1HyUotmrx@U#s;)8w>0p~zIX{9t3eG_}@+fC=#D z(y10?8RrrrvjC22ElcFZX0OXEmz}90z|FWZ-_io$>B1-5lavT|&^`bh**5^qV^&mD z)C@pJMVZ|nNhstB0cJz-GE+7ULAYt~Sqm6AI!AcUOFlvb#-FPR#;GuiNmme*SvRF? zmGX0*7{?zC!MpJvo10H>GH19vVDdhttSjwTj^NY($akW^#i)V-9Gi2C`vL9$CI~T= zK-lB0DL4CC`TpU!U%Z3tQbQ4m|MAw>u6Z$;2oj>X$aTV4%l@{{uPf3H^X;BDC4EWU zvdDcqa@DkxclBCW9yoCx`(W^^F+k-X0E(n<<9a@fJJU6>lNF{~w@v4(iDP@r+O-PP zOs#O~yiFJF5?%*Y%6jV02pg}d9zXsDnBk2<2}G&!)xP5_j1L&bnjFt+7;v;RJwCl# z?1Fw5Wt2knDl?gfP(<10 zu@oW^vJFM%A@eL_nI&`V6f$Sr=HYk0?A>oTYn`>upXaQTwg0iQ-}iam_qm7bzOUe|*i=1Q%R5zkMTW z;_JIbC#sE4U%!slS!5~vQjRU!ZdtVasn==c+kHom+)IwICohSEHsnOkgk8CuG}LUh zP}O)ov4-)5R%O_Fhg3q3Ya!jK#kWJv&U!sF7bjQLtE^Y3HaF|1NzHWh#k20O2(S#~ zS%l`-Sc51wKYGc$c)p%K5yIAv6g75`!t+;*5@_hZk?gn~xq9IKp?JCqu86@~(w|eQ zDILe#tI)rOkX((O(*!-}(4$#sGv&en9r;HF`#j%XxRup^oDyB;*m%d$qMQ`d)B|3eR%-PwXR!uQ<%3`0n zQhs~frJM;xj)z8BMv#h2UV<2j8TM4_Sf6@%Dh5V`m46FY2y5b`iS&FzlEf*b%bahd zvb94pqqk`6k{N3^W^IIVoc#4&4>I3C+hK^7nGwpu)3*JEU7Je$;Q ze`wLIVsqt@o!Zo)yxGmUY(0DO_>b$2$&wgC0}8_3UAI_!NZML<$z{af%%q`1z@MA; z6mCkF&9)h1V0_SwOo`QX?Jbo9Sz1zQr~1CfBcG4;K}&HyDEz5_ipeXe^2>EnT*5gc z0yprB&oDZdjfdw(=X2rC9#vIUiKzNMkM?&$+Y%apGvT~WniPS4wiJ0Wh|}ABVtk}= z-ucT~G&#zlWG=xPYfE#BSEE-rBxY$U7bN*{=J45^2KPXC>nmNf(t>$sk9tXnRSlRO zPuTDnldv2XdpuaU6XMr08x}TOaYmS3Ks4)xnSM0;rENaV9QU=?ug=YX8Wxkd7;0$ z3gy!g7cJ)6kNyzd`sq3P1}5|4 z+GK!l0pZ|l?HWU63>d@t-gzq3tciO}eUbR%i82 zL_4*mY#b5pa%=B9^rZCJhP|!e^3n;TE>CodU%!(GIMJySnmCwq4h9v{I|U}Ekz-RU z@0DZ!2Jj*rB)D}cKq#qj&`~>^#K*UPq9S1gtY;XA&s+nOXaWuG-OsOgX7mA}2b1rt zQhpemw@}Q!eKb$5UzSl{xg@Po!~!0HS`I9LSr6nLO38CsNFXt4F#}yAU6qkFR}y;r z3dXiP)C%?J1tqV@1u2KzF$)UU7OzDjapU#$I)0ZWg_i}~SAIqbc1C5N#6{@_#tAaf z;bp-8#Z5YBH#TK)hX>fcj&?4}N2fhl%Ev&Zy}zlcp(fAt=as6+?`slH&xd?x$Xuzi zgn^2{GRafUxoO#*9+@w$R6Zl}*^zR6iKo8tL5&|dv}v5|10t7bw^e4b9O4DJZl`DK z5x-kJ1>HH#Tyx7;=@Tpyb2{?$9579jI@-jttN|pBvanPI_&h4epE~qx%q?5vT9)tj zn-uM=6zRE%F;mS`@l)^gdru*K@8>I4tI;XfK}od0u|yoT_;)8X9FKlt zcF(iVb5Q{$I^|F zmrbM}ug=}QS&Hf+yU|Ie0AU2RBFuAr?bCe$H7M%&o9}=R@>AmejJPKT93t|WUFnv) zl+BykllNnS00PJ&1Qg{dT2qoF7_@l7l@u*f^l7r<2uj!cW*alNW=;Ywpqd3L7(s0C z_3{*weo#Z>p(v!8TIr<7#jr7r&%6a-D+m6rKqmv0gILi;uHk`4PPc(kP*18!VgH2whjfp81FfU=xuz} zdZJmCLR_7YTS!ZPZ269K@eXLK+fIgu;;*JnlzGEfcl*G? z+cF_k!cc;32(|_{sePL8twaZ=Nuue@dtXR=4g%djZC>|-KG*W?@Iw4 zW4z~lg;It*y4_4Wt?)n(6qkNhUgiMdW5-a?y??R1$q1k=}84f3!kz=Qb6 z8l(wFAscyW3rB0bzM5A-7~v2PdM@){Xpm-zk5$BSQ-P3VGL+>VArQ7UIRMFJpW)>e z2|O_kx$sGtYjc7*aMzPCaN{pfrO?!lzre>>>XP3*u#?*N6cqzz{I^`C<>dUh|KL;sH{JnXlNLxx zCH#_-SdG}T;_?a#p)nVoO{cNt-$LBZj>+rqTK;;HfNpv~p=k9f{}X7j*6uUX?Mkx^ z^yk)QZB$NrxFJxvIp=H4h!w0f%^leov@v#%`{H$xkMDsl^e!428W}N;t^9bx+!)TI z{p%?3dJ1Mk)VlZf*`MF1EZLy~3edyKZ$(<}$;? zm;|5PEc`#pjqW5B{*`7ifI`mtyln4$!#n$grvoPj<2KmbB&_3;`t#j>R}Bmd zJhH62F=O;tQI5<}uz=5~zWG?lw}VHSrfDkuso0q$0QeM#W+(m`vxlN|LiZv#Ph$Xl zZ=#*i$j$X5r)O$zXmA<>U+9n*`%AzgXtzo#PBe^@i|Ded(56Kb0E9RMKv=XhN&hXi zH8StL#d*8(`st?IucakIRW91AxH{TuupCR|Y*~;INiGrA%T80e8bHIh1$}B;0A#Y? z(Q`^X@G}x(PVdPJ*8Ku0s)>!Q zRbZKE`gpr-D?I&*gpBcQL!oHafXV#!61oU-{1!b%BnkvEE95(i4`M0mp37k|_PaH*s)`W$>{{fK~--1J?Kd3WPQ+pFFHG_Z5&n)2RPW+6Q{(8*kvO;W(C*)RJS^h}l7+o& z8fbX&dm;iPlXm~K<8(%E4UPsn7~>h&BAOoPnufHRUV;VsXFtPV(?~zVuI<_98Ala| zMU}7_eZ+@mLzkf($DS!~9^mhFQJ_0Sb1#b@GA5cNXV0QA!fVZV#(~c`5|v0=;;EW_ zXz(SU!QO3qDS4n-$HN1N@KKEi6~q9TBF=cev!u)I8dpvCN>v`AB+0_jWnuvYd*_8r ze=-l}96u;u#q?02-eWIjM*aWh{cqU31le?StuFvs zKk9<(`jUWqtp1|QJT<5KV?It!PCH<@e~5B*8YqJ_?Hh2AFa^Ldt6&m-k9YI#C+0NE ziT@fHLcpx`NmH8p41bG#$d|L zr+YuZ7?Agy^*0M`24B5oQ^1x(7@4C)YX%9}h1}fS?*_v0YPWqJAg4=)!=Ma{k|#O% zhZt!N+5ncs9c9u)??_5ZGDO(f%^d9Pa$x!i71d~m!uc5y(DO720*Lfa;jXFWmcq~I z7yUOPf`j7@CTuHb52nsAT$4i>j6Q`PU(l>&9FYi#9tk9UauLOetP0yPn>+($dHEdw2Su6|6!z=7;Y-^i3F)<(|Hqi_l+HGQL zDzu!(^J(w2vz(TjBEO8!cK3PSN2WLRgsp6qK@0-~uR$yTm!MN;-yS4S;zM?V`*Q^E zU9a!@>vx5PaJcdD@mV!BH7k;zk=~BOYNaUW<>_K;7$}fG6Eup~sTn~+E9pJU1)&q_ z4w%UMx=!EQzJX6JwEeEbj@6qsR4=4WN=OjFwW(!(wK?DFyhhDo_(8O*b;Vs(WIwV4 z9zn1lm&{o5{%CM`X?oZ;dOP8wFFNjplZI6P9-omPY733WLm8lX04rPKu+?}3+lR!3 z;m}yQYQAgWhYX0`;rzVE8VHfuKB8E7n(MEG)5V3gvf*oW6(F8-5!f~7_p{+nYN{5E z&GF{f!$TPirfVa8H-?_47sAaf15C)5FCu%!yOnhJ#~_4K>TXIg5<;Szr#Q7!)NRXiUbyACPD z_#`i3-YSX{aYR~~adg~7@%G^`WmD9u>e{YbX+9hv@hxo1y#=SJOjv+)1cWhueO?<6 zN{Gl%%6m!4ODJ>7!$^p9j`J|uu0D{SUG2SM$U1IHyYh8Z6elF4!4R`q=Kd4$KSpVp z#k&U~i>QEy^L$<%OmJl)NMdmy>Fm2!E`y~4W@TGGCW*({5cz5P9icT0w1Crho2EDI z&iN@R9Ib$PFf=dRhG8^SYS?C zntJwujiiJN0L2m;hM`gMm%`?e-})i@zMlNLdgNpdfQCuRvEg7uwMzNAS`~4~*szB% zbp(JEV-jB^4QIUAkJ!b#9C6zjYUkPGgUFjk%{uV!!4Me{DVKh7hnXG`j=Nf!6qUKa zl;lX6YNQ*xSp7GE**z3hX0fifVVBrIm^jbo!tKJ7E7N^y;5*EHbyZh)*+qq7a8ZcZYgSU*k$jW2uh>2* zf0&<>6Y5f$rvYVplMy&bwA3TuuVE}R}^b8JjD!pk+D#l=pGmu8hT zN*%48#^awP0P6#A+oKF3Ea0-S4&g~%eI6>M%wl^*PEn$sqknZ_P?`F5cYa7G_F znu!C1jlyFUM2PHM`TKYAcZu?A?gu|D!ak129g!6*066%XtgIK5hQ6TvVx|`7YK}IA zuwFHWVoA3xM&yAkjIK2*FEa-G>o_ALPazhacJ(V6^hPFQO164yDP(acjHoG6U!a-p zx|DsQmsu2KV_6zk9mdDCc+&%qEC6t9I`+g%=SfHr@U4wy$(TV|YAa8`x?df{iVOj$ z6(_s6c0hz>X+k?-Q4E===QxYy0ezq_&?7?2stEwbEEMN(8xvraXAX#kI8x zZFqo`A+-`9t87a7(W4!6m#(<37enP_4=swqmU(+(Q-r?j3D1S_0=xVT4GmYC0ffOjD}412NtP)4!Ar%LSDd;aPAr>|2tArV z-|-Pl84`~m|2H0TJDUC}dj4EimQF4Ce|o+DOJ76}N)ZJhu2NTDTPtFtL`zGXV^HN4 z04%>+F`N6RRY6E9Kr`1=mzJ4%w&+J=aa5RsF#W-#Cnq= zBO;12p{s`P!-o$ymEJUgZpJz7f_srtE~|4J7$G6S7>J483qel`t#kwhBVgU`0fCPU zsFL5XN_j?#1ow@98YmxcBt%TNLp6VZgm@lYT3TpmD5LNjq;(85+>Zme9`mcH%KsWv z-)vi(n{^`JyqPNc0kPH=b?x^{LE5wj{|F)MJwgcIU5uEN(ilhV8DW?q!?9v(kmGnQ zV!}zqt|ajoMD-tmP3ro@Vbo~L0NNvp)FG`<;TVnPRdTSJhvC9*=O7SnfT)4_esu)R zZYW2%UE~TsK)9bKlZ!cFk%`Z+b_sChC8&#Gbeu-Rjz2X!o@z#s+LmYWH9w^(&bE91FwGo&E758 literal 0 HcmV?d00001 diff --git a/assets/models/gpt1-decoder.png b/assets/models/gpt1-decoder.png new file mode 100644 index 0000000000000000000000000000000000000000..8684428f8ccbfd75e59576c7e9fdf92de30fe747 GIT binary patch literal 51222 zcmeEO2Ut^S))rAB2tg1OFcd`u1ZklJ5Rl%KqI9H$-U+=I2}O#6ND)y15kz`Nkz%OQ z1VlPW7eSiz&VM6`!_=MqcXoGno^kidaBuGY?)QD?ocFw^+ypBrND~oI5ga;nh)7mO z;`*UOM?t{fNyqSjPxmYM2Ec!C9Ii`?9m;+OnL2bxoz_uO!_nH+#N5jG5Cc?v|1Sop zBm;*i0~ZJS|4?xwbGWHJ+!{Erfm<6hKqVNsxTKX-fMZd6Lo;(nV?#$Ldt=}vaK_wd z|9c5ZO*bQ@8@r zjWJ4uIfW51+yFbmZ|>qxH%r>s*4o(7-VK-)W>{{_3bC4rz5_jJmmlQJ$pz!xKWTPQ z$h?><;TYvI{XRDO{@)`2;2Mnl{%J8o_b2pQTMO*0jgc{0(E-yJb3vQ;4Fuc}EeRLE zN`Z4`j@DMd5hw5`02@}~wpOLO&KHdUOXzds|E61GA8lf&%}5Z+@;I-*xM!8uHsaxvvjs zv-!Cua6x}AdTy+G{COnL{R@)kwF1ml%*foCfs5A^{pU5f1A3>q_P+r1?BI7!0B|yJ ziOCqlzh7ZskG)gW(Gf6ybK7qi&&6@TRR1Y``k5?w4PnLxCcxBwqG?8OW0=W*TGM{6 zPgr~Um`M9AxFw7@x|AvE__g{q^G%TW# z?YA(;*a+~O7<9L>wE?i^AjteD!Q@v(>|pC;{|y9zD|q&=LeKge?s0u{GXD<Mb&;9HFG+2fq?gz9`!PXv#i~bcY`K!qs%E!;f&(Fup$@P+}oP2z22MwDO6N8|Y7f_2|zyfXn{`XM>^NCTN zgAU-o3I?25!v7n&31b^0QFQVMSf!yA+`+*d9i|+JnX&kQ1%U&W{_FT~fFK)N8Q8i= z{&3>Y!5R*N0A`a8VgN?;|2kzp;5o3g_MmoP&;4hZH5zBoXot~g7zZ22fq$Hs+!NMq z?QhZlgJ+{3vu|WSVfI{H{A@g2P#6b4_VY*cxrE&f>wmN$fQ`?7B=etyv;Q5m z1=7iXjgSa~R6hb~3~>L&K$?pa%65Q@Kw+3*5MvKO8ff2>V>SJchh05r`dy?YY5qkH~(aN79+i=j1xc;JH1(cWV zdpZmqL1XI3-?jMPZAMUTezqSncpTh6u_BCL!TT32fa2$be#$0)tfl3*iJ7On)Tve>R->tFRMnJpHd5^??Wy zo6KLiaYFfdpxiJR^v9`~pLQ4g8%RD7cK?tI`Z>w} zpQ0zgZgTO!cwk&S99(?7FrFXROF6O4W&aqfe-}G}0kv6PfY0%9@p1#r2w3Ne;J}F7rpu?B@jLpK5UYNgJaH5Bh&VXl-I^<9MKj72Ux4t%ddH4UxR)fB*Gh z9IF<8U^bN>lN~zX>^QL*ql4a#6I(dOhKv8vgef4EZzaD2N}&R@9|L`_9Fo=s``;aa zgMUgnelF}kclYbRLkWK3G5CNC)wlgVs1+O-O*yC)++5fz|2t~&^I%8G*1>$gBl_Q< z8GrIt!vBC~V3puct{B|^EJgSex_e9wZ^z^s5BP7ie&6`jHxvFpbpC&{ zu89TogJHlgzycI=?ym$3+?X}}trg#h7y|yo`dG@B2`g+ktA`&q)8D&s%U~Qgwgh!tcWcOmozaZ~>D@`b)VB%sT(Zg?$_T zBQr$ULdSua@6U$|JQ$_^8y9{bF8o3=87t?%6fR)a`8O{7;kdxbfmN74H85b?sQ#_M z@aIb(abw8;j~qY7N&ck_{O2iPHtcKV2VOY;ehw(<9ytBaTnQk_FTa%jJCad<4*mE8 zNdXKSEMSVv*tqNf6kyBR2kQktZBzJ<7Lj-`MWlZ#68v=%O;~h4h#)+FK?K3B^8iJ- zYHni;x8L`e2ejpfvf}SB`Jd#U|E@U$@QF=S0I%@uZ!QKseqL?FUT_dRzTfph58Up5fw=*oO~6ae=pRz$@Gp<-UIXx)y9D^zyPSoKU?Z=T8a z+S0(J`vcXjt=*#485gyhLpte9Z53Wy3F#^l(QmWg47_qMe5;#w>#)x$X0fkNi$AN- zGG8HxIQ-1_B0&wzMIm}}x<+Wn!gFWW&1j~_j?{a7n>Xkp-*Yhr{IT=+VW;^JkD3QsQg zTFgxN;K7;Ugf`5Rf18BK{=@o+BXRQ&A!G=x6zotrw6hQGo9bb+FKh&eTj%kQH8_ zOJg_777}PV3tz~HKf9BD)t>Cq%eTbskd1;q@vn?AL*qdj-b$7-w}!~+U}@K{o`9&x zn#EQ;W3K$ zX$>~MK3~BP5y=}3-#*b4E@FK-aVt9Y5K7csAntLrRcoET~ITueL!c~m$*uUX8iX+ic@gSVVV&ZJq0 zx~x>-JlwBlP)Lqg!{Vwie@7(k-V0_wT6=d(d}Cmf$$ikf;XhwZE$Hl6TvX(=xBk^I zt~*C>k~GVQQ9foyYT%_E@f|9j^kg&Z&}^ZC&1`#xhnMed#kT4-d3x??!gR(MLwxAf z9z6)s0%uXnssmDzq(X^C`^UVZ@5?#pReNMtpix_Wm{ zZ@zIyded|k9~09tQBhHm)tTOt&}$F59awQlvnk4*bl+yUSl@V7v=NhhTYM&}xWT_; zW#T@c>&ALZc>L+PnyXQ)Baap$B8C&?oJoE~{>=!)%sZQpao71vJ2FvwRgLp~4@+*7 zBpa)n=3KJ?o!KDKw7ayU)bEq^C3*cM%kEp^yzRE4y8eETPGJ9ZEW0wz>CcgcSwMiv zHdTX&X(01Ml|J-Y^^{&KIW#2>oolorHyuv5TA;5=AH>-eB^K8!6a1K#z|tKJOsriJ zp~R46oEQ;x*(jefP+Q$Fl2chLaCZ@ovL?#>$=LsSY_3(-ZlWNaooa zFDKZZbdEX-6|c%?~(rOj@6K$vhLaFiD6O$tbZSc_ACwUll`{(C3E3X;6azEK`$riB!v8 zntT4;B|$!vXwz!AmLeMF4l&a`0QN()I6<}CVDRW`+1dDlkudhaS1qbL9>NR?L&*8+!fDx?ncsv4TEA3FEHh-2?=|JP zsM9-x3JuB`RN6T$dFu&nI&Z*mV!C~k8YN1!_t`VQZ-|EmS@h$S0X!g&V^Dt@O&fW} zi~%2CD)?wJS_gAa(IjFpqK?^d7a{yttIc$*9$m762CQivKyh`z4|$CYUPlWC;bjU%=kA<-&NI0+#$%Pm<> z)sQzWbfgWlu2e%3qeKlKKV8Ns=&2-N7*(rtu(XioNS5|S;s&C^NdF_rHGaxysL?nc z-Zs7SXgD$YGLythBFm|;b7n70&H!^d22P*i>Xh7{PU1r}=HJs|p^)Ub!b*`Smy550 zUz?!uRoeUZL{QPfv8<1+_+SF=9&Ps)aAKZD2#w&JaTXp^HMJ2y}_|M=@le=F?tx|n~e@|j&# zU$^&fde8dNXb}k?0Wq^;@%uWCA2PisojmLu1>Gq^C5E0O>Hb)#Mh+)(A<3y_o`z+s z=~$>dwp(6odOI7@l|J8p-G3WaLG+vz(6Y$LISCgG1_kmI433{zx!+^PR$!ANj zh@9tZlOrV!BRwv45AZOe2&K4NcY%>hwVYlkJJszvY`2%2Yi3l~%9rvFMN8v@wIbmk z)G%vqx`AHv6Z2oxMZn)R>jSVtsgqTz;)fjVmq#dhhNlH!MVE~h9pU+35gp(tO%eeJ zKrikhO7!b21B|Ic`hyte$;Z{vPsX$O`^gw*@b_;2&uUo5?9S>6i$Q&`p*s$#11Thm ziHrfmIO&dFMZ^7zM#^YK3_9tnv}uSMdKwy4FJ8N4eb2pJY9HdI7@fU3o~DtqyIXod zlzIl6DiLgbbmPYM`tIW|8manHVNYP7i9P#?y~mf0FV+N~c$K*`hNg z9S2l>{6RG@uL)b9Z%B60dIIrGFCMS_!q;RFlWHBXmx*YdnO&z+ZhbVSF4xHhme)Nc9#tz3*9s)u>$>!%fYVTWAH zgd~k3BXDHTdGR69WaU@x)V*T?Cg4UkW^x(qIwe%lutox)@Gp8>w2@zt#z5+&5q%~7 zL+Q~?;cBxUiSDyf4>--q#Ked6J7cOL6kNmgCTpEp*Ga7f*FSu?n*R^9>jAV*)>ahm_wmW%aB z+xz*eC*B*sWwmSuv`1CpV%UDn=1X=v6Ak@O#s0B0E$~5%cPafk>UZ9(QX6&8CVolN zy1)*8{Q6FGs0k8PEkC)VoTVlX#_jFQleB(zH5xCOv1MYf#bmAJu`rJIYQlt)?Ns0n z)6{s_+Wg0-O2y+nUNf{Xqb72cI38$z5bT$wQ+mvYR>TYcy=ilElV-jRyIgdZZ_AgM zv3Z*;#M#e036gK8TlLZ?rg?1|Muta=Jd{cY^wz(QfkMV*f<<*twkMjO(KG~jbEf@u zIL5a<1J-xP01%~A)t47)EFv}6MK`)m9Q3iAw=q6es|xjGHl8j^M}QDAQq8lwJVn1~ zs^E9WV<*q!i+l6qUCT-oLA0g*>id@Mq3FjDyEQfaBZ?G-f_4*UgWR_ibfr^Sd)Fte z@Rz!9C-1Q+?#dvPhVny-POFLf{0fpoV(JU0nO z6Sn3@1igk_&L7Yb$6RN-=wuR>7(dgyi5XT zXfHxZ{q9+q>v)w;h4i`CauY@MQLi$To;td9G`HOk{Y`mP@znQrbvbK2l?W#NSnAXy ziti*B#guoMj*f19w!Z{7nn_PC?mLSFw3jP{BB3sQBr!R8Y{u8u7n~v&y$LgEesJU} zjj5^WnCg3``Xuon*A_wN8P~b7vHJo(yW30bdKCi-$)EgHGZ-Lc?h}U}cE0f4U@1

zv$xZ}y?J7tJTTUFGaMiMFoSM_aX(=} zca)In3KXP@Pm-lihB}m|f5`G0%J1lD-7?p_qJ)GYzC(G@?m1^T4UPao@5txRu-J0> zbkfh2s$yRm)wZ#GP`SZkB(c1Fr<0J9%V>FZRUz{OQk+tLIkqoDJx4m0O-EpEaLJGDKbj9JPUXqM>Fw5`yaZloWZ^nnT(61e*&iEsH z9VSF~QnNPl4S3}vs5PpxM-072K9&~DI0KGT=laEn?;w+g2AOky--+(-&=tki&feBm z#pnhatH{96(Bt;wZ@F#J24~IhX5LLRnf#ypXVI;RGQ!|F!v{bB3vzx5)*IMVTp7JjpzX z^(s82OoAY{N$3Mnm*pd0bXfGsV=7dlR1qE?+eP&nX zYoYeN&@lvzG5hlC3JHW;7uxte(xXTL`ls7HO!q24O8-?HNo0*0J;?QWdXrn@n~JQG@{M5g$cC3 zj6=-&Q2;}@6WR2k<_PGTszRKn7CM%p6uFe8k~JDWOotL>*p$oBE$48VyV>dE+2+Eo zb`)f7ZM~;iWT8r9$?to<^pH^jD4y4vY5~Yfb*{YumRZwAXB&3}G|_oq?mHnn#|&&( zbRr!^A|~YYLq=Z8pZ3?PrA3MQA>|xdfsZtT8I8|D6md{fuvVd&a+kzWQYC8@n5kLMnXDTpARqd0(nT&F6%*d}za|DZd3Rry zifLgCbmB&l!v&s~qUnpR*U|jK`y`qS_?_LV%qQ%UxRYsY-dR7tK7-D1R-Aj%^^M#{Wh(OwIebqenaQ!t58t zX4*3~cORWkT4p-Ir_1U}_*QOH!w=2h?7s82PLC&Q^V(!S2DP;4yeq(8-L^^5^ifr= za~ci=jpQCJ>Hfosnu}8{Wpm@F&&%E;*MvS(Nj=QM*4es;x7ZU%3Mn)QPZ^*>B9E6L zhx-~eXHdp)Y&B>`a-Dgul@#fDxH zkh{Rd(Z|4Y#c$J3eiu|8T2O$TjaATtXWOeuA(Rw&_E-SVG*wCp;noqfY?MU+NkN`k zC}24TjHpAZMlm;o)w}_JV|7oJ@x#U4V_;xYo*Dv+5K{#dAx#dUq^dKK2?XztEC9F@ zzvhRuPcz#vJ^=v|wHwNiIq)Ae(p7|#H8DP3T9)hbia8n(^G2^^beUn4kYouEm=cgS zf4+0?_s64*^3_x<8x@etk6M`X$Co((I+6>^1|hD=B=U~PC(|X)VV9_KH7XOLrnV|l&Jae!Rg5b zAG8V=ktSd{r?;gY=2+7xF#D89n*P2S*z(RBz|N~q@V?;kLtbbw;W&vBMUqZkyMkzQ zoXuorL>p=sS?du{r`>&hUjYI6EJ+p-K!86U?jH)!(B6AzmB`MZp7%m%x;Z{tSUkf~ z*;JVRz&eUXYSe?#r<5l*^{ zTpFqFTngDxg5J6D2CIeXU7U@6KnK0AB{SXob*(LQ7wL9kFPuyyWy?@WmGJnjv~9BarvjSg?{Ni@FSMeMia^~psy75l6JxS{7pD1QRK>keh)`D=l8x;tM-dryYN zm!8PctE~Bawj8lp10Qd^PrDQ7TFt2^syiPho1AOiVew2pfyCUpV`R4f#6$k|94Elo z&&)*Wsx=Sm2P~4er|7IPohi3jqGHwHIz2B^CQV)9{`upJ(|YH&w`-xUcd0|}?=lWQ zU?Ij^rSZG`YH5+nd2aA7<&q}}iwSEKn=)R(sjJW9knUmtUvu*c&=szA-#8D{qktr* z+gNDP_yrhK%zdp5l1`i#2F&zXJl~STQJ=ykQ_jK6l%35#YGmQj`XM(*61_^pdS05~ zUue|~j#PN}(sP7Ri#ILo6OE4DWET+_Bn_Sm&QO1sJT#nl%o}lfr?j{xFLaHB(dK3p zqHsb!ymxUV?}?Xk3H z`Gv*SE}NURrZ}5-69TA+GKSZ6eV!@Cj&#rT+i!5XKj8aV;Sm}jKM7w;)eF*O)qHiL zT8bDg2mk^+tNl=s$G}ukGMz^Nf(V30MVdX0g&`t-NWi6iCIi&!%j?rh&LY7@PXPnLr0Z(V&@lc?*y>+gq$Xdv~&=T^3lfJIy&H6oD z4(CQsl`Q3Op9=j?5|2bYB8P`7EdbtSdqM>lJgu!ZbA1rMWd7q_1T>hGq0ax_{kB&w zTQYnNzN5XzcV!;d;OQczms;6x=GKR?V|xLF!~3qKp9J&)P{Im0N?-N}E}`5ri^Eyl z0JlwVsZvW--6jFPPLp`PUnU{7vAB5wNL>)+=1v!(izHISAP=GivG$uU+Fy0kH9xu> z$PRiU)EQrmVs=nNrI@LyIA#UV>OH_vCQFDcf-myudQI7E`kPlXt!9Jr;cm z;(Q6gHUnS6B?}nGR$IPkRBn;!Ne!gtu_)YhyDbrXe?e-HpbT$onX>(rlaRN7eUs0c zxuJZRUZuMzT4poJk75wH&K*=tnuTQUj&m*ZEa%Vr&-1JcjPpD!u?%yNW<#RHoCnLu zZ#z0q)u{&Y>dX0O6+OKSP^5Kse0d;I)x@aFOJ6p2rJ0G5De)}+lFxRF>= z(_Rj^K1NuYe>_#JEJDc;mo?M<8>X~ZqbkJf^lN-=H1b?eP4k)G;k-Wye;9r`2q_GW zd1^!>xLb0u^NYb!sWC-cHEwA4+^uViWM*p54;RzGf(YXv!-DW5yRRIhi=r@|<=EuExD40D?%-Pf}4kTayI>-p=A0-aQ(IjWqn-ZJ4 zLb^nj8mpM6E8GCo_c+MG*_s7-tE;O_+Qpf&)G8Tkm%itoEqgy*{pL|G2!U(fJ?pG) z)DlSUnQI&p__lG%9=*>U9CC4GHwkH4Ojq)dGN0In8e>6F7=R( zIhz^*PN_bJEOe$E-Gy*d7f1lMMTMHBhEF0=h8 zk&K&37guQpt|62ZWdMGflhfApT!TFUU1EGd0BVY2#$6S$wY9x3kajSt>8hgtrc!3_ z$F9s=)e_1CYKI}S+1ptiXwqR;5qs8F_p7-4^%R9BVtLn%QOZ5O*ED!T)!poR5xr+$ zKMN7|b`1xu&7aG9EEE(}`em!c_NCAKsrS!{h_#(rUt9?e1}H08W0=uCdlET+^~6xv z^{5sAXt+PPclpo=6MTXi6&N|UJr-*y@LFHTA@-ZE=FOtEitLkMy0|`qTN8Sk_{EJK zm$u-f(yJSfOu!GHYAw6X4ZOmA{+{706XN-HK!0)$o(xg#OKf6D6Qx`DvlI{+WtnDe5Kfs{~5+s+R;LXP%?`cWDjAwbUz zv1MH5vv2$=?@2~}q13)F)V!LTDE6%;tfdse)C1Hi2|~7P+X08rtuaM)3>c3CCAz_* z`dY#diH>9dOw!;yUBSamb9>^B+7Cr$jUAboE?`lTbt0)JzF9!m83U_?Dvdlt`BG89 zrFG{FonX9MxGH0@Tp0|M$qhe*2xoP9fE!&HH{~~1cg`5pb6o;Q`y=I6!jG}H%Z4s` zDNB|DyY;1R&31@{#hF!-rG0v$gVdBjvw*fRQ={GHg8WDq#D|+kg8H1+9U!1Fp31*R z&|We*{Dm)v1Za7X@vuK*At_^ayWNd2nt5UgsL!7e2T})7co**hIcw5%Ep&pTWzBi8 zf&Dg#h!DYeVYhZqR($uc7B4NqY4$sv+Tjv1lkLx_?rzT379&qbbZ{noCT~dnHxBUk1zWEnQV&6S$QhU1pf7@4#siT zNCvsA>?dG}(HdE!_VxiWNT_LjpmF>?K~tLK(8x33^mdV|AtRONCi02SAxQGcuZ&(NpGy zJCNQf<+qMccAd*058x&DHq;re3nYiMB&DCfnAkQvM(DfKdP5J&YW`{XcAmqAH6d+} zaAW_y!yx2gT&1i5b`9s{DxqgZ^7VT=o1MqeRCkZ}2*~srB{K1ic?I z9;;zK4HR5P$JlrKiYyV1j@$GjiAlmn@0wBJ3Bu>pNkGkyxKD2^k=@oe-gKlq_vkXK zyl=e5?e_>Jx#s-TCP04jbSb)C2&E?Ba{wl8wr~s& zB7Q z(d;SE^d3lWx`4wc!Y9IBAyhmTZ`D#|jxxj62XG=N-`w6CvOOtXCmc*w$msaUA@fI6*zsm_3pl-QBQhGg`liUgx4(^-y))S+z`!V`bjt$$`r? z_v?w3lbz|WCcsFwi65yOebSF9DmxO!f@u=})? zSog;aRp%MjFLdkqjLeLr;F+GFN^d#=addE~_B(p~1R0rsre=YZA5y!-ruNM(+^@qZ zT$MB>oQ~&;(woaud1meBI1ngblbN18<(CNf5j?!njit$jr6uv|KqBRI6=p)3%MXS+ zp2^-)Kxw<;DGp8hZ=oeZSN42dYwd;;|nl`Q+@%#9XHAA$`+(`w90^t>?zPiL5R zOkX=zv3H`CMr1-;*;RqU=0i7qfc~KkINV!<67p=lAa_0aEB`cHJL9V+L3kSo)Ju>s z(G+X=Ax&9-sJ(Y>u0EU=ndke6-@%|QQB)>|l@e&;4R~?m`RHhE==PS^bA`tdLLRHR zYhj%k>Pz#hK(Cs35SThbz{z4};MM)umC@ScyK^5(Y=_JeTnH)>zGU$A&7U0^86Mnn zQTkZKt;Vhue!cdwtD6;hYx73O@W)(!kk{7ss{X(@r|a@K$s@U_Tip?yw<+oI2Ksrc zTC{H=*tBm=@;iMxVn2zfd8*memJ|fC=uQhQI-^dn{8Zv|`zzuuYppwD&+npM7*SrO z;E&6x+hiOjNNs&gu;=hxnNCmCaq)A=sHB{JbIm>1?QxRSyYZ-!{Hd;-lL_2y?aA^z zLMI{I)0Q!A!6}YXOBQVx)=HhetcSjule`(P#-yI%ha}!2uVTO1M1Mt0-VZrLdX>_z_}ZY-bGXCHk~x3l<0cEe$g$^_!1rGphW4eYWbsb(*pRRC;eiS!9mnP4 zox1N!6XyY0k=!_>i1+rDDbK04fn=8S($4C#sgnzH)=ajR!$m%A`J%>Q%W*{UMh)%d z*7UA-5*ohfPnbBr4cxreuitQ456m6yhqQ``lrI9qXZNVN-5jZrGp`5?-@MTqwrY%G zhWYGXj$zZGimC7KKf{;vxYln9H+fbgGrNmg8bQ&JJ@kd^2xzi74yl@%AqJGpg2ln6d~kr!DFEOG|56E4(PSZOn{Z9j~BmT ztl_)MZ==pa8&xj_KjODfw%nqDc@7XCk8P=MA7r%q^6nD1nerKM9Ccfglj)<^j$pg7 z8q{a_SliA#TTi|rJ#ThTi09p-5#>r3W(H^KE3LR!%#O{IoYcS1O)0Qq5tLV5KgJ#_ z_x7O(E>MIE17`^)T`MR~Q>*04H)`~gT6t(NlJ5rd7zrCiD7Ea82)`rj%pe9^^hzH= zBHM-8C)_u-w>O{!rWgHsSxix!3G|Hm<40^ta;?_$v>)YV+Ni z>`;4$gOD%YKYOp;`iR+K9Hn<|hv~F>b&`y*19FtvvB3R$k4{ zqWcnY7AXCP@mlxMIecnqoQt#|wxEMbZ~) zcV;_ z>e)U@mmR@ZVl}mx5watSmY<9v1o`Nx%?QH%jbLw0OpThyPdJ}RI-9eRDTxOvvC#+) zD7Y}Tup#Kl{OPeapR0Db9vDyl^x`KX0y4I{K&pu!;s_*|Y@Fg3iodL~627!2DPkd4 zB?RXOelcMVSQ7)yy*JA8JARt&Yf8-~`dt8Zz;#}JT~x1+kXDZ+gJ}TeNu#$BIA{25 zB(iV5s)`|pUTHAFd2-n;vP86mcBI^6ZGF*HPfu_6IDP+k?4#VubYm&Kv*F=*R z3NH~e7q6dJM42+HW$4M;!P1=fj?Jq$dNByV(o|_l2*F&;E8mRGD0)1vCG^Gd=cCFC z^sG;cC_wM#_gu;Ad4s^3>hGz0pud|BtR!5+&IA`hQ z;Xu7i4B7(&($q=??jD6qK#6j6UIlJOQz2lkn=dOry7OiZ+@4s9T@vWkFr7*H1=G5> z??596K)vIKi_?R22$zN27LNdLLWsR~p3QZh)#~Z%Tco{X*`0moW4VU|(A#w~hDH7E z-f-*iXiGdFr(qo-7{q7Q<9jWhSJwTb`5{m;wTt(V!$NJ-WKXU!wVtfQB@SQ955~%JOkRY3>A01%Eew)uDisRgVqu!eY1~U_KB_5)%u#OQ`N(B@BV990neGLk`FYBTK8@vYq*L7;EQc4m!A@;yr- zC=gXFHx-6=oa8(T@cBwPxs!&BWq@g7$_(=&td;qTB-uUzp_M zNp^@l4_jW%deIxuILQykTO@M{UA;m|4Y_=Jom8jq!=%U23s<8kSWdOnyeHbaC*lyv zG(s0|40CoJItB%;pip&}1QO-H=-F*8)?CP`n*4r z0_BpB2E!mA%{NhY)46D>=Xmkz6sK(<@hZ*UioU)fe9rM}m>-hbqOqg|gllA#N)r#S z&jy;J{ASNqne^pZ0e@?S$~f{Lj{d4py&3g8ST?2mx1k8C~I zxT5VT$iVAOrcy;4co_G+_ZQnmp7DNO!^JI}qbCGwH5Qb$Q1C6AL)FqhT&C`KSXeWz z&Cx5DqO8yFaWeqLwCdf8KCUix(P1g+8X~8ike<;aDMY(w=RuFK-^Y&nr(&H1mxo>? zKOb&Syi|6<4L%YU&||mV9ePOH`;mx_HyA{D<%4=FYS4STE$S<@p3=#-6vzvEK8)&q zbXB*%FIhKlPKsRAn}Q*>J(%ZmM9t^ohw-=SkZI)4zWUago}#pJBJxlVpNj-cv)CYP zDL2%M(bOZTAS<|MZE+|^*lRNp@M{|RM)+Mhdab=U+6v8wo`S)Ek;dj6jCcMfz`(fl45f!&O(uR;$_PQPC*!A zt53*vZP&UGp|pnFxhvGq;TEXav$poGyq{jW_|fOySHuabFyl`WWu7aCDLYK7c7{FR zz_kkcv0Y$B;zyx{^Do;G5l3-6UKyYEu#4xjrQv(1^Wu8SD0@_;9xfi?A*8IZu<-RV zwaa(>5D~Lyp0D}hTLN@c9xwi0HCwS!_$3^xu1v~3Ti$CAvXCV)@*{c|yrq)vD?vdz z=`O<_-Tbl4q**DIt&rwN?KE-Foj#uhw@lASQ!p3orB?^Q-}7U{izAJ1uHyiNU4L)R z8nKw5C$HK2@mA>Mrko!VDSfT3Q-0E|BG?dbX$P-qZ=%sB$zX-T4=F#XSg%|uq){V6KI&bT%3exBwxuaNxOge%Tg?97UZeY#CI%uSA#1IdFiOzc8^V(XurmZw!P;c{<)i39^4x`wp#|?>< zR#`Ww!TG&+t@sbW252jv4FnW^ePlRZAIQTleEDE>gRR&qY6Yi~+Tm&gO^kGci+wXB zi~yW}CtTab<}M3k&XSOBPtTL*5@6Q&*O9nk0O8@uw|HC`(RucaL2bw#U7gKDcjQF~ zxGSeKg57w5ijQ!T{c$~ELa&Tz0!=A9OKBVuR6;A+#oCJ)UFPIA?>JP#CURv)Bk${i zGKZY{MUzvI%f+>{G`RUxAM^m4S;5)fd1kO#^i;jpG6@b4-+Ada@<5F{M>{Ea^vT#n z%EID=p@`;rSd7)?N^&(iS?RcQVewSs@$gM+#af4{%ko{F%ZR^S7E%u_u5`r7%n0_4Y;xcy6#l-B#$hDQhGyxQ?TT`KtUC zZ;BW3RnUOtO?V0v#JtOTe%H+NZXZ)t9WL`_v5OER4{-jhS5FEO$;ysib~Z>?JX(Mpu~a4W=(XzwEtsoSt9b?Jr7%pRK8pqj1_ERa zJ(ZI!t_@VUg!;I2w?J;@I?`NFplw}SFkN}A7V?tubvuHi>hvH5=lTc5)!JyCP2O-~ zVvwd%uG43Fsj%UC!-6=PFx^UzwY$|RKtrf~#M{*Pd`GLUV;+=7?AfJ6OTF^6+LP~Y zL*=ViOSew1%Tiq+_eZko_beYT*3>#L!;}J*E5$*Pw&xq%CxUanAKUA%VAv`-a&`?8 zMF4VQuNX;61T#?;Owu8dv_O?T&X4jHtCf`AbfGgG5wUaUu|%0c0d4-oTcWi-@`a71 z=Q4;~g%ks`4`tM#&^lI@yK{vG#phpMGgQ}gsqmBJ^a&(ZV|`c~d&R{<_4E|f1eMEq z1Em170g6{zMf11bmE$G3&J})!nvqTOnBSp1DGi@n{u+W3#Y;Ed~fXEJ>2doJ|37gU6t%6xcqq_ zo}Hx&CCbZEMMV%3lhyNp$MTe(npIV^C_~+8uW}YGo$6}Q!6$yzAlD?f zF}3abHTrtuBx7lpOs$t-+50^U^Y!v3Im05k1xVS$NE>}r7z1p|=Q1HUu!3k}i!guZ zFy#rOrVt{OsB?sDR$b>hetpCJlsCEU$XtsZf}0{PXIh_#OboZVR9zh?rS_k&j9HwY zXs~i*Ivha+&ewzhwq?rhM7W-3Y%rrjb?O-5;kmw|&{hE>s6>xdL06Xc68DTF@D2m3 z^j*jUplwsH;GIIDQBxJ0PO1Mx9?QiBN&qQyTB5qy^r?CyJ|_Yu zd!0L56PzI8U6bl%x-ivI&jDz&zV;dw%-dBYK~p0=?6}R%t)OaD?~VG=u9hzkIK1#L z+@-8iBz_`b%abs;wtx}}ThgI8^>pS+WMk)-M4+J??h|VBDbc3&P2Q88T(i}jsdeTX zDX8&Ymi5eP!=Tk9?f$^+dFJb>pP;0@q(;sQZ{u!AuO~6j7z8~YIQG&HsLs$mHxx$d z)B&~5usD8-!Qhh2{2@g{V<7+07Wt%a9NP=fajAjlQ=!3Nrl?oN8C;NNe-B;_i+c7r zf(s%I8xV@QE~z9soTCR zI5JT%k_6GWtCXH!XO4orZsFXztoYH-jni`D>XTTUT27?TB`-FWvJ;90o?p1e5zQ!K z&fxSXuWn3^thQ(`Jejk$iXEOJ_s1Cz!oLf=_W1%4aSLZvr1)A8bF3e_$MpimH#3D4 zX=-hp4Uo>AZv|Sd?zSO{_c*t7X{aGa8Ie7cz#H5C&nJDBo>An$@4xAhtLd0@kxk&4u8jWPUfE#!CsHUNOSHQ-l?sngk~59+JQ=0LbCitA(~&;)qw(jb5SepF z!Bjx|HJHls^OC7z1gjeX@DiCD3$BjlSz8LT!ja0Jw{GR`8xZyHv4LnyMd#*GEktz4AS#>)uB$@?7hNE!r6+5Gysoqm^4e`~Pr zF15A=Z}R)#Lm(nI(|66H%m%r7jI<(d{$c;u+*t=iy}j#RP#LKKL8M!xMLHw|1SF(G z5Cv(F5>Pq^MY_AYJ0%4K32AA80cR+Yl&-r5b)S9C{q23vpVxmZ<{N9h>s@QT>-juG z%0(-FqSt$0p=p9(B6lE##=Ra#cucR^rQ0()sDQfJ$kOp1wAzQ7)N2Fx6eHg3xPMAh@C&kDL#q3N{L3OSiTUv5h`Qgxf4qp1B+yFhe}& z@$MP)Zc)$TNhj64)PG?^PFpgW@^(XFj@CWrXZV6hy-QZj?!E(7lUoG!Z8E@bgX4Qb z8*a8liHq1I%S25f6xGiGx_&cMUreDg{;lP-;2wR;x`BR>yUp|7pvirS8a$z6kJ1f@ zoBMppAfUZhaYDfPrMM>k^xVc7%=KXs6X%@8(te=3mdSo9r{V49j*w>7TRgYcvJCTQ zQo%gb?8>MR76$t;peIUi9+8Dn*^2=o{W((WES#v_nMU0(!J}5g7WC9oFAvm@TS`{% z+!S8RA_wW&l4nMGZw;;8q!!VaNK8dVJ|)9iXvClsoc)Ug#&LKVv6nTaYRZoNWzumDCItgGw>EL%q1&;^p;XogNIw|4K^8z^e zH}A(Dc~>EiaMZddQ9|4C4|(u3MB;U(bW2-XaA@MfA8IP!>@cD*nI8`7Qx6}5)2k>B zJy9_K@wrEPi_du9TvIoy5f^E2u)V8YVU)yHd0vkEXlcPxn8+>@;}X9qA0rAU)`<3K zISubiY&t%-s&c8enVSuTr>Vz&l+7K58_I&CruR~|gJBX!Vp>>GX>`JL(?>R0DM>)l z85srF|Ebf13mILe4qrVW9Tgql?g%RfMg%;XoLj>$e$&?1paJ9j)n?a&Av$>_Es7U% zG6f2JiWB0A73eKN&$GtazHjZ+4~H8ZZ9Ie)gUR_1g2ZZ4X{K#c`p}KO4^1|!T6&7} z+23Um=u+%7b|os&sm21|8rRs5flHPKj`<>z`Ou(p?1_&AjcLk-z3ws{Y@ji$op}Jw zJ4?2}3Xr|rD;5y?1ZY&M0XeWp@d$6B)-`YmJnsd{Ehv#^G(bPd1@er}X#|`UYl1)i zWmiBWz%*Am5g|W}B|YRsGv=hvE-V2QOzwu4T3hGfG*84zY<8S5Af6`&Xf@)(iIj27 zYPat`oTxNa@(944eiHU{tt?{q`}j`viV9fPkjPF|nYZ$N1bo}#eHDH}P9SHF`1IoH zeA>F{d7x!Z8Wd}l%!EBzrD9MsLK&!5OrSclm*SntQO_)nSrjj3oFekjc2Hrb-54m( za4FO)JW+y9rnzghW4! zWZMl;fmF7O4NTT@#F>N{NCpw(b{gefXvH0T_{C zBX>bG79fw31g2o}K;1;fP(yU8+~s50!K~+|SSI1=(8L;jSn-uI|k0 zPRoz!_oM*vqBUGBx-F%Dur2Cw;)SjqVKCSIy(>y81tt_^9u;AG_oRsFX(A#C)kq|{ znMyC96pj1vJE*PNQ8k&tLR|iHqT**Q=&a-HpT>9_GK$>>&YpHfbMtcn>~s#d9I`kB z+f3mhYv8B6+n~#^N1HH;vUHJ+o!9y{knF*oYY%uiBL|NsuT9PVJtxa@wv5(?Q ztN2(#wLD+?gQ1AV=Y?aXA6PJL%Ro&4RcTc(UAR4miwQ-I&5I72O3z>l`ro|6e^+!u zqlBUZ(!CoXIfqW^rsvmDdqba%IdPz$+l0?rspqQ@YgaCHe(uhE{vwuYR*g9AaehUd zP(NWqO|i^y7N6O4Hb=p@weLWxSh_j8DUbCKRiKH|{P|3|t7jC;6IuyppmUTg#L&2F zzGs)EXy_-{Jo~uGfvVZ#)F)v#A!GbQ_&aJbG>m;~yiaad%U!22u3UWvd(nqMB5X$h z3LnOrA6c(LCX4cn_+-NbGb!&pJG`p#DpnWOObN#BzMnxI#ZtYLxj*UNo2EoOT18MR zg~RLnUXo%TmQoZ`Rn(mtWERM^bE~hUAy`kzg$#yN{;+=#y+L24N$?h&eWE=jD z8*{C$zIe@UhdyAZXfSmUe{h22#&E^`5bf356~jRO7A1R?=&;?L5{u(A#lk{z1U;JO z(+5@1=iCsF>E_l6_lb|RUH|;DXx8P5 z<>bb&bMs^2apE1VANSjQF^6jM$ya$Sq5EUWPC6JE$GDV%O4Oq8jrHPk%Wr514)q`o z;{GIF$lKtQfTvH!pU?EX5wJfc)#OMf*G!SDNfMr!B^-x)F5K;O*^``W%?zh^6#cpK zh2j-?Eh4SrWuKh@5R4G!aI}8c;<#(_nEIKL|F9*i>Ieq|I6NY%c0Q(6pc;qt8wYrK z<6~SwipB#BXr=i)MGbmUPC*@bt5MB3s)4TX>c|Ef3)zZzrurGenA;!OMvrg)@pl3LO;4Rg5DA2i1aAm9<2CVEQ9dy) z1xAV2pszn{djAl7z_qL6xQ%V_Q7IH%@W&%|bhS^e3sYjmhtFU@a3kHms-$qp-E5bqh>Fl&@29{;pmDvWp;{s$t9#I~iv)TaV?7ZHj`ZE~?b0o~%a13->Rj(J zS;kjb4~SzxjvcH+D(+|q;24e96Jg)&Grbj}TL<*?@!QdZ)dR|B+D!!vLv_ygL`Q~_ z;;^h#xafhfHhDSFRm!ni>K4^y!xGk=lC! zNH9_17{WNksIr($T^b%~LjmP;*uOs`&3wH12X?kOCX8JnWXE+ti4X9PtfndY9^MQle z2&s%Bg~VqP&TvM@XJA94RT_v#Ev7%TeK^swYx`LHf1JYf8pT@I&>cJW+{m{z8pjlM z9gLD!6v)#&zorLlkkoX~Iq;g?0(Q4$e?iMToy0G?i+|73fb--MNkEwl6sV$DIHQ^b zxoc1hG5gJ*{_SSZ_Bq&eo3MfEYO%c9>Klu$fGZYo2^hnMB%j+!p+U$+r^9|Qbd@lM zQqh=ve*Dnz#lSrL7kH0-4(uE#0GkdZBiNTcScwNZ0nAaZKdK0YBvvis^GSxoX@C;9 z`MGjQJPZdMg?K`cPvtWkBe`dN8|QP0#;tWOGX%y+g!VT%XG%&)Yyv+QU^g3bdOcIopcH`W&B(f)`a7@j6uA(iM4yfywPfwz{wU$C?W9p0M7L%+dFy2T46CI=Au z+G=NW0kH5^RkV8Muh7D#c|9RxwoI;&*uu9Ks#U6c>0X*q!<>}ph>iY0jlkvO;0GUTVd6|S}yZEV7>N7t;#G$dnZVJel)4bQ-tKErCy@%FC#L<-CgZ>?<% zmzC4FUv6S5R|cr)P%a=<7IQGT{*BXQfTzIHl5E4OEr2R4j>jDx3&GwspEgkSa-!Uo z_2$4c?~ncjh95RP!2Bti^C<4k>Uk>Vbd|V$9lvG2O`Zw8mhRCK-JbQ{x8ut~TJ{oq zMS=&Gt>Dm=&eL25XZ;>d@G5U>IibwpdnJgjD4_5;QUb3)CR1QwdGuix)^KQNy0`IF zkRtddFn}70ApHz*$+QP;j5H)PF;Y5*&sivRD@}0Me*93WvDA+A{qlEVb%LPTu>bKZCDK5EqjA~~>xvrMZsSmYe!>MgPpWU_PvTI$BS!Yc z+}FFwZ?jQei+#Zrv%;Gta(g;u!rP4O;5aI79TkD7ti z8X0?hD-PHi%H489|Lwuxm2X=H)Q|e-J9~S4%wyFqa~Xf^+y1zzwE~H`Y$zrtm-%j4 zMNB`_+rZUoiHrRM+0qt}f*+*#`k&2IvLX6dZz&qI$MRJStk2-0!(3}#uP_juxH{J> zSf01Tj~(#=*ETU}I+)zan6IElpna4A`;A@Ze66=|o>;5pZ}oT>N7LN>szQ?O!5f&W zO#s@yU#QO(vX|JXdkvqqW^()6Ex_oU-9j3aZEZ!$bj8s|cKZcA%$JD;D;Q1-S^48% z5T-07;$ftGmpWM9Q~;b-;SFrDAQw!utxVtmsojW0i!W>MTVcLzkMAFPd>=+R|>yawcX zZX5AAy*l?gd6YR4fE?!uAgK0HxpMiV4;oNNuUNNfNr3(K%?o_lc)<%)EHevPvI8(6 z!1YfB*_=<%j)L@o(dYG7cKIbgDh%37v>ma)U1JcR$8F~Dm*(2770hdSKU44^o29x9 zS8SDUP-?sY>jjOhu~p;+l$_)Bci;mglD}i@**1$H3^goc)iGOJySM<%bwenC0YLO| zRTVb@VXY|`dI$W~Ca|1rGmh>7z*fZI&Bvgy z?gPts!`>=BMB!gA0>;^{KRm7Gi2Uh2aP-c=&2YK(lA5~Oolw*UN4;N7o<$p=8YmXb z-$TMy8B+tTQ^LS(cTjmT1}9d|cCbv^(*g^{7)b@Xg9{6SpLrkyHh{}=JXYYL1D;>G ztRAjy#{eotzwrIP3{nOw47w$2R4~mK(^TyIqaPRg5wWx0WQAr}{CY+yX4EqRXT=P9 zaCHaZGdNcA$G;HFNi&2Ud8wV3Io$@UB~TbP3n2uwxS`j5P$k_pNWsz5Fugqhi58p~dS1}3V#Ose3;fFm14Wnrcb?yDK%7B6TLcoVqM?)zA}o43s|U5-=V7+J z@%e$RviM75HZb7^86+s*XcZ@XFv5imdjAXKzZ*pWAcj-}yk|jSQZ(TFq0rmEtPY|^ zO2jgNl|;;Q?pARt_oF=|`N>$a*C(%{3jSNt!x;ypE}DCG=ga8evj$@S3)K9-yaTvw zZO_h>>Kyh9lQd5`jTz+diLIp!P?%K5dOY0ka2R-KEd{?f_mC{E^9Arq#wpygVvcqf zZ;}DHl(5iPAn1TK!0%>)rx^tn38nwRmnnh00RhStKpGep6s)qCg8U!t4YPCk$rwYl zJc?;-w-vV$^6|nIrsPEARc9p;dp))c&N@}y+Ef;tJFV=?1-PJ%_rOsg? zegu$ktaoJZANrsbbg{iBK-H?4Cg}Q`?YEfhmxQg z_UTOZmyDSkKfdLLc4>S>^K(r0YO)dnsuVQqQHvcr2hV{d&cGq$Sqg2z>+iz{$4~E1 z@zg}DlB|tV=c{Fl5A?g=%8reAhnjVnUm94MU-O9DU}_cL;k{9PC3ck(UTYYV*H`%& z<$l}2|5s1g+S=AN>9_i@_4oHjOtZ+efn#-Xi=O11oZRrga!ZxX+}RQ+Y9W^w5@Jw} zE{CMp&tZF@`ryf;2J_0c*ewev;J!mzb9HpOE-q`hJW>WeTXVgis@WHah8NoX@HUgV zuR@?dVCU)B?#{4%;YgGX4AsCx8E1zZ`8Rx;vEGA+qkT?) zv+%cB=flX`ec8YO7okN64I$w~hd?PF+y7i1>MXe8S|`W!$DS4h0ykaXTIF_bzJg5r z&3H`^6(bJZ%&`Ek>5ujU;>Pbfz~yc15F4!0?uQf!a@x=G6g_UZq1Wsol}z?(sPxnQ zkD=7mu6rA8ZOEOM3~;W36AdDINT~SNx-HNYv~G-_B|us1NKq2d#?B+Z#|k(f30SBX`?p;UG-&%$E_^!JB9kU@7@%*vxr;LGS|BZX z)`G?N!VVF}Ste^?7$L?+*hdk>M%gMJ+1_oyMerr!6U!>=_A-+yGks@2vhTTA*dRkD zaEmd%q2{TALY*$AoN#)X5DRZ_?|UaFCutZo!Vb&$y1Kghrl$OdfMIB2z`mvSUtX&q zXYdT3Xo68??4XgY{vuJ3#P;^P_Ew-aFc|Y$nRxFA>8GfFSDmP7h;UNES?0YaSh*w} z+Hx<`BU##Pq=*tl(Z)wE+J*61oLu`-ID_9uRt@jPtBb8hI2yZ4G#F4|V2 zIYRJouEqWM?QczT-TSe(zeUMM#!rA~3ooZX!FTrQF|F$uFy*tO(c!ZSrb?#s;23Nb zpTp#)KS<_#r4z-bNfw!-1V@&+y{_3Kx!cI03J{JW!D2ov81o# z;A3NyjR^<|^T+$4cOdgH;je-O8q2q0nHzr06Kc!llggx5|jIG{f(C zbPNO19@uGew7YV~&+=YfyidA>Nvo68ymv-mcMYClD zjHjW7Gr;Pua!aj~?m*?P+oyqd@Ip{ufAyJoexm~`7JexV6r4Hc!C~;>5~v1A2Hq|{ znDx;rc_tnFR>SuDusaSlx9MIwMw9~_rT6tFy!9x8-0DG_2t(&ycd}_IN5b>SVrAoYZJ)ltK7B~QEuiGKMv$ z;X9q(Y3#(6+(t0B1y2WOT)KqsjrxuN_|hb{DJbIZ**PGS_muiNPQHC+vdNyji0N=?|(3Y>i9Xf3Z2AyC4#P`D(RcYWPI-Kv|($cv3sKWp*|QTn;j zF12%4&t<_p({ejG=pq6U1(eUFng09A%l_@>d9(BzfE{8l&CBcB_0+s8li;+Ze;Pk4 ziij=HOHD0ky}S`}vfsvl{UxELSXHUdO;h8?H2Gw>(@sn+oziM`(_OVbCxh!Hj0opg6NsY*gqVU%%0K?Iv)P0XH5 zG%`=Wgv08)Qh4sz4PG;uld?q4yZVGsybFq8$n28Tr0NnE!A@4QD+8+TjXT;Eh~Wp} zFaXc7O;*3q(h@0td8G2FxAhQPPq{Y$Ycy%{u)r!2=hf06+GpeP1Q?P8KBfj*U;BwQq0oMU|LQ8Y{ogNFvlk>vDLi(jUU3ys_4jmfd!Ll{6 z?sh$#Hvd6fhJkrcmg__pol~QZOi+pAv+J+T$KR3tFZvgWoKexx z;C1}g8Eo!i+fDik6u(^oQBEMSIKUocxz4%J?E2+TX6ylHrc{*6yD2Mob&-fgD6^n#4(SxBGo3it9LSyISj}nQt)C zL3TUT^$1)vtm{hrR$p1+xnCs}G(n#|x_Rp4+*IySDY4oa#JNWp1}oDHNa^=`Ac&1>;qaWO63Cr=7r zuNA5HCGv)@ow%+Y(dW8s?A~)jl&yv(+fStz>}g27=CM9Fblbm!6p@-JdHNdh)Q?Y$ zmzTGPFn#v;=65|kVf%&d*3SGbs%octW{Rb51LUrG>$Wc!OEh`=(Ev2JJP;jF7Ni8w3!h3m~ z^C)q6m!?u|6*w6>0srIRVqrI>!SKuBDiuaIerJSqdqt>A+*FO#6E3Gsc+kp7ZfYhZu}Otd zDMhyl*du6sA1iL?8)FND)pQ+~22u!%ux_k~Z>*4Qi0HbtDS6=%x24i*UGg3zxDO@s z?~e(R!03uVlTLV~eEmpC^E}+INH`4Ua+8%2ndZmB&0Xp6!3(W8#c9DGM`ZbP$m$P8 zVe7AT1wViOtmf-Ta~$mwublj(hAZe~ViE3Wce+s+{;N2v+f@W7LH|T1%H$}u{pbwVD`C{y9V>|Lt>C{}j7ef_Z+0Bbne%p8_eOQm=D^W~8~~9YzQO1rz_D-wyh3pBwzg z00T`@q8J)L5k<`bnnn6EK03bFr7IGOpxQ|Mnm z_k;_Jltvzd#GFrDYFSMCROWXQDFQKFCnSREfX4s31HjyT_xKJ-K68W)i2Hv}KFk05 zx&Oa9j_);hvygptPkmkS$T($8pu9-Ko2mM<%e&uYj#GJ%fSk(n@$tDeGOjY7DU+3<}P<>C67JbQ1nRRv<{+}PCZh_wN)ZL@rm_Ts33lBdscD|?2EF#`lr{*SgvnCs@ z`yy(1TtfE-5sML0RgU(b`lp?U`uX<_dqi4Vhv=HxOQZ>oE3~|SZfpTY5yZ-BoZgUxlA%-Dl0L!4*JFhWJbe3W#E_yMVni!sYM8rr&bX_UaLZ$J z^7gK?2C|pl#tm_2Bt7y|{zt3D=R%&-yMGeVrV00})h~y#va+?oq};b>_D;!OoVK;K z^=xl%8^|i*N|!z#szUB)MAZM7dQyr*IUezdT4ViiV0J+q@2e1wAju1@PG@1eyNb3k zN|I0=sMq#Ii@k7mx#Dt>mzx~Hb(6?U$4 zGK8viPke57IIH4IC1O_IS#P4X*p^O{HqNitG#?eG`#BK*cSrqoOjzLr-s5@{tjP901gW zz8ZQzS{e*%*W8y(lc!Y|#)Cwd>)h=-hDyasEfPG|C+#;};A7u5Y^wGGB{NRbB%p7( zUxEO(HypcYKAI>m3_*d7)DZ}EQGQDM2u#kZSoeITUxb<{pF)5Y?{01t%dj_55uyFGEWG>}`f> z8H-Xe^{4b9FD!I=YO=tOKw1Q=emYiSqMiJ|L=uZ>+ zo_7GNAQMESY?hEE zerYjfv{6>>^-@q_vgv8ZS@LRA5C1-;kj`nmFX%ONM!cmb%0I6TdsZyag8sfsevRiA zNFZMb|KnBJAR={@fuH*FOY+H_x8BT%y%@`K?!+6ejFL}`b^_^=bUQ2>Qt5r)9pq%mQ+T(yWHuAwU2h-soqK1ayUXG& zSCZ&|MXMJMx@;mp`QfSkV$V=$c21U_vONOM3xRGlJnkIzJl9T&j%aSG*;`J}>F%Sh zYZ)+<0!Q=Q^kIIa{p#jPmq0slquS{+20E4ZIl51=+sIq`CzzMOFIg$Y2PG2vKK}=( C1bQ+6 literal 0 HcmV?d00001 diff --git a/assets/models/gpt1-embeddings.png b/assets/models/gpt1-embeddings.png new file mode 100644 index 0000000000000000000000000000000000000000..39845ed432ad78ba01d6b3dce731002a4dd1493b GIT binary patch literal 51147 zcmeEu2V7HW_O^v0N>MrzL`4(<>4Z=OktS7|NbjLTLhnVQqI4BOnt+HPy-6>I-ivgQ zE=X@mZ{Lk14$jQ(&hF0c%zwUR{N2gDx#fM|bIx;~Q*Iv1%SjNNJbUuUks}0>w?q|> z9Kpr~KF6KF0k$qT@brQI9ko@IxOpVK1vGu+$lV}2F;zQDCnHk}=n;BOk%Le4oMQBB z!t@+$sDGRyhNgPPHhPx8j+LGzl%7+Ro`XX|UK!XIwlOd|ihpJ5%_N2Mu6WR=^~F zI8o2W2IlzVX+|&$^z6`2h3gq(o_KI~)Bz;}J&Ru+y=!V{XL9fW2nWwkXWxRF8k=CA z%ns%~_{LHXb254+wkCRpFvo-Iza9GJI$~DS1_lG}cSwK-UmV_|FnHc%_{RQ{dY@uKhNpl4x^UdV%0v9)u?tgNvO%pOk9dD9Z+pr`-sAUm*U z1GP1EIlK?E)3ZCY59k;4@IKVg^zg0)%)lIqk}#n3H_o>pDV)OU$6tQqm1#F0_WiTrG&XKTJR?lFdE8! z5HQ#RK!KZvrVjKRU}MxrSv^~nVR0OM0qE1=@9Y6QrsueM3##}141F8SmBMy*0H&D2 zzWELgwnGT;PpOTqoej(!dPs4=1`w#e(JvLsP!9?*`r{SqyWRYL3dPON!o|VE1Lo!i zA8ZeR3JoaSztlD!2n#O{7biCay@ecHa9H>LSZqNL=m*t9VcH=jff@q-80|HzU{(O8 z90rp=7Bnz2wuRZ-d_y~6eYw&8A2sf82*>fw#rz8}Vgt3%vom!#d>0P3U-JRK<=#I5 zl|0N8aPi;W5+_D)&}sxhs}bfwc6v6(P&@QRzs=uZp7qV^e8%vt3yyF4zqF8v-yrvKjIh$-42~E2eosA*_dO#`T6-j)75_u(0IW-oOSa9RG7DyTk7XXdGZR7G7>J7dsor!S){l8aoRw;8uCS=2PU@UIyez!DJYaTSHZIim2cct@@DMBJX-&ulE*fQ6&>L{aeqDt!62gF@wRJ61q2fx77X&Y`PN-~Dvi zw>`{te-7>$B_F`(?>z_9=`0(SoZr}-ZboG|nJ9~fZxz^?^K>^wXyhi#jk>mR`Z z7vKX9fCIhd{vI0QEPp(6hBQMFlK}f@BOtU~u4&vHxv| zIK-5p7Wyzpv7Zk7Nw~vd9Kew0A8-I2i~jrM`H=s>5ZuFI59Zi^hhw7*00ns{PzF9h z*jU&O{jsC{2gZ3FEYiQgxPP*3yS~ zyx;#IX!40s{QsFAfK)&J`;|fiMxA~zy_>)EaTXRpl?Iit`3D(cJzMxe>Bh*^36(|u zlQ^s2G0aSEb=Xq?$pv&W`nQp^ z{}UAH*D5<{n8qCYFU1y|V3zNhF;pat#_8{B{GYZXPA*=SpOSfOTt71-G<;#~_+PdgOmG8) z&3ev&4r6WzN0l>dQIq`p1%{u|8ekX2Y04>>TKQpbqf6JdT%x z<#1HS`Ja6pC-?7i|8J$512O!TB}Z3w{u^~5@L#Z=i0LQ#0m{(M@!#hJzZs)Y=JStq z{@<$MVdnY2pyJn&>bw0MuG|7a1*VDuBty~e9t~DJXk$O*tuUnOu(!e-!{F(EHK^c0 zEAkIQ|Nobvpe6S2oAn`?W7x=HnPZOqX6yegIDeqFzv5ImxmY+kxVa(hoV?teTo4H7 zk1772Hyr#2m_87F|CAH@CDTVQJH`V3+!O^^O%84dH-v+mje`da!BoyL3_2%^?0-TDe&#ZGfIQW=V(Ve8U_)!lVXffez?}KVsKqbq zm+~-M(}PCo|A1!v$-4{x3z~sZfk8Y8$L{5?7cdD!3c{BG&j zKas!xWlc;JY5=?gXY+Sp9hEu%2L;ie`Fx=L7h=fuYrY-Aq0b3MwG96`IN$H++rhu$ z+%egL!zlg-`*w87b^b?@;QwYP{ja4IAZR-91A?HlGJh!q zLC^CLg2>>((Bqel zu}Ux_J4-#MgQ*-sm4C`L{H##%{g+C9QJ4N+ef-Ng6Lt>HA3N^haa+Gl!sILoAu)FUj7>JQX=q1!;eKJP6+0}-zY16 zyIdY>V+#DfAyDW<|02o1@RKHg4sH1%?)dN5sDDe!`)_vE0xc|tV4~2wP*5&GxisYk7cz)`_a3`Z&AN? zYR@?H{5uMG8>ye@N%!{(r>a8MGKR0yoMDyo?!?Xsx!uAi z6UH20t@>qWUZli{+CO8sT%c(4leg?stgA+=8Q?;nq${^P9?dkxu(S9IWw~7zs#-ya zi=4cF*J~tJYWW6So<0t`@Nguy$y?F(+rxs7dFCFIszge#9r#M{LbSEp3MuPv|MKu&u1UQ!oA~*=Z#>*yJpLS zg$pGQiJ&`Jw2gQ&d16ABg=tSt>4*~WCg*e6oy5mGx0fEb;bt6*AxxUQ+Vs_QMTA*s zFW20A>~`t~9WdDO+r_kPn^H=^aJiyoSj6CMhIrhjz~1F-r9||A$&z6i4$#>&{;iI`U*Evu!{!H&JZ)iptItVELC52Z^TK5}1Jb7pYu+ zehFgo)Ggx9Wk^!^*G_g|#es$Q!e)%c0!0-qF7m2e&F*1|O1OFXR7g{-5}%X3{jD)k zN!P+q>XOb_Uk>uiLVF}iSVD%m-OLfMHb|KE>WH#-PI#Vioc>UaY-nhh7_SYQ&?)zb zzMFeW0NN13GgceqX)@QFr6o$OAu}G%sry`HMOjj_%xzD7Z+yG8Vmg9NvVz)rtXiC$My%)5hjyr0SZd2K52D=uz{I@TjIdRmL!}O=+RdHJ#Z#hP^6ZA(W!_nyA+3z7%kdn(ci1On7#-t8K5e zq-4lr>#J$PBdYt%25bScW}n>>Y+gjC*XF%+-<}^>f6j~u9*K=pFg0}cMu?wGwC46k zoTa`o`0T*eRYQ*1R0_A2?!rRqw68f98B$%7x}qfa5Sf&dzdi_(*V>Kts}D-j^HTA6 zK`b$;8ip|xM8F%RL^&bg`Ay3!MoRwd=H1Lyfiwfw3m*%8MEM@~?cUu>?HW>eeL?cv zsYoL?v(MO7zGRJ0Mq&;7WSDNj+qiaflV#!ZOcQT)0Ej~gOj;QbS6z3GnQC?zy%h8V zuO(zW;7N;MvS;fRp;vjbOhPgzFLI{JV62MWur8RY+Lz2WO)bahB4*9M6C}4|)|^qw>{~4g509-4v0YYz$+M5%1V)a;zCCHC6f+VFE>g-s zn|A2iBS>L;x2}`oXYfy-!bu{r9Q%3`^StH#)vfe*ChZq93R5{LpSv)-!hxsrT$YWv z)Wq`MPu!|NrQoTSwyl~m8>5!m+DLU}k5$s1-z!KEk-fxCxV%>B#7w|QtfrJAKl*X6 zj{t}e&2S!)6xgEZ+TK9)c04D<1}nbGTLGnrFTR9~ElI7-4^RjSj$JAYN9`6ZEUm^9 zNOrnV5`&bbO`W#^1I>8Zc@}M;F=?m??DYKV1cc%8;jUyzVW{1^DHS}zh{RGX+~y9R zv)pJ1dU5hJNV%568!om$D;{c;KBtvEZpbqU9U9gAto=^ zh(TPphfO-slhJ1cCPSl>>#cxwyvqCNjA$gJ6aec3n*we;sVxSVr_#DsbjKSpY08Qe z{_-_IT=u{q&c6YGyleTvNGu38(Cfff#fCHf#HYkj_=y@gKMi`|bd|^+n9#W9 z$SFTTV_SaSNl63TffJRNAtqKVADkpn4)Z*=s0x7DdUJp#P{KeB52{TIPSvl@k&X5Ax1XNgmK%Iu)sk?6Fv8E2OAf7`IVh*V z7Yg8_gz?)_lL?>BWi=^YZv}lM1Ijp05Hi{((m|5^)5!0=6^~mqF$p1bl=S5O7f~DoxZ08LA6*@z!se^%rOI|A z+Jq#L0^lcOK|7}#iGa&KrT}XmpCXno1($bo#Uu1xJQEO%7F7uuN>rYJezvQbv8r!g zuy+ep4Ac!#W%I>cJ^c@_{-2=#BZB4{8iMJRU$iQ5s^K}Gbr~uA_@)9o+DsJR-vV^z z?A54yT^LNlc^J?~k$4yeu3^;G>^-tv>T?akH9x-7dOmQRL9yg3EJl`!2YRn#+mB|HRj=}+*yjnjUQ1Y=zc|e1)Oo3I)fk>>818G*|AG7FfaEiJ zi3VlUORIo+K9x~^bfCUK^l%DgItI`FvGOP5fbdy$tx^hJl$sn*hICDM3T7HptA>t@ zOAyKDmC%XHEj@g0fBC)-g6CMeZq<91Deg9c37Ta6@d$cVF4$SY63?Kb0L`}2MK(fW zjZXU;Io;8jCJS6{dpmeqE(A9X!X6z7UacR|U5!|6PnRAZE`hG9^4p)yd%tzZFZhxv z$JZ&IW7I0FHE#_(7?g(2ki5C}KC*|^c~UoMk1o@!Uf`1S6XN3!14Z7cuR?<;8bBdh zie_jt^&))~i*kL(ynl-id3PTneD7$ITGr`)hnWEN)d>CW&a4vz?ua`YgtoeMUbKx1 z=JKWZe0H-z3%d`;>yU#}ZLh%M{*ezsg)4e+*j+Bu>61NHy9y9j8^gvY)O5A7wdrZI znN|s~kPZ(jP;Oqme|a*$#8T+JS}Z)0We1zdJdxIWbXhj-peR9WN?COWFOlaFQ{8z- z-!yAH)=y}#hNx!V!n2#_B;9tj9BuosD07;_sO7SG6F_P2$eH(J_VFXxn|P7aoMpoui*682;(!^d#A{*J;rJ7heHaS=Ff$sY*2XYY}^|w z?9ffxCgrkf*Y17+Fqo96PRauk0tBFN`FKhIa-S@<+oe3G)qfkiWAcNGx&8?4V$>^; zg3%Fl2zzmSs`+~Ey|2@BC!x|016+5rTxVT2ns(j|=}wrvV|Sc3+FLYRb0~0SV)MR& z-ydDD5-d{cekFs>d@X9n7W}|@_THDe$nrKAoUO>TnpVi;QCmy8x;v*&)D=T?mI3HHOKjftmK=So4d~LZm-jhRr@)zK_CS|JJ%_DUWLNp zc|8!#Vi!D4^3(|gQOO#S89zBvXnnZS^@GVv$zJ1N{(Wi$0-qTC78;}oWr}m%A1#ra zitKUP+qr7GsL`Ry6$9?KR#PjD}{+A@5UMjPn4NW7S31QK4alUcm#?nAO z%!i@9ECh`A6D44nV9|G?@_UGIaB#3ae(V@u*fou{@r~ti5_V@02!wxEGXAU&A!|>>K2QlH^&L+ujQC?MGvpHl+ z`UTsW$!h}@Jzovr!D-{`>$iyR-!FM6Vy%(8_<_QbZ|x>gPmSAWU588pVIyWuKjpU_ z;&{0EG$mdF4%l?Jnz}&(fV1N1OX;!llH??xeSj!jnUshppWn#U52ddIGwanR;SIq} zdt@E>@dz7Ou5#ZxAmcYqipry??oohtqj}ywZ4CAH%-rYCiBj3P(jVYXO4}7 zvk;OTq=zNG! zi2j^&C1`1HSHrMA;<)u#O&1e3!Z*l!akMe4wazG#I!nL$gN8)?u^`&(H+)Io216tj z#fmOKk{+dYGGOrH^cxiJdkZsBim}~brj(Dn`JgK>Ffc$O=p2nkblq{v^T0UpoW4#e zc)Z){Tou8DbKioBr`1Sd@bljK`nN9u)x&{a>L}~_kRV;|zB<#D9UB|Fpzbe@1xc!Q zj#P>Pf~ERvXPMB!67RQgrw4GY@j0E^xhv!QY6zjepk1?b_=H78MMH(|+j$qwscY<5 zzQ=Q@AV|){8ZPgL>%-A4I-JbXOyhNV8U|2HhmT8p09i?=>O$xI&ST>%07AH6Mx~>I zo>^=c|4?~OfU@W3?^&Po5R)BF?l%$S*ti{uw}lEV2lCQMuE@zG_-l^kn!#ZE^uY34 zt}P4}tIsO{97Dspa+?lfQedQvz&I2(QNW=*OoFZk?qB z2u%TZ-2lMGoL66Wf6HJ3le$-jiY~8QK7o^TuwVdZSN35pj{5!-a-=Z5GPc9U)&-S3 zi#~7iYw986x9=g+)6?^GZ=|6IngWvfIc_UCGQU^GC+)O!KKE>xDN8;=9J89kTfr$=Nr%9g%b@m^f z5n{x?DYzr*TUBA$@=Wq9!_qkJX^nU8m$@OrGb=%gD2s3)!Iwt|e=3X4>ZP!sB2;ri zsZs-Km6lg;$jn#U*ko)rrOa0|FG3h%e5Brq0)a1-Vs8Jwv|~AAN5O;qh)W7?5Q-pz z?UH5Y9hvE``idh1Ju#|m7am#iO5PNUzp;a5J;DdUoi@Pv7L#8>W02RuW51`WP#U!< zjS8#pnBGb80b=_*bKGx9yb+h{DJ&=Kuauuxn*r55;SJ!RQH7^??C}H-Glq=BV!JX= zbW(yer_Nv{<`F9T?ps64+&6K`?XLhK@8d6kKC%PhF*+0n=&OBQcB3g75CY*5GFn61 zbM@(!6HKcclFrJe0O_sg14%7_?$SpNN#PULNWH*&@TGU^nl$!Bz(RsAdIJufZ4$Dv zu|N`NxqJm;ayjf2V6Q+77>iDNcq0^Pvgd5ns{yHcBcwFd0CC9!g62pDQXF^g^77L` z7!o7)-vP;3Cm^SGHY1w8>k);eOkQfC0~6KpuHVb_GJIeKZa1b?JMo>%gQkS$LzEj43{aG0ki> z^A&-la#qi4IY4%obaJ1YHVcp21NoT}hfw8bsCAI`HI7h84UGIA!3u}}e8od}lkO)2 z8~^0?TwuNK6b8)rkHjiuPp1K@n<3gx4gk&J`~546wQmj(i{&Cze0acqA;07!@&MEL;uoe749bua?p2%Iz40Axk(CjVLba4 z9M06wRT}BqJL5rCu*vI2lNNfrs!l1tg315{J~F%vLZVw3`l z-#I=Kn|wUB#UBMB3fW>wm#%>3hSSLMEHxh_%&y1DIM-%+w8Zc}HfkXo`SkHb$L9>N zQyWY~L|(x0Y*gVg=&Istjsn3HQ~(6xFCoft>!H3Qlq>~IhI1nALF3(H!F={+eP88Y z#R05pTsCu3sCeZA6sAdSF(nCak5~Mt3LpTa6z0t zx6t&4F^Rz2K27zcAN4-kZ%TWoRUMTdOogGCmS)u=U7Wo_w{v%*XY@Zg!S?i9IB_$CM6y3!Wp8&stu5f{{kX$@d23bLpL&QQ z@is_&Xy*YNya0FZB>CuWO9UVJ060y&Mn)|d$w)U;MiAG8^b`Tsb-E`o9XlbBj1!_- zs7PkF*vr%)oH0;>b1H0OWY=dsY4PLf(xSBqrTa1EPB{5^bnp-RSaU0rwZR^hPlR-i z4%M`j4zQb-@r+dkB5V>G4O%L~LwG4=ZvozLUOg`Cc9yna{kO!NN&jxOq8SN@v{5o` zXR7mU$8Ac;9!>PS+WYyyp{D5$3OUKohx8t&IPxq>7&NxGA zDrejiCACYppAgd&6IIp627!dIR`jtnaA$2)+`Z)cShGy04`f@ za`9a(4yY-3=ww$4~!&$A?;e(>bUin0N$h6odkYZ=duvR4kRFG7oCLK^gmNy^a zYzA*qK{f8XTV!;#w`)VJE0-25859#`ecsRR!y!&HFKAOajVAX`6& zJWg0`>0F8)Y$%%qqg>2tyAS>dh00iLn_+vbFOzElk$uHF82)UuV3I}uQQNFbu-YFwk{ zvAL*OoG%=~Wy)UfesbSpzUGd=sW#USpiV1An%ea(I;EPX@@yCrc}2mKb57d}*WAKd zY8Pb7!8xkgA1LT*2~h9{kVdzB?9yvzK%GoalCg7FL{cuD_C_Q>3>#`eyTVnR#533o zwrwZcFDU~F0O3o8z5v)uOWF@yfS42wNxc{LN#<^Euck6izb-PNSUAG&exYTPmI#5c zIJwk2>JFzHIoZ1Bx&nb%kdO@XDvh#l!94T{@0jTWd4<=KkuNKS2eYhOO-UIvLB)A# z5{rS&9wd5StJGd_8L?fK(eOI^j(Vk)qUELc7vtN+pq;zdyb*77_>0Ipy%6oPOb)5g zpaDmi1SA}YbM;qVyq)UK=zv|R_Zl1QKckH41?W4qck3lH_D7$9@fe)~w{xozJr@s8 zAHVHj`Tz|`2A>)T$534gY!p5va07mfI|5LXWX61pZy+i~KcYK~Twr*@LsPU$OXkR=vP0dZ^nvqaG>&A05v%i?85x^t0YC!h z7zd=lIzx!Od9`9bvM0-9{i>wi31f)gpD)|RFvQpRr+>Dgmy zpyaPp?jnqm+%$#kYx3Oth*kAY@o-{jd$ER)U~+Kq>9X#T+29_Nt}Ln+nnHY>Q+?K7 zRL*m#8&_m^`B|^_3%w9BIJ3V!IZxg0D({FgOMo4DI6f*9_CCt!do7L$6<07Iql97~ zVU{6`;#Xms7!H5Gv`l%u;ED?KON4myfL=+DTho%=XLy@!w_->=ta)FhROPsZc0NAB zwOD_-|N5;bjNIzo8UAUwEf;K6G@Ndq3-Dx#t_ry+*m%&NZyPSN~2m?ctIx~ z-d6Y6WH9SWAnj0)+_hQV+R;Xcg9&S1y3RdQ!IY(mMv7c3RqSf1=O|5X`|2lt9x}yi zaM59I$hX?|?s?OvuPFu0&J$mjdDJda8)ve)LkZTsq@%Gk^|;ccCyi{)lK1}Y7@;_| zVsTZ7E&Ix+1|Mxt$MKlq;w@DNOH~BzuzN+;wLLgZl*p5{=T;%$OYE|GE}NvY6VFiP z1cT9$2ySy-0|UfKGDb@KdmnQ3;|-NkiIKw9uep=;(sp9GaRaiYVf5;@05KaQZ=2B* z3rCFAh|16bfn5>IrUJP)sD97#)(6jC$jh!;@Wo}dvgfynjNoij;zx!p3}5Es4yV0< zZj&*okptoNWJe$?R_SEN{XRQA@NF~t>XTakR3DM`dRL$7fEQ#2<;tV!w3jMR0~QL(k}E&*PhEH}zt8UTVrF zcN5Aoh2A#1#)&I3{P2}6>~0jq-9JWt^q3f%WB;*URpY8WEsZvV8)2CwyTz@i%f{IU z>LX=&hu*<(_fyp;&i1;(d5}nxn?O?6wCCjalzB}Bas{9(yRDU#l}V?RQ`WB?D&~j} zwtQ6qc;elQ)~8Iqg_mbPYSA3ONc-x&2YJU<*sXfupmOVH`hRtK#Cb4#INKpllsvL2@YXx zU$B04|8njti#rLUv1RQ!v!6%fbzfeHydIfmMIogp5)2Ym zt%x(BDy$^90QYad^Bjel7jvrZZo=E_nD7Y2JA>1dD6d#)N>(Hv#Vz;Pedx6OIzZw> z?EW=T>Zg>iRGOggv~A_fI3JfKz=q2&Sb@gJG_=T%2<+b0c!yr+}NAv z9|K|llPl__ZV?7=g6X$~JABDXn+#1qJ{=EQz*X>hq_S=dkblkWa&BT8klXGgw|;Hl z?m)!HE%7tNXZ7JU?v_%UZax{b`lhRG!5lZ}8vqI1ywhm;41m@lse6cgD{X|*18)YE zWRME%I&qv*&m^~XCyX`kAafT_)An(i1U@@yFY~exYumwU5}IS!h;(EpEc2uwDRnmx z2nPyP;)&;ux98re&9u3jp?PCBnckXj1Wz$R&b)~7i0`D#1E7vU2iv>pGN5#lP`mK# zeN)?Ry@7O*6L`*kq*tFJ`|6Ln7lFl*JG`rb(o*+cjOaeZrwZmWRn#nXA;Tlt>p$^n zYjw6RjFtB0&6~jj&Nf%I>J)1}aN-KNZ`~KD&XIWA)zxwDRs>f#GhamiBdxcZy_puA zD--oFxDwD$!kr$pbcL$Rs#;x#E|d^=RyoyA<6eG+MO`QzwOMz@fqp|cYT_Lx^)*;P9U zO4Z0`DRNv4H0w$hJ3T+wmqW>Egb$>QE^5g~wcPxg=j<#^mUQnnIJ$aQX3rK(^*X^W`0KxLBUJi$Z z(;&Me@Ap2FSIT?t;a_JO4`=AH(Yw56_k zevU&R64M36XSk*f&nR34!lGVYke~~TI;|Z-r&Ld<-|pPwb}PE}WP1(6rWa?3Xa%c) zh9ow#P6p=i*@s2}7dzMs3duW$DWTz;6_P-=3d z_BQR4{DNynw^xPZb{^2FhF>+9Ji$-YNIW7Ae#Hd}A!xMOT)eFtVnKtc=%1N3>$4hIesH#7tgfBN<*}O0~d4itI zo6}{tjS){2NYt*oO?#ZS_cA-^0=e}7F<4|T0_0Zd@b`cWc!B4>;L2y79SKc3SY*43 z5*6W0>EiuXP^bIixqeS9b#9m+&jnbf-NeNvH3&)AZS5d-x}~puN+uuP2wFuIBT#-8 zUg);8UhIWG?OA$?$sMpY^-=h|1|vwob`t-kpu2DXJM)yJH!fONv2gqFJ{}Dwct5qj zFQFXVmO2tUfJK{YZ!Mn3++B{mDl($`WGq1;-&(pLcfLV(sK5wMg>@BKZJWpoa@*gd zaWj&s`j`;8`T6tiZQUoWTurK(b_|zQ2XdS!|6YMD(`hnLiXMun$~=FV&)zz4T%$V!EArg5YQp8c zbG&D)$Et)!R#PZ}X#b^v$D@9rJ~__axomycd8RPxE(YCeytP|91InGp4533 zmk@Mgb7dmSaZ!6OcCjt)xR8%QZQy7|`Cdg|rSz)N>6uw+T9BQCLruklQ)fs??}K=4 zc5ra>tp2U<*p2#J5U`uYe?Q`w*9CJ;>1O5siZL64cwW~&zG6i%TAk1QvMIREod4QWJ zXQnESWU4onWNl+n_zg3a^+W}kjKi0zXbngCq4sl#kGL10$sxK*M?T9%`gHl-rMoku zY|@=~RXrDWZ*kaDw`|=lRjY^`XtflZfB3H5^%m@s%!?yD8N*fgN6$HJZCs6-;niyi z;q7(OJ>ClPPmhsJ;kmG}CnDgw6T&Js3U&?=*6|?qKKjWgd{a*k9z53CG#0ebsxX}Q zu1F~I7;Yba%tT|D0noXrJKWy4zEB%Pi^%d4a9+`!YKyxS&OxtT>hfT^BXJxk6z*)h z_oQn*VY-{1x$fVUa`(&P8ohL=D8MV8uxRnkeJp&IzdBZZYHxu{_q`Woj3Z;EaOryV z5`1Z4mp|!~GGPiunna)C+Kxak^UJs zM6SulRo$#{51u3+-otA@iM2A3SNV#!v8^zlX{O7{>mBu7I-oWbW^lC*11MCg+v$!2x-}?)T>Vv9jZ4l;gY<>#Ry`W#w_6jOgl$a1s5I^J+TtMgEg)PidZP1AzazInw7&ipnTZG43sM zcg2EGf#nw%iIE+=6ZCetJfXO_)6=jMJ9`eTN)$J##bz1kb!1R#q22-V?^@ z&^u8dlp3BBrysyk_l%#`#cn2`vUYc**y3p5g5YBfN2@sNS(nUaBfpmUqS22DwvT98 z&(#D(JpzKE+E5zmEbD3&(p)BgO|cyPMI)g-X#4|n5-0zc{-pIvugr%7U$B`G@7bjK zf*x=H+VpzrV>(lR{+w4tK=K9G?m3hGOl-HX=Gwkf#-u(7Gi}<@aT%TRcBJsNj5Ej) zUH?|;LTy1I&pm&AH9v!e2Hs326CYn}CS-LNc2`tNh2tC6p;Gst1dUMm#^-54>}Q|l z#HS+V@fX-%9IsZAkkfxUVEC1$8@F&}qGDJJH_ju+Wr{cHN^)5Gz0^Fl_Dr$k%#r0F ziXB!sb;BOeQG0rH^9JadoGYt3eK3esul|f)XI(vwFLpGv^bjDU_q^i zY-s@R|H|E%3xp%G9k)~ZPgV#!NEOW?ml6{Z_l>Y|?RDvP9#5T*ix$zSI;bXzn#WtI zFTWhWt1u`igvusjJtmGbd}-I~I(9bsdE*r-Lh+X>bJv}74Iy>eoY{u&2&j!s>darh zs~Z{VCSV%nuRZ0{Iy|bxzWA{SS?jW6!=_po%mb4zP`xVP3~CyU1$uGdR&7y1TKPtL z@1Of6-F`9&EI8BpPpNslg67xT*n%(_M@2Cd<4M$NQKDSQZT&ND^T@Yg>J6+v7V2Wi%3ML z>642e)dRKozkbp=(QjvU@5p{6=%clXDkH_^0$Fc+9BM*bqD8)Y7HZjFSShu0E?2^8 ztw~elPj{9i_1bm5^+|ZJ`vp_Y zjH?SDiwS%p)(YTrjEad;%{ipz;N)ZoNO^nf#Gn za_q$dKTVJ~t=@7}H3aUlU%tLwoMfp(?E}OR>)qE!}C?K?F8AzmR z6_cx|sO(6LyR6Q{0nQqP*v)%aX191OS4p zN7qq5Epgfe0hN?-PSbR39C!d0_^V`;h$=pzDhbR*JOX_^J(Yfwhr@$S_r{@2F6>yAAOmh!K46~4}W@bT2i z&|GHS8-y+*uTOCn;2vuoo`8o!SzEp?PwocN2p%Pv;qpBli&H5ade#L%3WoTo(yHfI zl_v9Bdvh}vhszB-0Jij%Y_BjneqzU5jFQEgEo-vx%K8*QcH!gH1~iEb(ksN8!CC*kIO_s*n2ZViyarmZ`?StPydt# z{}_i!U72AfLe^3j{$$tNd7^=glu`LnOrq8Jv%2HlpEMJu;*`TZn#EtOKhj~V2o}M` zjgL?%(Vyo4xapDY{5^HHa2f)QZsBIL7KRt)K=YtweYsQS_@vrbIn#q!e&H9N1RvZEdLiI`Z2!Y6L_l=E10Di_n@1xoH=wDSqenlv)iM^V z;HcG0-e5=!`dGZh;NtuaEE+M~z-aA$i$?wv!SUQOaY_(Zn6dNra?8}Phqv-uXWqO? z-A|^~89Jrn&c!Eto%L};Syk^nFJtmFxBU_)3x7LEY*6x1VUTysMaF_gI4GP%zEB*h zz1Z2V1h@QnbU|rwl)sUJKXBjWjBZEJDJXN*==tN1+E;Di`Lx4a&<}HuaiSyBm&#dV z#Jji?o^I#KnE$T9z%+Wh{b}ju}2NHbg zu~{>+E*xQ@#$Myxi!6JV^RBY*gXo;A^QU;v{k{A(779_H4}#l^ub`gF+n>q1w1wh*o3q#;qffR|d6P06xt zR443f2yy&GeIIDCMYz1Ht@rehg+k47S=N?Av2c9?Rx7%sKRcIR9rsyY#bMf=sPc@{ z-6gclPo+Q6^uioI{$XKD$Qbay66(>{-sDT7?2GK}` zzV+%3NFGyPx>9CDsBidZ#qDEALYhwoMDlCQkMVKU^5`N1-xK2CUXhEcL&hsZHZJ!PJto=h=k9xfkfnz9 zcnt?S*C-REkVHG$7!rzOb(s^DOJ!(93c=E9Nh1^+&~>Aayuu@q0RT zdXXeRz$`Yru&a<_ZBK|x-DO#k$Wd?`^!Q6yi$UmTO~c%Jtidoct;rGOyu=eaS2-XH zjo&=LQT~_aY**YQg;>A|LRomd|Eb^X5UH||J zvQ9L}sJ(OIt|2_<*GR-_koTDx^o2i=KGI`%YH4+r2TQB`@iDPe@82olDyM0YrSa`; z4dr;&dZ-#_*L-S!nY5sJ&4Q+~%dcl-9iN5MFwU05q$~A?6N@VH4 zy7)lQVyc+Ud!(uh>&fwxfXU6gfxnS&8ouHwzM6IKimt9T_HcghErvb(uOcZM@!PhY z;-(WmQGmrY3+I&(@!P?J?}_0Y>kF)TOuXB#7bYx(bCgx5tSJmzf9Fw}a9u;@Yb=tH zSjE=-sq}P{MgCDv+&-cal0?~&KF`r0j^}=H1_S9EOQYA*wfAvt6L(!;h3A|Ix@Paz zG@n|BFN}p#j*etqPux5^0yu@O76OGVaWxs5#ejb9nUS?pjh*6R7F+n}hs_rpw!}J> zF{_Kp++z`QIF-l~I(7!tV{c>T{FwM(X$S}kfDDC^lW{@ku1COvnmMjhmU^r&(D+Ex ziTjV7f07WHZNqGSzZ5^4;_jgL=3GKhv#oJe_;Wq;!QJg6PwgU=m-MQSJxtKatp4DE zxDS{}D_(ku;Si!TrhCx0iuXvcu8I!my|%wHW-Nvq8*BNd%~QGtouZriFi6}7Y;C!X!BPWQ= zuS~saFv@BB6rhzylTCB(K7g+50+~vzPYoJa2%nw)3y=nG+$;W-&9f9=(|IYWPRz!} zwm4qx@U?Fx0zY_R$yWgw4OONc96n+mk{O`X%Q-UBm9oRjY4s7}cOSv-e5E!5q43T7 zzmn(W$ERi^mZb*QW|2s=rFj}_3OW;fW_`I$Kqwahz6XO;bkkV$<#NYpH+h5`D*1N2 zk*pOqnDkd05wrm5oGz3cz=2zKohdC|9R~&gyz81ko|j)4D=5 zL>bmkRx`-IK2P4fGEq!LTQucEcIvL~z}EbW$=L@%w1Tg!5?llZmg?@s_m=7LziIj+ ziW7+sx~TH@4k~Gba4%b#;>_ha%LVi5Q<~HrZF&GA1m0wQ3iBquBXr7$g_Ml&DXqBM zs?uqkseM6HERbf75rKt;1<)6YP1izRoxkXyb;H739$xb0-)!z)gCer1RoU*WuIDH45Hz8SPH-v5fMQ) zWK&TC&Ap=?z5#VWhteMLU>8|@`siq^l`K*LG1#80rUATU`()gw?Tz0lmCbaK6~n6= z>*Msccb8~;`)V%T6XwZ;cN0f_6*`B5s*pflpm`23rjhR;+MKZ?3O|T(x637EA!-69T8mgN#}2@i($e z^)2q6B|m|GY@z?1pD|4~{+UqA?sP4F?T7Pnl^m@$pIZW`IE|KgXDuY8!Pn-1&etTR zL_&bM++gMoJ!2d?e{oeFNVUYaPqgnfkPzVFU85q*UOm=JC>H9(@PapKdsTR9&^O_| zFwG@jd>^~z^Voz#Ma~3rWGBaVn(y9$ z7-RC#Ym1Mld-g`*@P)5<1@>R~F1KoW1K#b+AR@6^DY{zta84z) z@vMJ~qsYj4YHAHHr-_E=Ai~Siq5iCfO%7ZJ`$px0*`~E~+O6PA(^7$1m|g%qC5qmD z#GGyi#YJPnY}1Chp2j6AAB(hrBtqV9Pzar^{M$ia`wp^K18Gjv$zqi34h%6kO&*d_ z0!ECu4#q9pUsySSph2b>NSLhK$2pZIW&*P2pmYo~vcPd1qg zp1MI1n)y#@3#kHPCx`5t)PGDz^v1ja_7?E`(WznYOp6R|ZE0No*(U8BcK0++Fs(QQc!#hiowx4& zk!@OyH5F9ez9G-qarGof`166d57V?Za2`zHh4*AdoWf;AScP7+L|R(^gjd z6O!!Ol~3RI%2i!=`8qO7kd3&uU&%p8wXHY2+ea+SoFm^5hm1h54>?}U;H}HX-9OhS zG^gClHKfu!@XEDT+bvWsqr7YJqhI`}@_UK+7B_1yfbOJn4|FJRg@(AzWV( zX(|l7GrJH-HP2UdFyE(+x_QHE# zpYHSW%!F-;(;mKB&SxOozAr1byE4J~^1AbV|L~mUZG5J%i%_$n{n@*$OJFXn@SOg$ zA=4HoK!(AgG!{}YncA5E-1aveaDNBtdn#!I%k&p1H8t|=*u@JA4eA9Pxy)7RYrv{H z_>Zc&CIl`+7`lRhR{Uk-BN~fftB(bWDOAdGKudiqzY+&-!XuJtK}sbBq#GO>BxMj3DM`se=@gKVb_8K)knRTQ z?z($W&-Z{&*j)lzCA7 z0wj#c8i}YS%{_zBiIDUVq}>{s=Vy9;s?&*My}GwFL~8tMS0-a~&G$IAsCbN9x1Lru zbcb{o$Z({0fM%9{3Z2%zJ{yd8gSR$|d8=A_-86+8KnzEa$@~uiMfs~F{arRGzMWd$ zW?rM_wgQ@cN5}=kB{x8KZ>c6LbnF<|J^bnUHN=MPSFs%p4-JaTU3ET1-MOg{7QtCe zystMFIk0cq7#7J{Ks*B4$5%_b3Z6Xgrx;(VaGt#PMhNHVXy$epqkLXzxfMKAvIY~_ zyA;W{3?cHjjk~_}qk3QA5gctVX07O@CW?d>^R4^nDqV>KBACN#2Qsf7I9U7m?0bz#)PbES- zsIH7BRdcfvLbkU#59UCmp_@yp-@f80n)X%lZd-F`;dzu~Rjt~_%;V>C=gE|R&OBZv z52sO)Pl==xd>Q z?EgrODb%3{Q9Cprbfhw#WIpQ8<7M-Rd?`8NM{1>RR3dQ)yA$+=$?Az0d2Y4%Te4k%Gw)%rZ2}ile~)Tl^_1xYPweWXZ!KL?wZ0Pmzi64y+t z;0gJ6mNTM8)RjzLSa&WNx$D$bp*Dbxhq0Vk0PGn*T)A-(fq{bWuUrPRy-IM#dX{@; zKHDhlTa|HlZ!IaKsSPiI-D-eSb zB7py}ueu5glu^G+R&S#GZuwy?shm*-vAiZxXr!^`D^LfYe5*w2caeNF$}I8O_C}iUiKM-Ps5De;}6F9*Vq7t1t{X4ppSeYcROSU zP{C)y)iA%_f`aiehic{ZK+>7w?+EQAR0ih^%nW4IhDtKyLTXK= z=j(5p?tp!|8y{Sj!wg>=MO0*HB(qWUSc9}E-QTh3#W7xvb}8&>-%>!q=AA=ly61`R z=vbjRcg8yE_p(Ia3>O5KMjgIRJ4I^PE6@Mh^zaMMlr8`~%T)lVL0?n;=^?*r{C5`A zDtleVc>n_rQwWsPx|4$g4Vb9;kPHArP?&as3se*kjsXGGc45IVMKL^h$Q8co6iC@g z1W`O4JRUByQ*l@nVIv@=Sa99j=?}x1I|@mbn3%jDasMFir{4~_j%(_;-gFL=&Z(UV z5r7V{;yrw7uMB|wRRdYW3=2sNO_Ni1mhlg@@`Db^=o1ol0bwCR+ zc*?!_ECKbv`nmb~%a$_`V<^RJcxqJdA5uW<$B}?YWfCs)QUhbZ6n8*LiR|kSdvUga zoM**1DJs4g_@#>+5KsiA((2a{$lGpVT?*Ip(BtawW_o|z{}J6i_d&AhG8=g;6>6G2^jD26j^IiJ)Yx`E#K;W zKezl6lxU_F`#3YY@-H4h$q~M|#QGXFiutS>*cGML63XLzf<5Me`i5yYKpEne4pa^$ z8ATGwBh6#fY!LKT-BVI^giamf1K~L#%9_C~s5HW-<1J;6`z!V@gFf#rB}}{2m5`KU z9d$^wsxnqa_rh`ct@-D4z4~GE{5HLy39kwirZc`C8xqJL!{ro4Ia=if3F%DS+nB+R zEwc6|4>y_GjBdX^D|TJ|JO{n$PW*MDekz85sJb4@Q@#31b0)2f>-^S3-l${0SH@7k zYC`ET)E$*dGhBy7S`P$w!hJhaXqGL2S^#|37?o5`v=Y#;z+mv_SzAR183mc5lmH|j zfWPXnjDH;&K!cDrc{}ero^&0)*4t_c&r%LGCE$p^Lo(L}YXB+v*R*4fgw>$$Vxt=Q z7Lcoqih)q}c$Jz5tY3;2o0@sJ1mShq?gwjFUb`0l#*{=!%AH~EYiB{2VJLq2RTwl{Ee=Okz8F zij8?~0K|^o5&EPO`D3R4QA#}x03Jt?6a!fm7lkDvP_RQu;9T&rTW!Gr*2d`jA}&Cw zhwLeWp7z~6RHN$5)ak>4hbpXFcYVK@>>n%*O1js%a)@FDY;fl&9QVg4dn|p_S_eOx z)UsR`*1HMt2{*jvhg|@g#D`Pih>!v;5q`>UDQh( zy^FcJVi-n^5uVvL$XR|%P)Wi&zCtqVCb1z5cnk*IxzuXBxf*q59pblq5C&gS^Wnqr zW#n7;T-4h+#pDO$1;iVe45@`(WL2u6mdK_ib zAHuT(b=*yyCcG+_m-u!P;M%C-nB^ zR6CPTaZWUADU3UERAm$A&6+-7!$cjHVE#Vkpyuv)+B%NTpi6j2&i_dsqrg>55qbfd zD1JcHrXz|7zB4od+AV_aN6P(02B4V|dP_m;p&jzup>~BW$t+tuZVgq#6;G{ou3gF3 zlmgU)ggO10DX8M>)qnm++w zTgxLxM=^*zvxnF9e?Z4FP)gmsn{U!6b5rg;nyGWz7h$18Gocjm3?c4C;kY8FT5dlF zU22X*C4WsQbY5S55nM2B@m^OfSuG5R{am@FByx5dHug+casklN!Hab91oY2hSiuF& zQ=at$u*y`8O5Q8tKrM(MHD0H|8?SCpb)|>6C!jt(s~!gm69g1OSMo*?Di24h-9)~5lMfq)a*D!+tGpP~T4R0MmMbREZ|(w22>-?$>sLv`DlNjb zi7CjhW(hUaGF!h{I773Q{Ng5=)KDI~Yur+YF>9e$`hx^gS*L{Y0Yp8_?we#WKnorN z#!CJ6=|V?yx&|i_BYuRTu$&k$7h`VVlz+d0{|YBN@U<-fyY3n1+{+t%1@KB6{eva8 zBp|Z9N|5CM2BSK$lhPl$25=9#4Cr9S5NcYdCBgg8jcX^ye{tbOP9M_1VBAUg7J>o< z7d%n>m9D^|K7g!+2QpKM+Z2f@)Q=oGD>r7sSO!GK70{H`Pi?D6 zi&fI@X>P6bh7gI|youfZOms>D7zu+64d@?QZ+*ZLkzLob(vt5H97Ux;nV#-kMb-GRoTM{S|*s&5mH+PFqc_@>^j|gTQVTHMw+3V#ZgqUj5 zEK2{-Pab0Bj+XviF=+E9pdJS1Wff)h)CQ!HWE*^1N&v)GYG`4rnAF`dy?UQw{S)0P zJ1i?i*s>>?YuXs#y~CF#JwWj}`ZU2>?HfO(epiS!kIBo!X(5-Ltt*29xo?2_#RoMcd_D*fP5-N0N;QMQ%E-);b`{+pc7f5MN~@$&c}20>#f z)@u~MH%VsMPhYJdFh%ZrVRC`I8?W^MmSc8=MBz2&f?bz$X@N9t&LoLqUVK*e(~`1e zrecIKRH~M}wOg*)YuiJ8OcUcJ2(nNX$JqQGz}=zbKNhqNOEDX3!3DA^YbAK3%vi{o zr|*Cu2Zlwl@5kXOGRth298L-KJleVv%(whbOy?35GGK#BaI2WCn>TbnBA{qXC^^U9 zOU`XRh}{yq8Z_|O!=*l{k4>rN84uBEd^zg&-2inq-}>!1gZniTl`B6~-|lJoSZVPL z*<^EB;7Z4>`A~M$CJKrOTxKcT!dMg<3mzqT6dq1 z?Zx^&IMMmcHr>j4Qz6Pn$=V1xQbCD*X%|qy9$4_$xs}UV9oLQ@I$!4Wbk`U%>Q#t) z*PX`ws>P!f^_%o)sHjsc%yzh}kWX`!QO?W(X+?~$GLh6BZt(RO0P)@TH!co*9*}u$ z4NR>0!|3Qmm>pOD-d-cUQDc11PX(Ejtz-1 zpU{i7Qe9i?Ppt(F$HyVYF|Ab+6{RMsb-6 znkfc&VHmb2BTMz~ZJ$a3mcbmm9F@I4;^WVZUO|j%K@osjV_sZ57mHqu{Y_CIqh%AQ zeqnB=EH$F+pFH3rSq2ptdhrPdF-r2mhhz;pA4I?dR?Awz6OHT|2dOy)TTB`_Wm)v% zfZF|wx~n|HJ**siOsitg~FyQ z;K`Ed!ek>e{8_g#I}(HkyT}SuBb2qt<3JrR`MnG;;NatQ^5%dyFV#Bke^+w&i+oIso}5(c9kfxv=z*Q2>~R zYWIIP#03c1FO7vJ^B$TmwXl2Z6WXHuOPlqNm*R0f-*edU9k0m zVCKbIlBC62c6faJCHueDsLJf z$5brr>ch*5q}OU4(j)v3X(6FnTxwY5Vu7k02Y{qK)5n`d`oA&}cz@qcY)NJJp-B?~ zTj@Y3ZT&KjXg>ikFl*8<`T*S#x0Wi2M7`tu-kj2zH-EWxL!6cpyASp`9Kz1GK;{?~E6@^{K# z=QhxSsYD9ePNI9y#2*SThLiK%1Izu4A#8uhVDH$bs{zxQ>BG>`V`G2(qN6kCX)5ac zp`+*hMMnoyY*3<-#_zjzGsUtt17 zXufO37aOz^CQ1zxGiq-)+X4eM@B`7yU&5LB#l=-s@QH6rP$=|~KZ|^sM!}wpMbmN` zX)Dveq>=uxur>2+*(t&12Ob2z%8%P=M~Zu~bRoPk$_@vbm3!?(vcdP1jldO?(KFh~ z6d9Z#dOjMeV7mig1Hn|30O94mTWKx`H={Ws(vcVzv?a9I1we5@`%#)#c-QLZ+L0<> zw8gkI8qUS9tiHK=izlNs18=e3!>WCLOsu4!jY)_YJRBR|y7+Ixj?O6zRK8P6)PF6~hJfFg=P`-#q)PW3rZvq(O8#>ZvS?@||nJjX#5`_*j& zwng53A-yeLqI%d#gV$N;1>sWDsSUvO93JiHee81)eX)VFliFPCvFCEK3%(lzdURP^ z6AOlk2m0*e>o2%GPkE4V%STsO&}DUDipkMvdAQ6CpYvHw9r&b5g$&g-)<@^V)0M_& zWRLDpM6#-4ArPO&D(g4N+Tq&=s`)vM+_eq#(i_)g_G?*GX2(~5fYehsz9sF3B)eSw*vXb9!x z=2ih&onfUcF}ujW%Ux9C@PgAch8o@g<8qM{s+mO`MShKR)euhG-5@Yg4Ck! z-fC2FDARJzrl=BG6p!m3AVD7bu{g4ziXCMIMS2js+MK?AetO4+>}#DvD1%~#(yS0hCw-=eZF?=b`sP={&~&bF-wbhN=A`aIQUFiMcAd~%MG9?)B=k1 zA;C9_!3{(%fT_q@POBCFmYlWX1sY?U=YhspSy`EWcZNy;HZ8(uNl%ZWzl4G?t&Z%FJ9 zcFTBzWv6Uv&o$nJpEMNM06n^a6m#OsM@-j8!%d{uR3Q-jev-ho-LUU+_UF*xEfWo| z-N-%KG$6tI=(t(pZjEA9=S+4AU-;rUFD4U2({}rkqoHQG1-EErJ>A#Sv`*W5@HOXo z9GB}_V-4-vjTIsgC;sGS4hlyy!D%(QK?V=d|r8_g86z?2&I(Q~bn^k0C4iB}a{nqv- zm-~I^t;g^EFg29e27)Kq+K5wy(knP|Z6aRl+JOn8v8M?Nom4_*yg57?K!q%ElvqD< z6p#MWaaMDZLE_{Zt`Ajqq}@H(fqSo>$9TAG72pp3D%roxpLh-}Li z>Md*-udY?83Lwsd=-%Bvh`i!*!Z8ehB>>`DJ3a@<03G?pRKwLUHrJ7FXe?Ry+O9l^ zZ7ih>3L+l}$)>}Rd1U)V-Q^5T6i3h8=BTx$9UIoe*KoKm-OIjzl^CbbEpb=7+t$`;%O>AHg*SXy0a21e@@6O z*m|ld&*&PDL=-{(ZEL%7F0aDb5K*Id}0d zp_0tP!pdrYgd~Zhw-&X}UzdAMy)Vz_GOpC~TEEoItJ2~7)#8&?%N|4f#3wy`kV=88 z&xcO3oYQsZHoH_$5cV~yP|{DXDv>Mh@+6|=9ogjX99OGPs$*-$xr?30bou5`u49@| z{=BJ1RK?0>Vo?7R=z`2U~lIp4} z@Ut}Q!)$RsX;4y~&0Y)JbzJVhW&94|BzU+y$wE}Kh~I3BX42#d_`TFF zuvDjo?)e}RRyA!HryaaMUq2PN;j*y_ui~?w5}0=7mU(gEm;0?q^(0|uxyPl!6j?TV zje3qfBpyAVWKN`V*$0z&ZWoFQWjuTM5h;1ybvDVf9_iUOeo#}D!+}PNuFn-07mt?7 z<3(lCXgj6u8ieW0tY%0nv8^u@0S;<(8t<_~Ym1r^hx<{A@Yqersg`z%+G*;&V)GH1 zAS90(;ZLtBio>`uSt@qBwI>ef1~4hS{ZAM0YE)dv0ht&VToajYNoy4tq{=)S?G(EZRVmN&PJ4bcLm%iZzE~t8<+} zt54kZc05LJ<2Y9qkFcg9OZS$1W)>>#MWkacKWDXp!tA&fZ1L*epe60O`J#Nwn?pWT zX>Zre+SwCk4jY_*;q}(tL6`ISU|MK7dwu^TaVUaahO`G4jmpR;7im|amHMy~_-qW*rX?wwd9dfK~>)}x~Sd}hUY~9uCwz;a_ zx0;ZJTy);*SLxwnJuFJivdpRypb$8AFM9szhw~K^6BE~VVTb+9?Ci%{z6*2g{MFTF zy>$tQ*2hyq7M%|tbG1#p!Z)!GK&y{Pzhz=a?xE>AP6s)SbE8VMMrBT(w&B&5U7b!! z(AH^WGV*34*E1cQcF;dDYNc^SH(d}iGx>y<09zWV*zH;#EUs`}?9I(I2`&313R)z!85X^E9)h3!;* zoObScp`QVjr`2dw*XJM3L<<#`TlQb}u#x9DwQ)TCw6U;#99-Oeaybc~*RBs$D(!W(VVu ziweB)+x;CrL?S5E6&2fvXJ%#$!4>MsB_Pmu7-JhcYLxRT>129lhHA9Z)!q)kh);hm zq}K&C5DA&hHeYYfLZhCi4-CtbR^IU;V|N!3g~+aby9ntp$Hl^Nr^f>Ogk{T+9Ew$F z!3-*ecs=U(a&OF#!3+am*|E}_G)oYE8&$!3*$kKXy`h=w9e zc37s9$n!qr1;8R`IPH`@WpXZ`zwCVu+eZOoQt|&{Qnci4?YlZ8LQLYi(@95x8gyVV zEFA2(b9Nnyp8t5u&_P<^gpR7FBNlKbnJ z1=iuwfx#qb`>}yVHthdt2k?Z<{46stCTV#4|Cj{qu>a>Vj=YVvit2ore_$9xGWxC> zHCUGjm0brxpR&3%v?+uPERbFe2Ml)ZJnEJ=tSB7$k3sgonglE`{@BSj(tm9G)r{cZ zW6wO;hcABREWrGgV1eWXQkcOmqz^b!hqC&Gs#`(;KWkt+icOJJWjR-x@4n9 zrj5`@h+RjEqCbqcmakhCn12c^u>CcO6d24~A|IC)vOGN}Cqs9^sPUXg*R6E?O-9R; z-zIS*`DGGoMQAmbX+qPNeEW<~B1~k_?j|C|hFwDoeMC?p^G4IH#q_Hs*79&T6(J$t zCm}O=`LnfndkcXbwzr~Gm-!zj7T1JoCxSg9`Lqh%=7TIxI@}UJaHW~n>+mtG`sFRx zG2Wt57N&wer^)lRt*CMS+fiez`0oYkf`forU|fYgS2r0f?Cn$=DipiX7-Lg!Zye0u za)YJ*Q|SBSX(+w=w=e<|n;eR>17UO(bBwq!NwNo2}0}b5My}m_5|~FUR)J zfzaauyK(8ZfEqaLV5U50yD|Ac>;~p9bf@*W>&=+^@{MMjd{R>Q=|54sYwDG)9PGOJ@2Ywf z5(t@@XN4l7BpSXD+HuuOFhkBPX{$inYX@H$tQaf%_;f{jE-kHrudkl$bRBhPp?Fu$ zNueoW*JDT-J@sUgV>3UYX3_Ic;uJ`JJMEP0nR|il@E2Q_3}+&MpHN}f$d`zyePQuq z^O%x?f`5mqTlV7i3M!iP`4hvrkyu*1oW&aDhdZ*+*c8h=e!C9XQta}Z zmC4agwGe_+66$$J{<+r|RgWh++rwWLslT-D_`Yk%tkap*7xC&l{&P=uWXA~E&rbUK z`o`T-jDNpya5(tmL|R%}m4t+ZA#8;rP`kEJGn+IU+p&vJK=+DZUh31a+`-ea3kh^_coy>Zm(8Al!8+eM)zXJl)3(x3 ztyqrfB!&)d8w4znTe(T{%u?FKz*5~@G#oJ-qsBTAhlv%*)GZwgW4Ds5L$BEtQ}yZf zZFOxa>h+R|KQEXonnBeF`0mO`DbaPVq%=%2&v4SBA&=s-?1g>G$+1d^iYif_q(Ug{ zs(V26x6>idS9?XWXNLnn56K_J6h!${l&DglE+sGYW||_))=J!LMAwgGrjt@@xZnK; zm-^}p)86_tKo9NfX`2Jnb9!QZpx1ul{Pq@+`<|jYLWcTTcyy?Lwh+80`j64l#^jH~ z!a%)hM+83Z{l4^6rWarf8xr2Uc|*CgI`&LMS$VB6`wl~F^#KFJcEiFURc0=61D_Cs zxv7-Fq+czPhWTh@Sf3G?O(xvw+8iw;+56V`wdo}9%Npm;E?-|iZ(N~_3DKgJyuudy z^7P%NJ^jOuuND)pB0Tf=I}VZ6I()9OU?z0@kfO7xi#3(ou0YCvo0msGib@{bQDxn`wK>a2eTyGA9s%{Ugfqi=lr~ z3@ZAnY%LZ7HYq0$)CYp2gJ3Snmfy8K?!3CqLTTgp#eZQ*x-y)n6rU zH$ZkX1hREAh3qPK?&3NV@LyD<{y-zyNrpaZ4DbifIFto#M+Asn>^Z04j`pO{hM1*5HFr`~(d%Gc|NYTozedGcS%SrG|PJ$wJuX0xg`FRj! k3TQ!onoogacK-B2W1~QwMhh;{Iq>s9TJc_4)6v34)y?0mvK{}{_ND)v0=~b$rbWxfj zO#$guL3-z(m0h#O++1(|b)^4U2Rwfv%{IUnXvGU8Y z@}6ep<3;@Amo>J4nK{6$fejm&wFxW#8CE_%1vO1z`?Q0RxrLL7k(0B739u8`V_|&o z{TVqOcVjgTE>);x*Ff-JQ2csi)Xc)n)zTc~DVeDjnFo7_i&`(F7HL)-= zN6id@BJa-{hB_E|CywSYV_VmQ^S|u+UXUnpI@sC*$e_Ck>pD zC2MPC>+r?4`Atnt`HYN!{noZFNbN-&jZN`+Xj%+1by4Y*aCgi%GSv8 z>jiyl8;H>lZV7#*zbeVk7y36WC<@N`zqbzo0pvb(^Z0YuSKt@c7itBdnvAi93o9Sg z4DqWn%n>0^zJo6SV?_VX8SpQxd@^TEU|)~8>VP`)w38EnkruXJoFN}C8le40TI1;C zU~6fDrZ-R{VUw$-z@`06pNwH9!lr+|KB27U_fsc92)6*AkPuW*5PI-=ux>~&7W`h< zgoL?8gar5ng^{1a2PdFw-k%CA2vGiaxNKq!&N|5tIKsTv4S~SxS)^1$NNk0|0D49lh;wRwE+0aSC7t*(i)@^3IEK` zIKdpuOq`G>A(rajdur5NU;On~4)N<($uIl=@a{;Fqd9kZlb?_Z4W{I69b91!UlHnC z3_~Fs+VLtTPOi2NmZ)!jemp`PzZ;mz%ku+2--DS6#8}Wo2-yFZ(Dd(U=dUj-N)>*I zOY%W^xkUt_0ziOs@cD1S48kqK$ImMSMSlLpuTK&I}=K$QlL4jX)S0-*2 zPM44@81cIf@H;QJAYk5ztuqMPh~Up(HV}yXWy1!D!4M~X-9S4F@!e0Sec3{t_m@x} zbk_(0OaWmH2R;S3Az<^r?=Jsvr9j;#nm_sn3BJoD2nlhc8#V+PgCLX_P>Wx{0s#R2 z4^RX7iBuhQGW(~30R%<(eH9nvb zWD~2awyttN?f7f326PZW3JDzpkW2snr_5-c14V1mwF9;9zr(B%ID~eqmk_)aN(X!-bLt>I(iBm_7<6(4h6;rqF2k zkD3@F3G~A*_$P}xW9#5#Zfj<11GD-|+ZhBI>!TYQ$}|1VEDa(k$o&&b6cT`b>r1|H zPLZ!a!bsMM())ib4*;rf|NTM+9i>j+SROKoif(*XRzRHzk)!!HDPWkR-9hom)WQvs zrTuF-s^2lZg$N=5A1!o20zT3m2qD=En#)2J@X%crY9C5j|EpCKRDAZ$n*S`E{d3S3 zNGJb2LLwwmeFM@+;QpI|G#`YY8;y(b3nPO;q&)y>paV~i()8aSmLUS@ZURUtAO-zn z1nqx;9`XGi5y)55I!H?(Hg$k-VKo~!-v$pUnMALq1*pJ`4EL#=tzdFEd2io!4D@s5N7l5H2(jWI7fo>H!Jr~ zIDrVn5HR)Cc+l&#KsbS_n*bS5q*5S}>VF}eK!NEuYyO{x6Mq+Wf{LgA|3-}#L84N6 z=n*7p-w)gVk6=8?Ie+I+`31Q7`2+=pA^akO`~t$l{NJWxe%@X12atRq?EWbi^gYS{ zpQ0y#H2DOD1%>$pdHIB(!h+w{OChM{vVV`&=rrhGuAMMYn}q^=PKXaG02Sg#Iad@H z`kiM3l6D77_5U~iUzeOfcz?;q{cF5Kk`rT?qxqM%MMS`bRv9`F*3aOAj~Bgx@k{jg zBj)=v7xR}w5I$aHA^@ouU$;>K!0(S4Upi5sXvLXtK@0Np)WmO&Y5t4Um>(GyqUUCR zl?kINkN-(ovaFMVp?x8p()KYw~E2&ERkV=i9=2}x)``4tq< zxz?ZC#SN^=mx42zQfLAV(?HiXublPOgYVGb;6GB1?-%>8-Fy8-UAzPa3jZ?`1v<@zjRksu3N<|772e%ygsqZ-jnp{LANJehZ!d->j;m03AIH_yt(t zNACMO!GZwtp8nB_FGLJI7xGJ5f$|LBcnf5#|F=>LWVnLH`2O)0h^_^|S^n0i@sOtj zwc_tc|6k8r2p|*1|KP%p;R3QX?;Bh|CX)VExPZLRe{kWzhJVit5vt6F7W4h}a6u5M z)c@eZkKw{EB$H9={I|jd){k%!$zgjI2L>7_$P$c;KB$`m@j*cLLe?tU8-6tAFIB#KN0&_U0DPhn6~F^z2f{_7$M@An)B)(=@%5}frPhd2eKa-Eur+nEhPnN&dh)fD z_+6diYw_`K=S(1csFt4pC4KmwczkI|aQy$N!{29d|1~o}y#WK=xKVuK&#`SJ0HI+$ zf+K7E>k<^ISDOoX5*BFw1|GLZ?9o9yFvcy&FO1spFJ52sH!0!!U_v;L!lx95Fr5}K_Nb2)O(OniuwEZ zXrfdfHNPM?KmYd~o2dB@=-6*~o5p{!Lla019H1bYv-}Pg(H^hh6hlxizx_sg5hwnLKK+&3jG-ueMJf~o6`Y||==WD)D8jxF z0WxYzluo0j{NK=8WY^HIY3=Xup6Ua|`wd!#q|X83xUj}%;v=a;nh*3P{_X}(f*7Lip)X#DH%ZmPnl|q^e7t%VA)`CJRv`iJsF3|ZX zDtq;(*ow#x01=w|{N>lJp(rZy9gHY``o(b~Hh%J)U$zk9`C-?IyuNP?>Wh*6hGjxq z2o$iPF9d4e58K_3T*CKs5UCxg$JSBH{yVzLuQLD-yMBFR6Y$G{6`&^k-*A-3s@jjo zOUT&fr}u&CphZ1DY2ts(;eHA2zw{ISh!*^e#Qnh8!K4_!*fs`ScN zdH=SoX)2#Vp&{%z=U!E0ez9J9*b1F2Ik1 zanE9k9P6Yeix__UM#|t-fW>jDk`ruH$q8``^iwH|d!d%sy*X7KqS~C7WT6T^`D zFD8UG8RHnbsV_Xc3ykO7N{AI8N|5Uyhy%Jvai=c&Kx{ibhs+5;60WN?v5aymRqtmM z8}`m=Or+D&U?S0gEp>gkV_jr)L&yLMH4sfxX3O+3p%?mvYovR$$aEw%k+%(Nw z7_d9zM_l+YWniy08ow+@6qZ&dTnio*e*VRsI>xaD5I(WR=>CVkjCUP7wk^E3qINKh zm+B8y-2(9hFRAA3FiVXujk(T|PJ1Y80Ha!X#9zLLk=p;7Kq49=Rc-UJ15yf{8q$Q) z!ZQoCru{50^qCCLIrsAm3v{hmS=To;$>pd;P|=QC!SJ^xmeXkGb^~<$+adgHPgC(OeOd> ztKH_xXUE6uwo-~2mhW-w^P6rS8_b`G8jyEpmCn?7LJsaeXC9NyD4ki9ax~)0LS6V! zrUhK&bm602*PxQdsF!(twz*tYZcnbih}ZM9UC$DbEM|kWMDE{-drqqE4$d-Ym8w{Z z+=+TgDr@C@e~tc%%AukHzEXX-)Ud*mC|M$Gl*`@So+)L!X+tkF@3 zqgHO!Jy~&`XQ)Iu`NWI3`5W^_=>_LFlJYtjYU`F2@@p=Od2)LAJ^VZsfO`W_fub;s zR27+QePT?R7~Ds8$c3sc#kz)F2YFW&(RTOs^BeM{dvRJdaoSJiOU${dgx#$=#rj(! z4UbXI1P$$l=0&1btG@GIp;2?*#?GeW+k1kRC!)!TsOJ=*)&naahMsx`ZLiMto^_Hs zVzA5EY;E{?^<7z3MTqG+CT1#u9-I9my$m=Ko{r_}!&%QO4}-he>p^6*EG4aP$-tUA zYKIgK%xqDQGX)Axd}3P=Y5n?DuEoj+UyDZhT)L{7k6!y(2AiuY(4{f$M!Bujvi-EV z2RpYp_ghFScCO^YnDHIQTSoMYP1^+07PK|y?u)xG&5<%lo{F<)VWbhcTgP4Dn3tw= zN~KpeLG|h0(!`uY{aG2TfOOOJ_z42Cd+doH-hjvsLE%{^0n-C?uYd!$8!sTa%F~c5 zvEss-X7Fp>7!~yjD!hj(gFD;0_gl9X%+LE!;bW!k+*G938LhbE>oCE9Fu)wa*jFrl zcgBwMn}R)7rYB50l0Tl*U=S=`Us`zk?#}JU=R)4qrPDIJ^P%WUljH1tQ5?*GDbx5` zE;ogBI843D;iY5(MykoSLN4-BqLeU8F&XuSvkanb94i6)Y-TFq*Pb} zPb(?G1@+z&00PALA`F*^iua1{b3fe6*%z}ZRC{SO8e2_Y-Tf@V#@3>jt{y-*D0E&a zfi>K6%`cuytJg@Z-DiJs@3s()T;{gFf5;|GJrw|=JC~n_vr3!C*QjToL&yV+JFW@X zsbtMftP40e<5*Z*#tGu3U+3KM-K}}4oB(aJV4owQ)`$#e(tl#r|Mv4(vr@6xqF?G9 z_Y~(`)SC-EbOPy|G;(e>`xDvL;v><6-T~^AB^i`i3_NR zkrbwkx09A`D4W!sCmp)2&qf3A3F8u%`LJD~F3aWaVc$YHFgZq87OeaLFwYs9 zE?t|mN#nQDsjt&@t}mRIK>F9w%Q z8m`808<5uzTnhPGpx5RWvkJcW?Np2I!25@IRjGyhgI>!bMvdaTeSm4tW{-lUGb10R z!H;5MR>0ws{U=npzUnv*sB|XV{PtmMr_!y=CYu&@B_42`H+6Qci&FWs27=Mi1tV=p zo~$}nKuD?li?lhrsk#_a8&6%p#0uEzJ8|eNIaw4TX!^GGQn$?J zN$ov^a-4>%CDepqq(Uooy)^;p>79qG`9x;kKmuTFE}#P5JIuhvv@2SYPXxVQ(@_$^ zy5NAxz9h>n1tPol<_(}o^4i&viol7X1Z1rX4qCrP*p5 zaX=I6H+9b*Xy287gw`}m0areqQ$nHc!)ATI^bRwal`@J6@Q41u6-&?oVn9e0II-+5 zM(Pf|Iw9(o^$@qbaq^#A{%4hc2gUC63a$0p3%gr*HJ(9wBpwHJ?2ud|5|z$k@&j6K zo^E#{8D(L2??NdI6H&;7P}R${NLBT~sFMmcX?`ju6n?G3;~i|AM{_=|<3t2?0Kj2J z^HYs3uBX_y@d-PQw(!^|l+J{uKFHw6TKN26n@t0JgnP){U)X+>L$vw53=XL6VnjRh zfeQxX-eCuDEnY>POAgMPbtucThE1yb>7mUBU%ddr&?Nzq^Tp65Fh+_q_DA3K=Ig(_ zu*rX=yFr9)+w9`r@QVu%&*WSx^zG_*9G3>L4|g{xTze234-|To$6vlpU$#-@E*s?5 z38mCbNvwbn<1`s0P&|aoeL>cQGnnjHSPqz&-bKpEx@`O7tx_nU&_)797CxAW{i;jC z-MbZ6=r}ZU8~3YSdnpRK{37XxWP>kE@H&N2T3NkeWC2&t`jX3TxtuAh`NTG%Nj|5| zRp%$7vH0nuUU$}lU%Ldp{oTHj*dx?s=8?F?86U=)NvHdA8K}zx0^vC-cpy&gZ2ulQ z&%IF|vB<{9I{EB9d6(cg1V>Vp@)<9cIWR`hEy;Zb<}+;-ulCqXj0DfW_5^92y61o9 z+^w{ZXX=@nPa|eUWSK!16duPOtelY-f!(wj@N7TYEyX==7PcSzEUZ&3mSQ=ada33LMFc~CWMJDs-D4TS^3tqOcE{KUSGsP| zl1;uaq)PH2YDlI_5H4SlaHq3)V|GE%7DSfCaT52dI{6@ct>ihze-EJ1aJ$jz=fXaH zlvZ>yF7K;-a4#zEV%EM9D)f48#S3@adqtp`{Wc2ww2PCKIt}}U^rp;nLp!zoY*Gs| zM+z)D*h$tX^56N7MyR-LPYNC~Rt`)G+Pm)ElbGsd3}0+-n=2?(rkPzB%ixizB#L)S zl(TesaAszyuiTVWmD(bc{`1m zs0FMaTpI%D^F@_I@+fjc20nTR8wZ3-z@So^wiBg<`%zC8-M?;uk^WTHrR@m6YA}=INn4NYSL7 zGl*o}+;0y5Z3j@_;Rt8%TDRqWa{8 z1|ce(LvVzxtYJJd3NGD}_Q5Jwg@$k%p-(`vpxB%_V@v(x$B(wv-rH-J0drp)to5x8 z+7i4=sm=mU6mdVwZ73RPv8=V+gs;DcFW5TKEaf^}XSri1nO2}6MY<=12RhDXb!m`X zPU()^)R6zC$mx88(U~{C(X4tZBx`F)<$+Ge`4oOU$d%jdH z<5J;OrQO}#g<79o4>-l=m_Fi>@g z&%2Ytzq7OB*7oj+wdd^2Ogx9}Q1vpmetD;gnxkJfV5mHo#Y0VD2+9GutidRpeY zOcS=vBPSFC#@RK3LXI2<8$ZCUT6b)YUFGCWQP6u}NiYA_2rEGSVpKaaU;*PYX~E^m zW^XehNfL&o^4`v-cYBgp??7+wIwAb7?$cgk21(japFY{y*)5tb+}bksnEn=7IdufV zCB?;6cO<>Hh=3SgIrD8?5cEj^L#bIuGHJ(sDc`={-m=so=b#)_7VysAu9%1OwLohc zZTmh-Asg{mIz_?xpPMll^?DZo7er3AaaiTXd{?@WYKc`Z@nwCQMY_fkTe#YuVKsHu%zqS^!(gh_DeV^RPBL&g+oiSgy$+8 z4*#gQs-BGwvTtWCWSR?grCUCvgoY~J1EQylPI*y#_3ibA{n?e7H`{CT{Tiy8oGW+% zO?k^N#)90o*97^DU-?l%jO00Ru|r80hM#AsGDN?S6ibr}rI-=XrEptWq`$>-E^ve3 z@U;s-B0$;rQ3}evNf!W#qSbSF>e3-_xW06X)68qmmoc2ZS2h+$x>jF^!%xdlQc~^* zkups7WUI(Ze8c~va}JXgSu|eE*2?_|=$<@He}e*-R!-j>C6B?W3P7FB$aAAH$wJC) zl(KGPq_S4XS+gQz>obVZZVU+fkfGh4l*gjj_H)Aye@q!|?Or`0+o5jb-1?h&H@=2b z0B)@WXc2(qyxh%=R5#R#Wrr|9$MF>4YPQYF`H>i@GxxfVqwWjN4)AONIj-fGA;@So zZRoR4yXfoPq);>lvpM{jJjuct&g(qeeMGnP+Jvah`*P!fvnNzF6%?9P367kws_F1m^At)y51y5$z`5V;B9Sm5{f zToRsZ0cB-npQNM%T)DLHLDp7Qdpd;TcJ^EsYM$!_h_K=0Nf2oIAie`=&tuu1%PN|C7pLz`>%{Ch2A;D%yq7>aXz3>Ui&~MN?v;~Eo7?>i0%^_O|^lz+G>VL+`g?#_3RyS!lH+&smi!o zv~SlNE{;DTV3Ia(r01*@zyn#XG+e$P9ul%|b0e+RGt}v+-VtyK*%*)vFgp5GtwCfQ z&MlQMgHbXpHV-MJ$a;O$XmDx{pp7S@--ZG4rLy3DXd?!!qBaoVgrq zpm)~u%z%;P0Sv#lJ*%BX`YgONx(l{7s})_FiWfuQ0-P)=21CJ>sRg{y^%g<_;q zWFh9uR5s9Y0>m=VrvUHtx(p=j@{=wmor6bVq#k1x00jPu1)Opa%mWnR5s8kgi29}i z;%f?53QQR;O;*H!3Drf@KwMo~2*AZAkcAX56w4O9jlqa1!>MQvp!VH!U-c6!K#{KK zlSA54B;sqXPp1G|&QwGU2z581Q_@-kP`+BU(5Lf!q~O$bOLA!xeX*sL^*Ti z5H=JeYCJe`289JWz}#vvhyksaTGJi?vS|V=adJ)(xTlZjMV6Q2cy1o!PiN1V){8|P z<;}11W&lur4qH3Bf4k zFLoEl^mVC(&TAGod)NHgkARL;K9tA)*Gs1aBPm|U?mm+<%H5uzCHKzk|ePiS{-W2IsE z_VJzXeer%i-}A(eAAU*Osc)UQvtq1nc&W!hR`FW4Y1`pGOu&>zuXRLl_dT&crmyQ< zS5WxIPbqADI?|nALcK!%^7(|afpISoUVwHo_}qnMI0a^1XA!^jblE;xk!jntA_k9S zX*k&xc!6|{jCubLVJYB40kXfox1;%84OZyH zDM;LxmOaeQQwMX=Xfat=5}h@=O_6Vi{~A@bO2K8ub zx_Gy?g~oRHsT|#u$8^u*llQrIR{D>WM;`Zka5CZ;W5TLrM1=3-A}`h7cM(vwC!cwV7t{H^l+b3dycKig=4lDL znbG4bbOLzm3xo2*++6n4?=Lrm(9tx~T5SjzLu1^+JQ=#J`><9Mo{Yd38zy`qmaS9> zTAuxcE+E`mv^!rHEBH2x91tnluY8bv6%QrJ$djx;J$#w!eFk&oDqSGJgP#Lg4b2>_ z1OPJXGKU3V%+na4HxHkjo;Y;T-%{l^2XP1`J3+1gc4yH8!a!2m;GDJoPBS%90gFze zLD97{xlM1QgzXPIS&aqOH@?81XoNbHMHb=l_8)r8(f9dSxA zp`E@DSGyb-i0A}wBCs2%Ww;PV-(Uih#mj8@a3hG}*48OY>#rV#;QGQ8;175;od5x) z(G}!u;kroUfS54?RE}k*CWZ2=82I=t$rZ!qyElcsN9}mQ#&51GkbJtHy+^sp_N+Pb z6TYq0D8J?5CX)S71=lP!Vr+>MOmeN=v}Du~t5p$WkzO|nj9%(G+4gS4#S$?HVUH=S zG~Z=kR(m8bvA4Msf5d*W8%WSgy#=uRs$m8;n8-H7zG60_+UW@s6n`NnCFTzV*zglWlLaA29E#bIu5&K|q$($MtHQf*REeaE2lTE^T~hX1jt7 z$fVEC73Y+GB|s;?z)g3ZS{HNPH>g{g>!;M-|eo{ZluwUaQELp60awpjX{-PsaWJ^_C{-J?Z)U((kL*DX(){bGY%HVjs0G?cdY6}*-nKGO@htN zQX@a&KHe^j<6zYdC|jnujU1l-)Dvo`edP++&~wq`gOY%4FI5JqJ_dH+e7OrVhK2PT z*o)R1KSe93Z+1g~v2m5zBt))h2PsO%w-w`maTB zT%5Xo+qJRiMzLD$Im@tQamqL162jn>#6qe@$9GG$7xN4#X?jnc-v5+$3CIWCVo{1f z#P-WWZ_eKDqBl4aICg(I17bgU>w~i5P_1teA1>eZ@WVNy`jPoMeYVrWCFZ@yf`EG1 zwy9vD^*%1`(!20B%Q#rb`XR5a6#}l=i_*{2SP_&>v-b885J(~;y#7g2LZRInAIteD zvfZFnx%cJv5U&qxN7-U%{I`fEEQ#sGix_eT?~N@e`)n+J#-=XIi`;xe$)xZ^e|jyB zW`C#sk;1GcHh8l5WC6`<+&)pA+Z($0kCYYD(s`f4TUW6Zfx1sn1>Ej!*2RM2V%eG3 zkJ>6v%RRMKN7XVrPq3Ogn?)y|u_Tk{h<=ZI#v7*dl9;`$YPKu_1J*5g(ed`JA)B_% z6Rc11!$%)%_f4`4DG4n_UD#x7iaCBJ*@)CDY{-a4fb)nVZKB7>;- zalMtUeHzO-h)b)N@yn4#Y%&AyRv{i3O>_ZyuxBLx;wq7+lR5RNGYi+5yHfRh#dp`q zb)lJIbC`QO{5^p{YH~@C?5(Jms=k~}0vL!z9%-E&9PK=6bnFoY2;^^opDOFBO)KJa z(@?EOYRPErj(b6|awwM=G*#(-#B<6m?MO_olg3Z#g%W(K#}=%2iWMiaudLT3;e7Q= z)3};>lxm1f^DEqdM~X36+rxc@Mn99#CBjIu4Ii6sHLL(rZ{-%pTbVqkfI{Jf{e}Cn zAOz&Xj&hNBt@_y--{QMSU30x|*-Uk#w*T{oJvy(w6@vKrV)m?w-Kw&3*LCRYz5#o< zxp0loreBq-4cM8w>H~XA2o}ewGjO$3HFY)$pkt!Cav^l%^Qb&yNK?i&A`r8sM3pbS zcy)(Dt7*G&i`%Oc@m z0fo|=9Tm=V6tqed&Gqn)S@;>3!!E{kn@iujfU3(?z}04)Z)mG@Z&P5hk3|4Rgb+r~ z4F!;wl+ZOcz}@*6fg}yPDPv3DNBMnx^VH)Dg&Z7=%?E68z*7dU<{4g^cO4^j>(CLf zrlH1DW`MEkeZDz&1W|6RSd!MXM6vVn>MxW{mx@CaVDnuhm$Y`V#DH{ZYz)V}l30w? z6GefCfPm_k#NHyCm82ODaL0kl&#N!B8*Uz#eWQ5h zDO`8-CZpw=e>#<=N5bR7@9!-~ZefqHGiCV#SKP|AtrWG`1NPdSWld9v+NIA5KuRyRiu6_cN`HuU3&_kzWksbYZcXSxy$j3N>ir+z$tWCzOEKi z34I*sUsF|RGOROh*K)+h-&B>(pQbnOO5KXwhUd1t0aP~ql$Yz+wyUjCVw`FK<+54f zy!r4W9%?~bO8rl-8;dhF3PBOuQu0OP><_r{;8;4hVU6j#E%9Qu4?mY+1yJ%_ZoZ>q zSzr>xfQ4ZhFOCran8-^7636R?Qlg~{kwIuY29?e)=)x5jX` z#Bfq#VPi)N+h1k9n0cXTK!FUvI!uv6CeW<6kH#?1-sO$v5S16aDcfarsmz$!VWP#_ zfvprXm402JB~;)^XyLSH!vH3%jjz;>`Gb4`aeR@nOsVMG&Qwp&hVBpew+qf)7O;ez z>Mx-ZahT#28IDN?&*FB|f~9@foZsd+49o3cFalx5QiofFns3U^P~qgB4goj^=Ac!*S#AN1#233UU<(XvTS{e?DCC5MUl2axl!1)Cc&y@61k+(D!$|q~un^vH4gz z+EH|jSu^1JbEr+5y~qc?cDl-daJ}B=6}r|9p){(@tg=Bsh!gs1|6@zcUyVM4WGFzf+<;<3UPJ>XJVF`JmLNRprW3p}ydtTn803%p7K z-5HL?tkcnuAMX5^SjCYy8Ic7Y_xNR+kAtmxD@du!HWoyQ z;ER2a6wW3y#rTBN5~==~dW}>bg*cjC_*qs+Qw?sGLASN-zHG z7ON7kRUhxEdmkg3R%NA*20Z0pb(X^e0Ubbf3<7wh^snj-YrKw=kdV}}g2U$NWsb^| z)$A|QixBo3O|saIw3;S-AJzGHVQd$Qa<*ZITFtY~UJ41{Zb~vwZ>ebA*DaU~zb@Xw8&s(M( z{rPamj7Uf6jkS+7ZmKjv{h>lj9UY0nez-##yw*e4s4!q#VQY7RQVUS&MDSKOyM2;m z3HLA+2|T=v-dme*qUR!a*z|KW7l-d))DfDgUd{0|d|ycpe?7qgOKCpCq8#hje0NNc zBB6&HKY>FhPeyP@(24eH!_Dh(&NyBNJ5q6<6%4^^LUk*_%mwZX$Cc&DO!pp~uo?CS ztz&)+_mhG0W!d#p^i{d?APfU25H0g;Ke2wdWGU=4O}4kQteQAbEBrb-0GBpl^nD}T zZZ3p~OjJzF2q;gK`|OGq8NXN}1i!C#=f@+Wf&;nVRIkmYyOQ3buOBG|;Sy57pA+H< z8a0Il`{5D-{W=(`_a$%S=kriQt!^G>RlL%fa(d_93FUhMvv0G5-j%lS`9+;(a-mvP z!IdtznK9iXH0>MPYO|yo?_!|bg``^QxQO!9mJKQ8VPMMEIhT$JQxJb}zN zpqN(e=jk753a-p}<>(fW*pD_m$5^kiQRAR$)-R)0+>Fi}Scd^Za+Tbuui7 z1uWkm9wIb_eJa7-SeZHUzM1Ixm@h+J#Wm~mNrD7oy$fAVIH}3&3TKm;vxUT^*_P;m zUCC_o zUbx(4g1U)_KGc_CH#Dm>`)W^v&ZSycI)>9!1`;${HqUmeNEgSuYQ1z0trOIr_c-$! z1d3vym<)=+lxdYBd?_`1Kiu_Q+LjrsIFq<^i|N*>%auo&6(Vpv<;^+tQjR+Dm5JOmZP9vOy$gV>pgI zu^nzV0&?_WwPLF?Z%)=Nh!GD1#wS!a6%_?vTpQG5(<^1s;=UAmSdPwJ9GYMT#K(3P zeTnrowcf6<_v2k|8yk$Yp)r2VAG&VRb5ZLLK@u}lfy^9 zv>PF?l?HORl?}%9h=k{Hr85I%M;L@VyGk7w1&@FQW+0riH)7sLspre>gDiV;MtG(I zivXw%+eKqxyH zs8dsk?eLI*_Puv7{5@S8t{0bWPWgB~F=|Mm@ADJ~Q<1sMNKjcPh(1uMpR}_WBv6{{ z`0xPK4AjO>xi(Xjsu${7cU!*a*svucGkrPoEJK7QqM4N8%Hs~A0`dSv)f$MzyMV+< zmT+(V`g^Fu*e(xA4pcO91!>vRJ)Ar#Ei&m|7*o7S@i70psXuaA2YHa^;iT%}mNpM|4 z=-Z1K=NPIFd9}T~k;};^Eo|0K3)F(af!vrZW*v}$TsCC$T$#S!6i%}o9hh(M zwC=e-KEz|iTyi#Qx2QkgP-+9 z+zTvFKbs8R0KZ8|{YNnvIR6m5K(9Hu<=#XyHnkY7!?=9YO1xUSqWySFGU4R`*XF(Y znnfKxQhZnX#&A8M&J;Q8KC>c)pdK4x?>&L5%^^2{v_k4T!=yrscOE&0Pma6OE-~s| z59@o{6(?mU;B0-fu>K_Y+~~vU?qa$oBAQ64mlw~(R?kF(Ps=!&4-#14E0rtViir|2 zG8M?`Ju0a*IojQS`yRH8#6o10JB7~E5lorr^_#|U-ns>)QUhrzpPie2#|dF;OFDKf zV{ktA*1E>GxG{;Gb!L^ML)AW^jR_R?7}GNl@*}3I(w*7hm4(;$WgCs~Bd%6&V|&$qaID!%HdnQGz$oY!Rb&PWfxS%^?|lgIPI zMCJh(dpY&yv=b7G<{Lm1cqxiO3j|`{KgG76=?fjQ4xPOpvv_k61J=UcBq=F*soain zpv1x-sB6K1WNxNL28r$ys~4#Zdh(eTZ_Df~4zN}Vau3lbVo+5o6i`-|}V#9~t;3@f<7$YVl1KWk%qsg^i5rNLs z4~!uSM>+MG+{VG!@MG6vZ&-%9?BF}(_unQzdi18rvX;^2J=VoUDE-UHyoR|l+s^9C zMsBLBr-QFXv}lOq7n!_>NKV?m@;T%NEj{${g5Qz}XUgT?p1Yq!XxcAYrs_K@9Ob!i zSeaU&e)1#Dh^rmL-q3iEUYTv0e)xq&TEQFpXQf)-VEeoyVRX(Cc;0&+-ubXOCzDdk zL00}L#V#`$IPBJBpdqsi9t18EiWPuYPQD~Vl+yY9@v*c< z@6rUd56UIFeO6;p;Fy&`WwIj-M49sTAB19T=7g$t-Sr~g< z=DVM8`m&k#r?T&;>W?i(&{<_IP_2J1P&R7D9ND8&h+>yD-HU>_H{op9h=ut*T7K5k zL{XaEJMn<{a#cy)3^t|RSdTLf-cy-9aoo=v!wR%yMfh>tbd`?ME%b`i-8KPwt~Pa# z?=iR2R|br~xV79B@^)4m$ivNg`v$DAr)~2w0cBJAXd=MV*6-G6&f(sG{?8 zkf3#jt0Or#`aDfLI`;OU*MxhX?GgG+zfU7f#dnWRqc>nS{r%I&AA04Uj$ESq!$D(<$?kh;7$voip}MdK?tU zlQJHJy9v7ik6P;RTZ-H=8~NVR?vRv5WMy-O#*L~4o@}TUf5xj7s@@{y5F9h^s<*N{DG&+Nc+=w z)9Q=L>v4B(+G@!Gp4Ou-WlvMm!x2m#vGtXJ=2@4Nnq4u~t7 z_7isfuGsD~T#0`8!c=I?4BvQd(~0SWBn;1i(pd`!q>3-DFa=%R9Jv1Z2uni|E`Ooh zApLmTofbC0w1}ID=8jy$fw{p8>_bVW-)|`lN&2qg5F9=s^S=DEn}ik4Rb!2?3{~0} z3P%DZo@^y4q%{OX++UGd=@;K=Hc?23kboJ*kvN*UU0okxFeJ(0c@+bVI0r9~RbK7c zx)K!@-e<)8vG4QVu4jRuT;EMGm-+r;eD|esOn+0Wki=We7Prnke*lt=RZSLWk6@4r z&e8E5TnRWW4iycN5ICPG9PKM*)nA0$7;c)+L|cSU>{4JsLd08S$j4()eG|abr8xnsz{6|z&R1x$dYE5q>V1y6X1R8c zb_fF$t_(4F;z2-hDk(@J!S__!s|b&_YiYWyX5%lCD04*x$4D9G-L~cl4#l+vwPm}c zIA=^w4_lJ$4V4kf9inJl)$4@}88O}GfWT&{_C8$2i1?`IOoSKUSw<_ZwQY5&)JDW~ z`_+enE<3}%DP>Al>ANMWdMv{3uZ_KBl2aOYQ%g?6gviOfBYA3{ifvx0v^)Jja+>1pmwc z(GA}k_&sMEO_im-*Yv9)PW=hcaIj_S#jaaZ>(LH+ZpAsbv|$CDBJU&Q7VCTY?tO)0MgRQScs^F&$3&hh3&RXV zZ0;T&9G~@;`KYmEosyh4(iP|wn*tq^Q7|aakS5 zR+MDxQ{8LgZMQI<`%+^AF-k2ODZD4bsNg_!3tLK@IGe!DTv=urmLo!|_R!6uB-4;Q zZo&71<=MhjvX{r&uO0@!vOa>-oYP}1IvGxo2U#@bomu`^<6&W7ym&Fky zN{RFiE?T%%06a+NVXSea?>WXux&4^1m*ydm;o!R5j+>N=26XC*#@Tp^ns<|T9X%FB zMm#d=Kr%+~D6YWw1GysH^iS)0y7Hh78zQ2_+U(l|!cmnqa+tKla35ecz% z`Bl6a5pa%SHsk%C4-gx+_CzWF?sFmFKVLjrstVD@_-Q^!z@7= zlg7Fjs(xPd@{dX%Q`QG^~UG=`l${>yWLj79rX{S! zUbhz2J5Ti~xV1gTuUAmN!tU7G#{r-qXWf}z!^!<#DiUaQTkHxxMyNdsw_EQS9O)V3 zH@Z#@=heL<`e;%0gw*+?T4Ut0z#sIYTz4V5Kah6-a#kCKkAR zcAKlZiu1kC$#Ia(8uLauyU_;QvnYknOSoNm7f)7uu2aP2?fCa=_*9qa6O@OwI=7Au z^ot35e=-h$FLvgQc_}Xfgchh&vuQlSIT5}l6V4%MzuZo|H*Z6ATG;oq{`o}7nd$k(ZJ_~LOB z()7o1gj)lpNM9qdqdf1XLv#8apFeVO_uAPQp_IOqag|))+E7HjoJKm8LP;njf&P8E z{Y3-UXaq@3Y1ZtCpPc*Zf||qXN;%D#FZ=VJq7{Ij z_Fqs;r=qEm>T|mKgq%Q(3T)i@`o)Xje4RR|25cBJj{EZHF#iMj@FGQNs#I5woYUq+ zK(ouzad#!rD{A*s%{B80Na#c`%7*CdMy5>?MO?QirG9#D8?LAGz) zQsz;KXF3)XKJ&&D-khTD6+Ir9J6l)kF6QJq*O);?12EpCdmUYvyBB>zT+MKxcpul+|52yUWHbBd{#PD$27c7jO|vfXI^{)WpH-8vT)k! za@nyXQ*KP*m#Ik(b86hIogN{e~P-9(hxqq?^BLL{;^h-*jQ;g%bZhBj{Xp`PZC_ZujIHLA4d*2y9fP9ES z(GADn%XzM6qGLGFzpW0Yv|S+h{CJ7w5Ekc4QybtJ*HBdm)Ceb)Vpqw{RXdJ|RDz8C&xmE8qz?m>EVlvXS zkq`MT%{NAzmV%mueblPIb^ZD?Ix&~Ut{|(2AR6bMN@q)hz>m81@+l@A$#iehmB$?W z`c>krLi#qBr__s0m6PwD3hv|8kx%Z=qxW(20p z6CaFs6)n`H#0q58J~yH~D2-U*ofsjBij;h!18M}|YWt6TS+VW@{JjQXSXzU*eld|` zjc+8e@BM}#(glA^Mt?u+%hx_E?n!tBz<@_e>{gegXvx}>Me&64EL3FWn4xl)t8 z2=qv8ven|Rf4TxxO6)?4lodHH=KEKM>*DQmrI7=2#%V5JZ}jVzl4pN(HlF&n8PC`Q zQqs-c@H}gprP`CK(IJuNjo(D~o3fmYr29bgxWL~U?(lY>Ny|nOPD|p>^wb2XdEQ`W z1~I=UhzoBZEDiMP?RASwi{MEwA z19U%LwYpnLHpJZ&s(tENR5bSHohxghqXFc%g-gWTCvkl5Le4`>2k0bSqHJY~9P15g zvZ?j<10=ew^okRdJU_JfIL&`HQkXyb;zEjkyi}oi1?iLA{ze6wEgK1(?N>S*Q-pDC z%>`Xj(t>);iw@6Ba`Y;Ln*~>IZq5_j2?KX8?}6Njqu*xZ0AXF^Sv(LTXF7#jVj8bY zTXQ_Z>&8;5VlIbySB?APa9>mXXZ>cB7K_Wqc3wn2aO{thT5NQ;fSm2@A zMbO&L4)D;s8nM|NWAW4y(43Nx)F3%rX3Ow?aG!>=(T$h})a1hU>GdN*L*FPmD|Rq+ zDXNfRZN4Lx@G3J=3@vrd{UB}cfL)b7K_JsrR~xuS6498x0=0d8DCwQ^Sg~{E?nG1X zA>)oA`>}=_9j_X_h)+NHd^XbOvYpj%bJwa|deX+MpHHiIsVuPKvb^f(DHwyfQ679Vb zX=Q&&)Y{yTQIY&k+LMcMV>@9|>Gm9t53pWmUaQo`~Brram-G=^4WG7uEw_yHl*;J zb{jKok)6wC04e#>Vg6l#F@Ovr-| zK(^J$o{n}ram7qj6E;sMQH*cD1eL&@Xj+dA=+7x$s)wzyX(kfeR0P;9!%i0y9XnDk zj?~OA?~B*cZZs>np6!WU2YX`d@CSaw9=@(?-zA$carR3^j0k@gbQDQQ2R-+yPF@dd zOlzE=ei1WvVx#ErbD3Jgz>5Gw!sp=0hY(^pj~bv(ehomK%;`HW?}1?5u`T<_8~;KQ zGT8c**4^g!#7|a`&A^Grm}!4Y@%~(*dfoSEoE7xslaqe>m@8rU7VOcWk|9}+6!_sZY0+YfpWBfhyhEE)I@ZsVzn86 zq(fT)-*9O&VX*-gon`L_ha%leV#0hkQ@%CWu^P+UNbB&Sr3>vOc!c30xqA7nL4!r1 z;U>B~S~^QyS__yXF;z%FwtgIoDFb>y1ixN8dCx7jxGJP9XIg{-_r8(-RaGBt3izv| zXBrT|F>!!VebjRimhdwBsWJ)Z5-AV;gqHr}SwwDH9@1gDHDdBQb9c5cMG&CGxCVed zX(cy9h?(`?+N|60*)X&D`v)mrAGZ5!^Tp#4*xT!Ubz8{D?9@d4*$9w@Kw?6{HrEt+ z;d)x?8&>b;qlnP-y5m#R3JyW$1b#lS<_ZFZ%oi!UD z(ggjeK?PfU=nI1fSXp2AaxqsQRi)DR0X^*-?}i^shoJZO)3y%Kf*$@^Mn=S*x)$~* zUSf0-FazJPW&nbzH(!gh-g*`^=!Y9n3<6B>#p#h)r#i#0<5KLVSl!xF zl8;L8?+g~*YoE)b0`Am5lGm~q$r0&(dg4t$hEGo%#iU#$xXTOTq@4@hZ;1S{xhyO$ z1Kx;Bw>4D&a-SZW)rQF(`h^lk$*+80E9YlI9N>NF0F4(?Xz8)LpxXt={U;1`99~in z+{-`%NFcI~vd6IB{fKt7XZ?tZeEt0&ODVJ;hzyo|BpE6CC_i}Nf$7M6(}T~E8(7yB z#dyJP%r=}#sFk0AyT%MOI;tl}X4WX{MX4_I3T@POaV{$J%L4uwFgJsuggIz6H_`;uJMOB~RM z)0L>zfV#cW<@OW_&&R~R!|7gGl<{?LChIwbtK;tj%a~LLs>M&gj(-)n8Z1ropf&m< zd!O_t&(jm?O;e@k4dDiopE?$8#*E}M%P|A!0W_s4~-o!=m#%7Y;E$qsZN_&H; z^9Beq&NueEcb`-CUi1t<9VYu;?FFgYxk8GEr>I!)VqkU|K3l(U7>v7ZqkZ8Tib1s|4+bK_pxv1%Vf+%_%#t3}XziiR8OU zI)Z(nRnVjebfqr+IVL?kt)eOWBRQ%&s?V!*u=lrmtg`&i?W)bM{aN|cZ(5u*! zIqm@RKZ4!0F)7dp{cx>IQ3LFG>Xgnjb$rgeZ<0u0lG7y@L7c_yk_0-*be@5J&NSOO z@mzyPe29KY!fpGLbU6FX$BBk-lXdqmfw=!!`J)9c$6ArGT5tb1&0-s12btGK zlf3U!_lFi`TJF|NiR%Z3h`|mW?(&8Uxa7=_72;0cmkX(@!0jb%KCq6EXK z6!a97hE>WjVl~fK%M*?2^K_zFj-V@52q#CG=2Kheg~n_&&XlFVz%hgPN@J=YE#cvB z6_ZtSjGU^e?6l5jCCFl|iY#v+ zAL-{E1Ueo#rmx3RgEHy+9Vgd^lf6Q`_T!{EyM_qR;oKS_MqX3C7Iqx$Jz4gEhG13n zDOIK2`oRj%NT#&4!0@X#GoY1tlfwdFmx&qg1XLSbgaLhx3REY7ExMeocMHdiL^pH@ zgaoUvstRTJt!xSc1IT|H{%4>;@z;7MhLf%!O$Rv7U=>$2v%_3lW_-IgDlT*u*l1Y7^DYU0oYe)E0M0mrp9jlbF zxl8(V;%Dd5d-Yg+YuF9M@Yg~i`MCTJKe)&sdt$g{3cbU`vMm8rA*S%j^}68o?nOW0?Po8(CU5X4E(933(gV)|RLxn!Ny^xat{A(8r^+(eT z%5-ZBKoTJM=m!*>^;macDZ?~4dtKroJ`VA<=~NNY&LHm9DWk+sVHi!vB4Kd#pbjtm zCOY~HS51QMKyh(D0yZ=qi0gm$SQ4YrL|-P6=1 z5m|LM&`36$|A?I6^pPB4-J~-H6lb=xtC!`(Qa=9Skdk_G+?K8)F z9y+)zQD29%YrMK9KhwRgpmsNZ1kEJ7>(q2BVws=&4QNOb^>P?uh8L*6W)2P|%j=)! z4lh;J!e^zM*dQl>Qq@#t*k#5Z@eDBz?3uA%FZ`b2tZo5;HuE#H!=J19OD6%I8V-g5 z9sd`QCeqL9X%%`-A3~@vm@33v#163OAMgAsAk7yK5yw7|LT^e2?HO&)L*{!v;a>>b zqw^@AZ%tkzB%rd^Dt-n!aE;#gx(}DR`#Kc-x2+fM5u?i$ttZJ>-Q}+gKMV-J$~&iW zrq=-l!65c5I&~%Z+nb%cE2@ghDSvTWVL~&1))I}4fG`3Di2)GJf|;QHPUhPH7BlP@ z&UjJiM~8;>;FaS5i-&!5h6Ez&$}=fE(^lHx&EN+HEr#Xc!mcfSm-0tOj^Q{ZkV}f zZn9R?8Q)+mav?xb*BMIl`WEtqEG!{rc{2G`FH{N}?2gn0mTD?w6l9VZVAcP4cX`N8 z7vtl_ID~7ZK`oY_pC4-PDcFM!GTE-h88QCF&t6-t=7CQAC&sTcZsFs0SH@j0*|a>s zhI4{qx`c^@c=Oc*D_rfe}#k<4mvII08>Qz6*mvS!oC2Q(|$8Q8V;^U zARsBYVBVkg%=|q+$H<~*Soj`QPbLRJ^1ElC_`TUshJR-m`Ag|B^?0s}$|v4W z_(Sv3or)!Mb;cR=!F~c0qRY^X$=MEB?HvTc=6QtD*H?b%-3Ru+~@x5n8^znRfGOjs>KocTk3E9iyQ0 zG}<>0*T%rixQDaf77PI<-``;_sBXBB=Sg&vPlEdNf zIGKziE^=6rZUye6M~|5A)s*W zq65R}H=EO(cxzdS5m!yEP;t~gBPZCI$sN0}fn>#K+NB-K)aR3Xr4$o{A@%l|L-1;m zpyLs&ILxnkM1A&s7eB`*WeR@^r#ddDNC8?QLH8i0+3N}ZzG3&U4#hb%7&$5XEdwBR z*jrBI#oCQSmma7`k1#Tl$lj3x#bt-h4xIYQ+n`4V8`0WjJy^uuFh0cb-KI1M6RH@? z-b(@i+N=@VSijk8oFGQ8)v_8-1RgDGmpR@8UG=|tHG(VFp=SYJ=Yi~tqieqqi+06} zog`<7#rK`XhV|=wxFkpV&Ft#~7q8uk4p4S_kovvan;LI@WH?)$l+Q-A`L>PN2e4N_ zcXxTXq(Y$^5)vDnRV?W?nIRDgvX`uzs$re7@9WM11PRp7Y;EY+;2IvPcr_AkZnUZ5 z-cqx7ex^GnD#|EDa}hP9Mqj}b6!$oSQS_SgdQK5B>|Aa;gY}!58rFGW1?vj|1~OB} z+d2T9umASRX0txxvgXdsI{QELK<6ZJLMWVoP^()#Kt`AdOlPDgK8T*Lv{P3IrxkIc zBtW&$H;oIE`0Cd(U^J1wWS#iOfk{*uNYDbp-r11ev|L4+9!kJvmZzsNf|kx_6H=JyPO0_b?N3I;W!-7VfsgiT z8E;n9f-4^&m@7(*D0lbU$v+%aL&Ahs-h%zNS^Y}(Ic;Hhw2WNcD1iIZX35kcQAp@k zQWVhOU!t=$L(sa9dJdSi$xu{Mnz$2j_a<^(D+J7c0)N6KFq+r3c~~GINr*PX0wDHS znV%zfHCMDcf&Qxe@>@1m>Zc(AkkBZj$|MDEs)? zH_jhza_vX?!q6FxdqF32g#!4M0jP5A?=&KTSJcZwy| zpPw-YWD*5rFEHG*1VZ5bs9mG6mnDe;r?tgqVM0xvKDc>8VNZ8L(9*S!6$_Km(qBJ) zsb%nsa}R{nW5*`8=Bi-sGJnk-7(a>_06?@At)ArrV*-&Hi3BJRn=oL|zYw7Z+^8Y; zNkp+&#O0C$=nW?HB|0E9_?H@L>llO;RQFt-u`XVG2G~%{-i(l;=o%~@ZCW^Ag-C@4 zXbQ0df1#s7(hO{$D%bmuDEa^tHQhO?5)>f*8ytQR1@G7Oe^FSMy9AU%tGYAqIcjKS z#B$Am{m+WI=xI8@kT7Rc01C$hx`ak`FhY9q{~f0Zu1N>je4s$nF*1O#E|(g9=bZMy z=*vD`#s;8v$hGqTkR-*SJDohgm<}-XnDQxNTa3Au07>q^)JYcvjC<<;<|+8_q{=yr zuJIF_FV%E;8#q5c205kAJ9JPelrh54LTbtZquAvBqDg$AZ9kQD7EzFdM}UzQf4+~4 zvv2Nomf)i2b$Mhj4G=RPpw<42H&0hA)U<^T!5rtCfg+Qr_>7_Jeq}aD)M6KM)B-ccwAn(r0Ky@j5M{KkmnFwV8JV!B9h7>^7Kp}&!p*wS9?$Qd4K~r_;|2pSjwmOZ=*sh|e4wk3iOpxFp zZ+;i;gc$WF?&;lR)~dq@!nY`9y_Iz+ecTV$M}0PGIr6erJVAfU`Dvj0#Z?PH;$ag<}_g&`=HgJBTid-e!aRCedpL_Cx z;O$4kPST$>c^#O5|3dTtH0hbreI6=hv=4VCrINDA;1B4343`^&M0vOM8`Rl1K3{)t z4q&kj)d8B-f-*+;CIpansy^)W=py@_`jG$2LGe8Uv}48$kPvUkIm?z*OYqDl(p+I1zOTbRS*$L+5}p zNr2A5VgtFp{>I;8age_s(A?O;g z+7b+EFmHP?GF@e)%r$5y{gR~KJc6+zG(#BMeOo#&`t_IQ!pe+IdE7Hbm21icg?Nw` zxgvR3@aG=+K5I~`Lb=u-xpf<#*H-Xs)iUBv0e^;?u8tT0W>r=;2>G5Ibtow*wNd7& zv8Y_TD5MFUoJ6$b*=9Ltp7{WK5ZlEcZ4g# zC+#hd-dd7{L$4t&o3fE&sVp(*shVosdIFez1|pK30h3KdMlQs5;7R)6j<)(0O3B>t z#9y>bh{gWb-Nm{Uti>rv2SE7)U=wS3{uc=O2bsQ}=Ko>N1~~F6AWeGY zv<`^Yuy)8vE~q6fe=8v$DVuKWsO~GV*)jGyIHGW|>X#W`#efOe=`W9#VTdctO=g^8 zX`Gbd%HmOm4!@ad%(9hsQ;ZL!Ij)%){!HH*^Br>0j8mqvK6!84wr}`{J;1jMxbxD8 z`#@WavnIIRcux;Y2Nc#p?`75Q#C3uzW8tFJTgJT>oUZ^_D7q3G;WpPxpP5o7SZO!j zxE0s^aC^_FKUa+eYm59-z-tq?eL7!!x&2bIMl@8!zX3=B^lKb(Y__MLyw8ld_K>*D zDMS`_!V0)I%lbYWD_twe3e&Xu&W0xswg$v*1#4qjBvkSrkN~GJR07C9e$lK(0Nj8T z1OoZ$m+{-?+7ah$m-W$gNT<^E0sqw5J` z6q1sD+V38aFm|th=+}wr$yYFZ&>l(cFNcR{&o2B@r#^3vfdSu6;Npp%vsBBH+_=iX zZFzu66P#>rZ4!Lad;pi(jCP>qLcb7B)A)u&&cR`bn*bVDr2BmA-l^0-5F zuh3q>nmN+DMS5YGOavyKfEcfAL;cglN%P@4r35`n3HO4fQ&fC8)k-c0Bk^FRF1R2V z?~vfs7ADl?wfs0lS?jidjv^7Dnp-m-o`3H(otDl4HnTqrf6kon{gE(IjSAWp`jIqd zR8mZf86XmHd2rW6n02ek8{s(`f0J6_ac2D2@Go`gr9=`SW;oMEnP1eD($)Zh#G4ID zG&;L0U$qRM;ejrTr9wcZRofXsAKY?sd^lvG8XOt_Pck2~eKk9d4q;Jarj~4Ei+o|r z+Ef%$C=@?<{a(o+0pK2J8@9~VsK-4`G;)IRSGcY=ja(Ko5!4J6TH?VP^Ky}Gj?{1bOkw1`S+A)+G>|`(To+6of zMjzjQ@)QG05=%8g@|^+cyA=A2t505Fz9eOic*zx5yQ+6xD*Ih`wfXSeH~T?j%T966 zy`$Yax`tKHF4>n{n`;s6YVY(}!?(Tf2phP^6zCq;IoGcGKG@NcXd^M9iR)9An9@c& zm?`C)4iYJf_+~F)HQrJ(|LGc>{Y0(e@L7c_rw5~YHX5OkgPs4n$HT7P&nf-45o8m( z?!(ZW3&{nIA>Kr=8goytZp?r&!KJVtT4K&~~&l-~3Tex*C16LCfW+4v^akRaaND9B2vk^%e$4U-2bunlks;x+iceF6`b+ zm)=^~(cD6rK?LE6Ys8WFGU-UQwcPaWj|vSZR~?PlmJ=#WJ4mKXumiTp>*?9r%FK6F3hQl-lS(= z=kgKsXzNv#iOH`GEFm36x93d9j;c481Mr02$#PT|&V}|av|V@nyf)gZ=z5Ry+3bn> z;^1p?9Oyu^e7_h@<}O@g_eg!0`ea3)FECH#1|&U06`$eY0=NZ^TXSuX1;*o|SW~WfV~fMJ%1<*z*XJ6B zuX8|*9txvh`}&myMox?-Vwi1F^Q2V}R1pz&nT4;3NkZrq361%D>p-U>{*i1WNdJ7}&p+}rL`j`~K&lQSggk8PU@ z?A!CCq$`Ikk)1Pw)G%3z8~UR-QajG$G`nMz?xk-Igd1eo+!v}BA};udt~(^uR_=Xo zZAjIv^O!by-vTrYJ*y?T|W zwm;o=!?rEIcd>Sm0Xtxv{q$hivYA=Wd5nQOug78XaE@iZv`M-tvsU=(8OH&DT+&3kUy)3ATv1m_~9N$ExUC{-pbO(fN^tCQK~u9q;Fhq_h+Itx0a3>{+s zC{ZZ0Q0WbHtW}{tKVbJudGlx%?Z9SXYzflMox|% zzWpf~*+XUiUG*q0c=f2MHw@8MfOzT=uStk5liHr4e7V6^TWoyJAr2cXzpqwusy+tD&O0%}-SJqB}3m zQ(n&yq*m7DPFdvP=BF-#ty4-M zXyk`Ag!$1H#Iyl_T(-0F~%D&?m_Z1Yg0~fP) z#CG<1(+Q9DsVZUFq9kIz%Tse6qlsBBS=i;|u8PWf3#(>cQc_~#*H&t!IZs;-h-{dnz}}7zmBl)f=YYRPSc$@J-U)85{Bk z^Xmkjoa7?6kxx^zbx}bCouv$&<+s>#6ylLR)b$@$Vvs#Yqa?5dLwd6(Xy{NumNX?; z_M=sXz<2e|rFsXf(nw@a;>x5JTn2vsE_|ZXj>nwzXR6L&_-}2=2ebGP-@6zyU^Wii z^N5mL8WVbFF=~<(CpQCVn^TVqTUg`$_xT@@oN~I7NA2 zfCKI1}v-_;IaAONhXci01$ifE-N@g zUwRyPgM9`@IB$b&2MmGZwh))d7oIXT zId>5ADJvUd|91oNgX83e=Q|Q}+#)k6GJpd6lg=*ne>*!wDwAmkSK)Z_AD?zdMFp(( zhXGw0%BcJ8n*QI(#19V5y}ytd9!E@oovv-#5phUVqmDqy4hLHIutMaip+Q_8a;`l)o~9v;@iYR^5 zOt}QiU@dSbt~KxPVSkW&?p-WSf+wJN zq+i2RLR^ley~J2R&(3*^guO1wKinRH8DMZJ;SCJTKR$#;H^YxK69-~+6eKLR_iJ^| zFUN3I7@fYXIL!^#*?}t1Oilq>v;d<6zsX%)FtF{fUzRq!y)drAw`+!<2P5$zWRFlP zRJUL={P4ChF3LZ<{x24zDN=545A+lnY5Qo$mxPtn!WB!l9SOwiA;9G6SbUOd3_{zb zF88|>sUUdUqTvN*z|WNe{e@qa^uB3#Ksv|o@T~>#3TTb_9IkY#si~nKI(Bz;#R70~ z5hah=9Uk>d+$$SGYq!$$4(Jr5bBPy$8eEt`%KyqiF^7*I=Wkose>$9xwj`wH|` z2ktABgxr?jwA_e{j9gvp%jy0s>D|exT>|$75I&wDe5yyqEY@zOA8MaRDT^-@y}frG zTClWOJUDBAufg`yO1Oa&CnQ}?Eh#8HuIFk{2(yL!IFboTpe-xH_XE7pov$Bmlo>kL?Tn6Iyzi`5o2j8DD!9S(hS z9rs=dzakVl@Xpm9XOTsU)>nXYXJw`Oq_~2UoxQ`Vuet(rhjh}juXNfEr&6X=5?w0X zClX8r=E^#kcsuhAOsFG7@k|=XSvtK1V5^HJAS(T(q^RkgtksS zcz3<#M}KBjRqD=q&52KV%Wr?3ZpH(+LM&(6VwT1#?Z>Tr8Vm}_zC1UKxIacECt{j9{o>bY+C@ds1iTxP7oVBAM z_OyLZhp>2QZP)FO8~ifz{EE;fE%-{7{Wxf2KwPQQ+NDmC@I4vBC1b5UY^4wXwzzwE z$8xHhlIN5*C&k6;aF#p=vq|&2tHS`fkY{@w+vzHYzc8)S3?`Vx=l^9Ep;bs+fuO9M zhilcyp)a2oNGSFCoI&uEDRF$#SV7KPl_8!3mFc&vh)EQWYANp8URm4gpBfqpz}YGJ ziHq-J{X1d^pSS71-30okzj=Qo(^|FysCyR@3CDuR?*lKA({y!q7HR{82>BgRA?ck4zLA0(Y6<~|K{k28(t&gPdE1)K}VoPnx5PsB?YL2$Mzm#a!4fZjxYYQLSl zf8nQiJBw6={h)8{!@i$G$dE3cdb)ZtRXbg5v;1p*LcLasB zo!$GJCm;7EGeCZ(GF%6r6C)f7p+NJi0`b}uWB(EosnY$q{4Qodwr0RSe4-GEdtpFq zwsb6Uai#J3C2ha{>vhANrW)NVNELjs$zw?Os#r;x>r_IaukdTBEM4=v`SeB}$Piqt zfuT+O(^1d)bw6LNe8+5omLtU~_K6?bNq5)#wOtEw@FG0qa zgRyS#c)JtB4?j){_fiAbg+y|rryLzSEjI;!(iEy5)ww`0Qwdg)mWjz-+PRxb;LzgZ z$IXXqvBldK4PjHWEhEY1aq5KKxfHpW;3ajwK1RjPX8s6`#;At0_n{!1Kp7?IwHJuk zCwSx$2r(BSSh3gm*`3YJ?5! z{KE6IZ$TkG`?sImD7$rb^dfq5*xS&PzNRc*nF%l=Vk-1s&jHE-1BsI#GfC7<)a}-9 zrPV#bBa6@o|6~%selfQ%*Gl4{MAQ0E0@+yn$)5h`_EzLMAl~ z74~dYN^$;fd1wHdb2r6>9`&YYhyMA|h(A1naenkBX8*$V9U>KR?6x2fGACbq5MIr4 zXZ-IaZ!rZWEuMuwJ9{-L#zysL(sxxb;xe1wv#-io+&7IU{&RmMkQ&a}dBpdSo*x(v z2-fY67hf&Th+?*gILJ!<7B8%a1XK;2GRS^kIT3)w#c{tMLK3;{_h+~h@j&%WqMZZ& z9Qo%}5bKzLlu?Vv>^bVM6VH(~wBH;8F9B*FoxwZEQ-Ss3cH`-boXB4zPK z%kdX%QzR<8^;g=Cp;OY+R(~hY9Naef;VW{~5x@I54zyMG2iOYAG;_2i4!VCp^O|*y z1_OT&2=gWq$psHIPWUA)m@p(Ijk+eX6#n~$aPaBQfcFJdWwL+X{g0A?q>TuqT5^{c zFj49NM?+sMk3G1>ByotYQh=G1F`7!tI8mc>*YV zcuaKC4E7A&$~T*sSXU!c=RdUMgcH}@p+2N zzg1FD5*bcWMt82ssKI&>!QtD1$&!DU$KSufxKR1(b78KFXK(C^*?){Z;7{we=Py#f zy%>fRzMWe?T)Dc}%l2nf2-Hiz#YFudp^c>>C>Wh{DY&9G-5_rCT^y~q#qC`3wjY0= z&;f(Pc{2$*&X!E0yWf1@Q+KO3TW`1L>k)&#=uP1#Ja~sg-qx~z#!$|+_&)| zO2k(1FK6?0Cc?&gprhU*MQ5v*OBs1ckf23kM%sY3OaFZQ1S>3>fGzxg=;0~eGTR)CV~tp|`4-K5q5^Oau$J6mS3 zN+6?e0nTUtnaD&E5d!SqqvcS&N;~gbwJiDD;3GBG6G3uQpF+pKl^99?1dO14-{%|3 z#SN*2i?=4h7DY_4c6wX=z5Swsm2JwLuCDQz(>^ifN4~>_61{kv3mRZm}X~Yj*UYgp51I+cy8c_M;Ew+kIN)ol~&s7a8Znh*pKm`cDWCv$OAX*L1 z^{g?w5edOa8LM_OHzX6SCc~qVs90XMc`52%dX0(6m4eTzA3d>eu*POFO(zqVfY$wH zpuZiKe~a=p`z?Zf=l3^+GG%uX?I?zK@C$ES@uI^2T)?6)@xvt)ypSEGphKF;Qja#P z;y?3N!T}UBG3?^m?0S)^5Hjws&(n@)bA!);>VWSL)uTR*o6;#67{J+Zv{~6Ly4A67 zMoxt@ip_T^%3}^G>i*(8{px**eAbVGhxih}w|QK_ z?zF27wUT=e;h!~&h7O2?VWpgBgL%xD)+D(@cAR6srL3U9<~94$T$I`nE1=B0+d#x| zx;4m-Ks0N-qv`tYs~Vx3Z|XG>RY!*TgC~~rE@6cn9ekVRf_Oo{O(+~@1^lT>T---G zplRu(D(}Ud^PGlnDo0-s?_V{DT>Fm6C{x$KKKEQ)M5IA=e_tk;@V$`RId-%A=UESks z9iPuI9OQRK>~!_vXU{;e09)E+kB=@jr?^1$MescAt+havWWe0{!lnf z0a&+K*!WrafdJ=}iGi?_f)C@bFyIb%kjNLE=fXiMLX=>m0c=w@{trXX0wzJYfe*Mp zfh@V-Di4(37|i@9;va|SBLxZi+Y5k9I@9crj|1m~p|peITvbb08gZl&9ZdCQ|MSq( zNP(c{DzPEyTiM%x;uhc(*nvW5OL@_r3lIqNC$O>R{doVx0gc??T7Hakne$^gE5la5 zztbwJSv>aji&j67@V9eOWzg92v?M5raUYE#Pt7T5|C4ubQkjWIWcQfA< z+6egHxl|i4h9wtN*fn4@!3S<#jF$a7GN=WZl)nxKU8+uOz3Z|2=HQXgW^eRD#6^Rb zLW;3IbD8)sQ^VJX_i6ja5n12hgXGp@SX~H_p!|qd?Z$4hz)Yxn*-V9{{msGsANk$wn=#|9-J=02e3X+pcO}G+^X7qX7k!vjbVQ&ZLGIMl78VdP7(;34UT909|iq{3Et7&9S0b$ zVx9~)`102ytJno|9jG1$cr$fyg*y_}TjBMKNfZ(@<;WxcAn0xV(Th zonj(yS$VdFNdtNle6aNr7x_O{K;oOmZ}FCR1Qr?wYI zf3;sUvb4Q~(GzO9EOs+Hy6P}3vAw`sR($f z(HeR$WW|NOe|@-Z`>jefmR;v6_+U!}_<*6dlnWfLF%?tI{~eGTHB`3Btmu9IMzMBF z@_htYd#%#p@>WBSZXC{3_s(X#jU6=OhCi1YL z`fV{ZlOG>Km>M;U4eo)@oH4}dJBFC51fw_I7|N!C<$X4<-%b+cJHdH*a>TyyaE&8k zN8eY`)!k$ICW}_rs3D&XD9FB!z)d@4y_!Qrs_S#x;qS~MlF$cF25IK*>z`#zNCX;I z2GdGds>e0vetc*qd68bF(%nK`GWTBlC`QFsM$JKQ1+U;j2ZpnXIsp^Qg2la}Ysrz< z46h$bQTE$2cP8*wR`63nj9xB5wL>#k#Bg}JCo8MKSWAO+S;bc z)@I|n_&P@(fcuPpW>H?jhgOU(^5Uw7YH*A9>+snAvy4kXAZMZZ{O8#WhcK!vzP|pw z&k_W*QA@=Q2A{&H*?@k=3XFTHuht)~wx*h=dfx>Em6o6T-;)Gn6)EmwP6B`PN+xkU zR_N63UQt|#36pi!lW zn1=4T-kT2jC>M4m1T(IQ>Z54S5@D zdN`g!XvPx!@^eq}FMm}9sR^umzH#|kByx)s;*z1@Epw`4^SuU=UZe6oAJm{p81K9Q z9iuV_i^Fd+@n}ScH=}&0fw3#%fJ2NrTrgkBat}o?a|#cJ{0`*c6X8G~Bvzk4MIC{m zL)a#xbXP%E0KS*NTI#j$C^VPk^hz~T_ATiZaHBA)7f7yI;U@je_-8qPhlYlp0A4>q zh4#Auw8Zx&Fobr$InC@goYoxy=b)BS#r!Pyt=Y|)IK#Gh zZW92nW+=59V13DJ8L3gIJJ5><9*{{Q;kEbTsOm)S^XJZ3@BKq1ZROq(H<^he~#`6yn-4!^K&5$9;XLB^lxjJYF;0??Z3mtUu7N z*`2?nBdw;kQLp9i|4Xa0X?)VeqZ zur14q>lP@%%*@Q%0AT19;CSn;u+~y&WW)*xzDS_Z{^kjgH~bFIeEYB1N*l0$~- zkPL?XM)skk6ZaowL_=>u1&GvtT!iOi6_;YE_n<$gAc8=`_2kl zaKi)qzZ8RF{4GEieU*?MW&6TSKnzDV?#q>hiP%XfbfRYKUCMld&JJGk(E+SFHs>R}hO~dK1o)<@j|? z8jrNpLCRxXsJ}KnhYICC&OHs(0doCrlAKSYJTVw2;T1tR1qDS*jSAt1*0#3DSFf&7 zNchz9TJ$s$msmp56OOv|e1L3yIjtRsZuy+llMMDJsMKoq3S8C<~->Hd=m{d0RV zKdxZq-(fzRovDjeuiWz~om!CliEd5l{-f(*Ar4OKQLgG)%b$#vTdX-4P21bs zNqTnGSw@$wA4J8s{}UB3GosQ!xAXN2GxGykP%-G{mviE5&Oz;#eg6E}-2{9Rpt8#H z@P~<0Y^9RzAaC{T0@?Q~b9?ne?1!qG{Pw+&Q=}ZYR)xqbzgKeY4_k8w+&;| z^-iE_6js>GLUqZ_PAh%}1_tWb3Rhm@R3e%Mo71V+wHe7+V`;xzcW^A|M)g}bk9+S{NH|X4 ziXGz118r;bAtX$~ZwW%PdjFO$(I8*JYJ0m-g=&}qOErQ{I_S>#Qd0$8U^8EVYEsdQ z-1{mw2>|76weiYmg(0P|^SoFQp2n*_uczZ#eVvvslrrewewFE(He3W(q+epIck^dP2G7mz*3= zDVn5uh}O|u~0XKvk^yox($k%xoBRvXX;Cd^JxSCxkG zbc;IK`uLozf-l45gj4dhRk&2mNH_c)P6(*E#Sib8@BBUV_cxsD>!%VKkCLewgl*8k PzuPiOH;bh1KmLCJ`~tj3 literal 0 HcmV?d00001 diff --git a/assets/models/gpt1.svg b/assets/models/gpt1.svg deleted file mode 100644 index f00792f..0000000 --- a/assets/models/gpt1.svg +++ /dev/null @@ -1 +0,0 @@ -
Masked
Multi+Head
Attention
MaskedMulti+H...
Feed
Forward
Network
Feed...
Norm
Norm
Norm
Norm
+
+
+
+
+
+
Token Emb
Token Emb
Position Emb
Position Emb
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
.
.
.
....
Linear
Linear
Softmax
Softmax
Tokens
Tokens
Text is not SVG - cannot display
\ No newline at end of file diff --git a/notebooks/gpt.ipynb b/notebooks/gpt.ipynb index d68a63d..7842580 100644 --- a/notebooks/gpt.ipynb +++ b/notebooks/gpt.ipynb @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "a4fba924", "metadata": {}, "outputs": [], @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "1a6f2914", "metadata": {}, "outputs": [], @@ -212,14 +212,19 @@ ] }, { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAChCAYAAAB6QAliAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFB6ADAAQAAAABAAAAoQAAAADKy9SHAABAAElEQVR4Ae3dB1gURxsH8JciioqAXUTErth7AwV774lGjb33HjUWbLFHP43GXmLD3jV2LLEbkxg1Kir23rCggvLNO7jnAQcc5bi9u/88z3F7s2Vmf7MHx3szs1aElCQCYSVLhiVJQSgk0QWszp2zSvSDxn5AXC+xG2ELCEAAAhAwTYEk+bs6fc/geiGfPoyztU2W8t2H13lNkypqrVMmc7ia3C7lyVfBT2+PqPvryKhbqDMH7aHOdrGUWuH6U1dLoz3U1R6oDQRYIEk+nIGaiIOD744cAYWJCaSsVImMFRwMCzprYlqoLgQgAAEIQCBmAas0pXgDg37+XHp8eocXbx6NTGaTPG1hN880XGAGh6z8ZBbpyet79PT1XQr59PH+tYfnXVIld5wzsMbUXmo9ObSHWlvGMuqF609d7Yz2UFd7oDYQ0BYw6Icz7YIsfRnBQdO8AhAcNM12Q60hAAEIQECdAoYODk7Z0/+SvW3qrBwUNKeAYHStefn+KRkkvPv82qvBNX/2iG47Y+WjPYwlj3JZANefuq4DtIe62gO1gUBkAQQHI4sY6DWCgwaCNfBhERw0MDAODwEIQAACFiVgyODgtD0Dr7mly+9S0LV8SotCFSf7793jQXeeX300qMY01QyfRnuoqz0s7T2B609d1x/aQ13tYWm/D3C++glY67cZtoIABCAAAQhAAAIQgIA6BbhHiqUGBrlFCrlWSJM9Xf7sU/cMuKSGFkJ7qKs91HBNJGUdcP2p6/pDe6irPZLyvYiyTEsAPQeTqL3QczCJoBO5GPQcTGRQHA4CEIAABCxawBA9B3/eN+TXzI456hV183K1aFxx8gcv+r1KaZ+6T8cKQ38zlgXa46u8Gtrja20sYwnX39d2VsP1h/ZQV3t8rQ1Rt27dvDNnztwqODjY88WLF/m116lh2cnJ6YqdnZ3/+PHju6mhPvrW4ddBa7zTOKdq9fFDiGfw2w+qc02RKsUVm2TW/m1HNoriaqvvSWI7CEAAAhCAAAQgAAEIqE3gzfuX3ezS2amtWkapT2E3L8c/bx4YIwo3WnAQ7fG16dXQHl9rYxlLuP6+trMarj+0h7raQ6mNr6/vwvv373dKkSJFaOPGjW1z586trFLNc0BAQD7xyNOlS5euGTNmnG8KQcJVE7YtfPX8TSebZDahRcvlsU2X2Uk1nkpFnj18me/Zg5d55g5c3TWVU8r52kFCDCtWlPAMAQhAAAIQgAAEIGBSAhN39Z6UO1PxuwVcyppUvQ1VWb4Ji12y5Ol+8R/V2FBlxHRctEdEHWO3R8TamP8rXH8R29jY1x/aQ13todRm0qRJa2xsbL7p2bMn9e7dW5WBQa4rByxr1aplPWPGDPLw8Kg3efLktco5qPHZb/KuNWRt/U25OsWpfN0SqgwMshsHLPMWd7eu28GHMrqmq7d26m6NK4KDaryyUCcIQAACEIAABCAAgVgFUqdwzGhna2fxw4m1oQq5ejq8CX45WjsvqZbRHlGljdkeUWtj3jm4/qK2rzGvP7SHutqDa8M9BrNnz+4zYMAARzX2FowqFp7TsGHDrCEhIbVHjBgxL7ptjJnPPQadMqbx8WxQ0lGNvQWjs/EokztraGho7eXjtkhXBAejk0I+BCAAAQhAAAIQgICqBT6EBldM74DYYORGsrW2M8odm9EekVsi/LWx2kN3bcw3F9ef7rY11vWH9lBXe3BteChxgwYNMumumbpz69ev7/D48eOuPFei2mrKQ4kLlMllkq4FyuR2ePvyXVeeKxFzDqrtykJ9IAABCEAAAhCAAAT0Enj34XVeHjqH9FWAPd59DMrzNSfpltAeUa2N2R5Ra2PeObj+oravMa8/tIe62mPYsGGzS5QoESxqZR+1ZurP4Z6O4hEWFBTUQtTWXy01Xua7eXbWXJlM1pV7OqbL4hT2PvhjC/QcVMtVhXpAAAIQgAAEIAABCEAAAhCAAAQgAIFEFvj8+XO1vHnzmmRgUKGoWbOm1cePH72V12p4DhOu6VycTdo1T/EcVp9CPnsjOKiGKwp1gAAEIAABCEAAAhCAAAQgAAEIQAACBhB48eJFflOaZ1AXAdf/5cuX+XStM1Ze8NsP+U1pnkFdTlz/92/f50NwUJcO8iAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYAECCA5aQCPjFCEAAQhAAAIQgAAEIAABCEAAAhCAAAQgoEsAwUFdKsiDAAQgAAEIQAACEIAABCAAAQhAAAIQgIAFCCA4aAGNjFOEAAQgAAEIQAACEIAABCAAAQhAAAIQgIAuAVtdmcgzvMCL1x/o3NWnhi8IJegtwG3yjXdOvbfHhhCAAAQgAAEIQAACEIAABCAAAQhAwNQFEBw0Ugs6OySnU5efUYGcmYxUAxSrLZAmVQo6e+UegoPaKFiGAAQgAAEIQAACEIAABCAAAQhAwOwFEBw0YhMHvX1PZQu7GbEGKFpbYN/JK9ovsQwBCEAAAhCAAAQgAAEIQAACEIAABMxeAHMOmn0T4wQhAAEIQAACEIAABCAAAQhAAAIQgAAEIKBbAMFB3S7IhQAEIAABCEAAAhCAAAQgAAEIQAACEICA2QsgOGj2TYwThAAEIAABCEAAAhCAAAQgAAEIQAACEICAbgEEB3W7IBcCEIAABCAAAQhAAAIQgAAEIAABCEAAAmYvgOCg2TcxThACEIAABCAAAQhAAAIQgAAEIAABCEAAAroFEBzU7YJcCEAAAhCAAAQgAAEIQAACEIAABCAAAQiYvQCCg2bfxDhBCEAAAhCAAAQgAAEIQAACEIAABCAAAQjoFkBwULcLciEAAQhAAAIQgAAEIAABCEAAAhCAAAQgYPYCCA6afRPjBCEAAQhAAAIQgAAEIAABCEAAAhCAAAQgoFsAwUHdLsiFAAQgAAEIQAACEIAABCAAAQhAAAIQgIDZCyA4aPZNjBOEAAQgAAEIQAACEIAABCAAAQhAAAIQgIBuAQQHdbsgFwIQgAAEIAABCEAAAhCAAAQgAAEIQAACZi+A4KDZNzFOEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACugUQHNTtglwVCYSGhKioNqgKBCAAAQhAAAIQgAAEIAABCEAAAhAwHwEEB82nLalq2byUN7Otzsdf507pPNPpE36kKWOH6lyX0MwWDSrprMvY4X31PvTDB3fJI5s9ffjwXu99sCEEIAABCEAAAhCAAAQgAAEIQAACEICAfgK2+m2GrUxBYO2Oo/T50ydZVc9ibjRh+nyqXLW2fO2cLr3OUwgLC6PPYZ91rkuMzK59hlLz1h0jHCq1Q5oIr/ECAhCAAAQgAAEIQAACEIAABCAAAQhAwDgC6DloHHeDlJo+QybKmNlFPrgA57TpNa+PHNxDdSoVoeK5nalHuybEPfIipyuXLtC3dSvSMf99ctWmtcupfpXiskfirKlj6FNoqOzB17RWOVq/eok8HvdWXL9qceRDaV6nTZuOXN1yRHg4OafTHGf5wlmyDO5lyOX279aKyhdykc/v3wdrjjN/1mSZX6OiB+3duVmTjwUIQAACEIAABCAAAQhAAAIQgAAEIACB+AsgOBh/O5PZM+DqJeretjF5elenZev2UKgI8vXr2pK416CSbl6/Qhyg456GvN2Rg7/T0L4d6dtWHWnc1F9pw+ql9Ov/JtLnz5/pwl9naeGcaTR87HQqV9GbfhzYNdphv/+IbXds9ovwePnimeY4a1csoh79f6RktsmoQ4valCq1A42bNo92bllLB/dsV6pHhw/slvklSpWnXh2/oXt3AjXrsAABCEAAAhCAAAQgAAEIQAACEIAABCAQPwEMK46fm0nttXXDaipWsqwM5nHFh/pOoVqehejB/TvyPAKvX6WWDX2oSfO21HPACJm3etk8+qZlB/q+Yy/5us+Q0bTgl6nUscdA+XrslLkyMFi8VHgvQg7W5cydX67T/nHy2CHi42unfB5FRE9Cd5k1csJMKu9VhT68f0+njh+mYb5TZYCwSo16FHjjGpUoU0FuN3D4BKpQqSpx/p6dm+j40YOyftrHxTIEIAABCEAAAhCAAAQgAAEIQAACEIBA3AQQHIybl0lufSfwOhUXPe6U5OKaXS4+f/ZUPh/cu0M+a/fGuyECepzPw4eVxL36lJTFxVUuKnkfP3xUVkV47tJrMLXv1j9CHr8IDn4n81xc3eRz8hQpKHdeDxkY5IzkyVPQpy/zJ/JrDkJysra2loFO7n2IBAEIQAACEIAABCAAAQhAAAIQgAAEIJAwgWiHFZcpU6Zx5syZ/3V3dw8QRfD4U5N45MyZMyBTpkz/uLq6zkwYjfnsnbdAIbp/77bmhG7fvC6X8+YvKJ+r1WpAOw79JYOBSqDQycmZuvQaQn/fDJKPo+dv0YpNBzTHsLGx0SwnZEHf47x69UJTzH8X/6EixctoXmMBAhCAAAQgAAEIQAACEIhWwFv8X3chV65c/E+AQf6nK1u27AoHB4eJ0dYAKyAAAQhAQNUCUYKDHh4e80SNw0TQZtWaNWsKLl26NBfPTWcqj8WLF+fy8/Mr3KJFi5Z8HkWKFFmo6hZIgspVrlZH3uzj3Kk/ZGnbN62Rw3Pt7JLL1245chMHENt37Ue+P/SSvfoqVKpGe3dvoSePHtC7t29ozLDetHju9DjX9uGDe8Q3OtF+aPdQ1PeAKxbNoY8fP9BGv2X07Olj2XtQ332xHQQgAAEIQAACEIAABCxRoFixYjwM6JD4vy7/okWLchrqf7ratWu3fv369VDxv+R8S3TGOUMAAhAwdYEIw4pdXFwuim983A4dOkTe3t72pnhyot6y2uI5w9SpU6l///510qVLt06c07emeD6JUWePQsXIWwQIv2tYWQ7bTZHCnuav2Ko5tLVVeIy4x4AfaZ248/AicbORDmIo8J9njlO1cvnkdoWLlaLZi9dp9om8YGVlFTlLvl46fybxQzvVrNeEpsxepp2lc1n7mP+cP02F3FLJ7UZPnCWHHevcCZkQgAAEIAABCEAAAhCAAAv4/vXXX+2//G8X4f++xOYZPXo0Va5cmXx8fLrkzZt369WrV3cldhk4HgQgAAEIGE5A80eCA4OtWrXKNGXKlNSGKy7pjzxjxgyXoUOHVhc9ITfu37+/adLXwDglXn0YqimYg2wz5q2SN/t4+/Y1uWXPRTa24U0/aMRPmu0cHZ3pfMDX4bvL1++l+3dvyR577jnzkhKs0z427xz5tXJAv21HlEWdz9r71a7fjPihpP8t9FMWNcfnG6hwHVOmMqtLVHOeWIAABCAAAQhAAAIQgEBiCXh5eeUXwbrPotNElNFiiVWG9nG4kwYHIsX/lFNFPoKD2jhYhgAEIKByARkh4qHEoit4OhEYTKfy+sarepMmTXIS82BUz50795yAgICe8TqIGeyUMbNLnM6Cg4FZs7nHaR9DbpzFJZshD49jQwACEIAABCAAAQhAwGwEjh492vzIkZi/rDfEyabgYUpIEIAABCBgUgIyOHjp0qWuFy9eNKmKx7WykydPdhDfnPUQ+1lscDCuZtgeAhCAAAQgAAEIQAACEICAvgLce/DGjRs59N0e20EAAhCAgDoErDNmzDh1yJAhX8eSqqNeiV4L/kNVoUKFjzVq1GiR6AfHASEAAQhAAAIQgAAEIAABCEAAAhCAAAQgYIIC1iKJEcW1nU2w7nGu8oQJE+wuXLgwMs47YgcIQAACEIAABCAAAQhAAAIQgAAEIAABCJihgLWYEyKFGZ5XtKdkb2+fPNqVWAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQsSsA4MDMzFQ24tIX2ZAyOXJZwrzhECEDAPgVfvwszjRHAW8Rb4/Dneu2JHCEAAAhCAAAQgAAEIQAACsQrIG5LEuhU2gAAEIBBPgUX739PfgSHx3Nuyd0tlb0f1S1pTxfzJLBvCws/+86cwWjA+gMLCECiO7lKwS25DHYfiu7/ofJAPAQhAAAIQgAAEIACBmAQQHIxJB+sgAIEECzimsqa6Xh6UK1u6BB/L0g5w6PQVccpBlnbaOF8dAlZWRHXa++hYg6zQj6F0aP1xQEAAAhCAAAQgAAEIQAAC8RSwjud+2A0CEICA3gJv3n3Qe1tsCAEIQCAuAiEiOIgEAQhAAAIQgAAEIAABCMRfAMHB+NthTwhAAAIQgAAEIAABCEAAAhCAAAQgAAEImLQAgoMm3XyoPAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4i+A4GD87bAnBCAAAQhAAAIQgAAEIAABCEAAAhCAAARMWgDBQZNuPlQeAhCAAAQgAAEIQAACEIAABCAAAQhAAALxF0BwMP522BMCEIAABCAAAQhAAAIQgAAEIAABCEAAAiYtgOCgSTcfKg8BCEAAAhCAAAQgAAEIQAACEIAABCAAgfgLIDgYfzvsCQEIQAACZiAQEhpqBmeBU4AABCAAAQhAAAIQgAAEIBA/Adv47Ya9Ektg1uqjiXUoHAcCEDCiwOfPnylMPGxs8WuVmyGdezV6/vylEVtE/6LfPjpGydBu+oPFY8vQT6Fka4P3hi46qzSldGUbPc/ZyZGe3z5g9HqgAhCAAAQgAAEIQAAChhfAJ3XDG0dbwuSuZaJdhxUQgEBUgYE9vqftm9bQbxv2UTlPH80Gf545QS3qe1Ht+s3ofwv9NPn6LrwOekUl86ajM1eekKOjs767Rdhu7YqFdOzwPpqzZEOEfEt9YZ8iOT179ozSpk2ragI7OztV1y8pKte0dQM6e/5MlKKWz1tF3l5VouTHNePKtf+oRiMfunXxQVx3tZjtw8LCVHWuL1++JI8C+VRVJ1QGAhCAAAQgAAEIQMBwAggOGs4WR4YABBJZgHvncdqzY1OE4OD+3Vtl/uew8PXyRXx+qOwf9Picgpr2ef78ueqDg2ryMmZdOrfrRm2/ax+hCunTZ4jwGi8sR+DFixeWc7I4UwhAAAIQgAAEIAABwpyDuAggAAGTEihWsixt2bCSPn2ZJ44DhpvX/Uacr6SXL57RyMHdqXwhF2rRoBKtX7VYWUX7dm2h75tUpeK5nWlI73b05nWQZh0v8PEm+g4m7qUYGhJCTx4/pH5dvpPHat+8Fl268JfcnrebPW0s1ajoQZz/95+nIxwHLyBgSgLOTs6UzdUtwsM+hb08hfVb1lKtxlXJq2Y5+vmXqcRDhDk9efqYeg7sSiW8ClPrzi3o4uV/ZT7/2LV3B9X9pgY1aF6bNm/fqMnHAgQgAAEIQAACEIAABCCgPgEEB9XXJqgRBCAQg0DpcpUohQhanDl1TG7179/n6P37YNGT8Ovwx9nTxtG1Kxfpl8Xr6bs2XelHEcB4/PA+vXj+lHp2aEYt23eXw38vX/w7QuCQh/ZNHjOEdm9dT4NG/CTnD+zWphG9evWCps9dQYWKlKRG1UtR0KuXtHvbeloyb4Y4fhcqL4Zeblq7PIZaYxUE1C3Agb2tuzZrHifPHJcV9j96kAb92I9aNGspguZTaJ0Y1j9nwSzi90rHnm3plRiSP2vKHCrsUYTqNKtOQSLYfu/+XerevzOVLlGW2rbsQOs2x32ov7q1UDsIQAACEIAABCAAAQiYlwCGFZtXe+JsIGD2AlZWVtSgaUvau3MzlavoLXsCNmrWmpIlS6Y59+q1G1KbTr0oS9ZsZJ8ylcy/EXCF3HLkksvPnjyiylVq0fwVW+mDCCwqacakUbRt42rauv8sZXHJRv/+8ydd+OssHToTQFmzucsg4IY1S+mECJgcPrCbvm3didp37Sd3R89BRRHPpijgf+wQXRYBdSVVKOtJ5UpXoBV+y6m5eL+1a9VRrhrQazD9uvgXqlKpGv3971/0x97T5CreZxXLedFaETj84+RRev3mNRXI60G+w8bJfd68fU2jJvyoHBrPEIAABCAAAQhAAAIQgIDKBBAcVFmDoDoQgEDsAtXrNKLOrerT8DHTaOuGVTTpf4vp3Ok/NDtaWVtTr47f0JVLFyhzFldNvktWNxo6egqNHd5XPryr1aHhY6dr1q9ZPl8uc89ATndu3ZDPPqVzy2flx/NnT2ifmOdw4sxFShaVKFWe/jx7QvMaCxAwJYGenXtTz859olT5RmAA7fffS2tF0FxJqVKlptt3b8mXFWtEvLHWs+fPxM1NTlOZUuWUzalIoWKaZSxAAAIQgAAEIAABCEAAAuoTwLBi9bUJagQBCMQiULxkeOBh6YKZ9Pr1Kypd3kuzx6dPn2iwGO7Iw4/57sOH/7xJqVI7yPU8F2HVWg3o39tv6beN++V8gzxvoJI2iV5Q9Zt8RyMHdSM+joODo1x1/MI9+vtmkHxs2nOKatZrQvk8CtOjB/eUXenmjWuaZSxAwFwE+O7d3Tv2ov/O3ZCPUwfP09qlG8V7I408xXNH/tGs277ud6pdvS65u+WgB2IYv5Ju3Q5UFvEMAQhAAAIQgAAEIAABCKhQAMFBFTYKqgQBCMQsYGNrSzyUeOq4YVS7fjMxpNhOs0NoaIgmYMjBPb5ZyVsxzJFvIHLv7m0xZ2BpGdTjIcnlPH3otZgzTUnZ3Nxp8MiJdPHCeVq3chEVLFJcrtq6fiXZijJP/eFPTWqWpWdPn1DNuk1oy7oVdOtmgJjf8BId+H2bchg8Q8BsBDxF4H3PgV30WAzFf/fuLY0cP4wWLPuVChUoLM9x07YNZGtjSydO/UH1v61Fz8S8nlUqV6M/xJygJ0Rv3ucvntOGrevMxgMnAgEIQMASBNauXUtHjx61hFPFOUIAAhCAwBcBDCvGpQABCJiMgLUYLsxzDnKqUbcxrRJBCn5WkrWVNSVPnoK69fmB+oq7p3KPwRKly1MlMb8g34jkfMALquRTk6qWzUvp0mckB0cnmjTz652MxcHlMOSBP06gKeOGyh6CM+evpn5dW9LksT/IYgYOH0958nmQk7i76/pVS6h6+fwyn4coc/2QIGBOAl3adadz589SpVrl5WkVFUOE54nh9Gmd09Iv0+ZRL9HLdsKX3rdD+g2jvLnzyUB8pQqVqUX7ZnKfGuL9hwQBCEAAAqYjMHv2bPL09CQvr68jM0yn9qgpBCAAAQjERwDBwfioYR8IQMAoAnzHYCXxHYKvPgxVXlLvQaM0y137DKUW4i7CISEhlD5DJnln1WdPH8v1/1voR0PEfGkhHz+Se848mn20j9W19w/ED051Gn5LPmKo5B0xNDJTFhfiYZacMmTKQtsP/km3b12njJlcNEOX5Ur8gIAJCWxcGX2v1zRi+PDqxevkHYg/ivdMDvecmgB9fXHjn6re1emO6JGbWbwfHNOED8PnIDkHEO/euyOC9ckpgwjEI0EAAhCAgOkIHDt2zHQqi5pCAAIQgECiCCA4mCiMOAgEIKA2AUentJoqcW9DDhIqKatrdmVRr2e+43He/AWjbMvDm3PkyhclHxkQMCcBfv/wHYl1pZT2KSlfnvDes5HXR7dP5O3wGgIQgAAEIAABCEAAAhAwrgDGwBnXH6VDAAIQgAAEIAABCEAAAhCAAAQgAAEIQMBoAggOGo0eBUMAAhCAAAQgAAEIQAACEIAABCAAAQhAwLgCCA4a1x+lQwACFibwKfTrPIlqOPWQEHXVRw0mqEPSC4R+Uud1iPdH0l8LllDip9BPlnCaJnOOaA+TaSqzrCiuP3U1K9pDXe1hyrV58fIFvQp6FedTiM8+cS4kmh0QHIwGBtkQgEDSCVy/dpnyZralFg0qRSm043d15Lorly5EWaedMe9/E2lwr7Yya9+uLXQ78Lpcni3upPpDnw7am+pc5jsYr12xMMK6ixfOy7JfPH8aIT8hL0rlz0D/XfwnIYdI8L4XLgZQx14TKWOumpQ6SyX5zK85PylSpkyZKFeuXPT+/XtNcf/995+80UVQUJAmDwsJF2Dj7AWz6Hy8efM64QUk0hGKlC9Al69cTKSjJewwxn5/cO3xHklYG8a2d4NKDalg5kKaR92K9WjOtLkUmkRflpTPX4GuXLwSWzUtZj3aw2KaWpUniutPXc2C9jBuezRs2JD27t0bpRJnz54lXocUu8CxE0eodecWVKyiBxUpn5+atm5ABw7vi3VHDgrytuWrlSK+CeC6TWso+H1wrPsl5gYIDiamJo4FAf0EvMVmvvptqv6txkxcQPxISAoLC5O7/3n6OD16cE9zKA7KHT0U9Q+UZgOtBT7G58+fZc6saWOIA3ucGn/7PXXtM0Qux/ZDqUfk7aLLj7ydMV/7HzunVzv4bdxPpSq3oTz5i9P583/Thw8f5HOeAqVkvt+G2L31LSsmjxs3btC0adM0m5iCsaayibyQGO+h6KoURuHvrbk/L6Bje05FeKRKlTq63cwuX99rNjHeH9p4+parvY+yjPeIlPAWP33lUiL++PTpE/Ud1peO/nuEdvyxg+o1qUt+y/xo1MDRiViKWR7KW5yVb2KfGdoj3qLeYk/feO9tejt6iyr7Jna1cf3FW9Rb7Okb772j2RHtEQ1M7NneYhPf2DeLfQtdn8nz5ctHP/30U+w7m98W3uKUfPU9LQ7mterUnLzKV6LLZ6/TiQPnqHSJstShR5tYexH+d/UynT1/hv48coHeBb+jwSMHUFA8eh7qW1dd2yE4qEsFeXoLnDlzhnbs2KH39thQCviLn9zFjf9r9xUPk0++IjjYvvsYvYJTMZ1ssZJlaf+ebZpNDu3bSZynpD/PnKBubRopL4mDib07fat5zQszJ48m7mU4cdQgOn7kAJ04doj27NgUYZsVi3+hs6eORcjT58U/4hd2y4beVL6QCw3p3Y5evnim2W3+rElUp1IRqiG+JZo4ehDxhxtOV/+7SG2aVZf5s6aOobcG6q3l7VmSlq3aQVZpSkXbDtwjqm3XUXTgwAEaOuxHunjxIi1atIiyZs1KQ4cOlfltu/nG2oNQn7I0MNEsdOzYkUaOHEnXr4f38Iy82bZt26hgwYKUJk0aatSoEd29e1dusnTpUho1ahTx/l27dqX58+fTwIEDqU2bNpQtWza5vGHDBuIPMfzYuXNn5EOr7vXoYV2I30MxtV1CK50pY2bK5uoW4cF3IQ64cY2at2tKHmXyUIPmteWHEi7r4uV/qVu/TjR/yVyq1bgqde7dnvYe/F1WY+uuzdSoZT0ZWOaMYb6Dac/+3XLdnIWzqFqDyuRTtyKNE+9Ffh/wg4+9brOfXHfz1g26cu0/+q7DN3K7n3+ZSm/fvpH7G+qHPtdsYr0/tM9Bn3K1t9dexntEaviLnwb5e+mQJjWlTZ9W3HHenboP7E6Tf5lEW9dtpbu3w7+gunD+ArVp2Ja8ClWiYb2Hid/3L2WFeMgZ9zLkfO7hsnrJ6vD8T59p3oz5VKV4Vblu8ugponf0B7nu2n/XqEOzjsQ9FH+ZOkf8HXgr8/lHdOVs9ttMs6f8QiP7jyTfwWM02xt5wV+Uj/awgPYw8nUWXfG4/vD7QF4b0f3exO9nw/x+ZvR79+7RmjVrpD9/Rl+8eDGNHz9e9iYcMmQIvXwZ/jfy+fPnNHr0aJk/YMAAunbtmtyHfxw7dox69eol1/G+T548ket27doljzd58uQIHQc0Oxp3wV8Ur/ffvUePH8raFilUlFLapySXzC7Ur8dA6tt9gPhMEN4LcN+hPfLzMH/25s/XDx49IN7vx7E/yH279hP/4/TtKJfbdm1FDx7el5+jl4gRbvyZnHsXHjl+mHoP7k4lvArLZ2U01r/if2D+/M757Xt8T6fPnZLH+Wn6OLkdd6Thz+U9BnSheYvnyHXaPxAc1NbAcpwFAgMD6e+//47zftiB2n8xGC2ew8TD98trk3viwAanZau2ywBHQoKEteo1pZ2b12oMft++kThPSW9ev6JLF/5SXopvU15GeM0rGjZrSdmy56RvW3ekAuIX84N7d+jm9auafXjhj8P76dbNqENo/ffvogW/TNE8Nq5Zptnv6ZNH1Kx2eXHMYjRr0Vrxj+Jz6iGCKpyuikDKsgWzaMDw8TRh+nzatnE1HdyzXa7r3rYxJUuWjPoPHUvHjx6QeYb6sXQeX07iYoom0DTz13U0xncUeXp6yu0uXbpER44ckcv8g/PHjBlDM39dr8mLboHLcndzibas6PZT8uvVq0fffvst9e3bV8nSPHO9eOhCjRo1aN++fRQq5mls0aIF8TeZ9+/fp3HjxskPKZzHr3/++WfKkSOHDBrycs+ePeV58Pn06dNHc1w1L/gq76PVMQd443sOh0WQnIN6yuOaeE/wkIXW4tvNFClS0PJ5q6iSpze16dqSnokeu2/fvaXdIjjvt3EVtWvVgZycnImPwemA/346//c5+vfyP/IYq9evJPfsOYi/8Vz820Ia0m8YTRoznTaLoPx+0fOXey/+/e9f4loZSfVrN6T0adNTp17tKJmtLQ3qM5T+OHk0vqcVp/2S8v2hXbHYytXeVnsZ7xGNRpL8vSxZvqQs8GbADXr25Bm1qP0d5S+Un2Ys+plevXhFfdqF/67auHqjeL8sp/Ezx1PnPp1pwvCfZEBx85pNtGTOEpHXSe6zZ9seWvi/8F71vdr2JttkttRnaG86efSk5sRiKufxwyc07+d59OjhY6rTqLZmHxUsoD0ssD1UcN0pVcD1Z4HXH34/K5d/rM8Ge3+8efOGLly4ICvw9OlTWr58Obm6ulL//v3pypUrtGXLFvk5nTsbvH79WnYA4C/p+YtO3jckJISmTp1KVatWJQ4CchDRz88vwvE4WMjrVZj0dnXNmo3cXLOL6Zvayc+9/MX6h48faECvwcRf1PPnb/4MXKliZVol/p/kObd7DexKjmmcqOU3rYlH9fQTgcSeXcL/f+nfc5DM48/R/Hm7d7d+ZGubjL4Xw5ZTpUwlPm9PpW1iOi0OOHLqPbgbOYvP7MvmraRcOXLT8DFDZLu0aNJSbrdx23rx2X41+YvP9E0aNItCbRslBxkQgEBSCPiLQgLFw108OHFUhx9jxMNXPEwqcWCDA1KcOEjIKfD2AxE8ykIe3u3ka31++NSoK37JDaHH4huS5Pb2xMG64WOnyzx99udtcuTKRylTpaJceQuQswhCxCXdEL+wORClpKBXL5RF2iF6PWXO4kojxs+Qc+Olz5CRalYsSE/ENz02tjY0Z+lGKlqiDD18cJdcRA+t/y79I4buFqQ7opfUht3HZV2yu+emRtVLaY6Z2AvcS4kDdoG378tDc5vIh2gfDuJu332Yzv80K8Ziv//+eypenIf7DotxOy5LO0UuS3tddMvTp0+Xvf02b95M+fPn12y2cuVKKleuHM2YMUPm8fDjAgUK0J07d+TrjBkzEn/LaG1tTf7+/lSxYkUZDOSVI0aMoB49eshgYp48eWjJkiXyAwkHaNWclN6DgbfC226ZCBIqbffjoM4JrvqqdSvEB480muN079Sb7okh/Pxt5YHtR+QHj9Li+l2yYhEdE8G6LJlc5LZLfxWBP7cclFJ8AJkxZ6rM47lUCnkUpj//OkfWVtaUTrzP8ubOR9dFwH3h7CVUrHAJeiiO6+riSpevXqKqPtXlfmNE8PybRs2Jew7evnuLtvrtorTOaeXx64jetYZOSfn+0D6X2MrV3jbyMt4jUsRf/AwUD3fx4GSQv5fJkyeXB//w/qP4kmoXZcqSiYaNHyp/36fLkJ7qiV5/Tx8/pY2rN4me8u2ocrXwOXLfvX1HD+8/oPUrN4gP663pu/bfyeP0GNSD5ooehg2+aUB3b90lv91rxN8BZ3Jzd6Nm1b+R28RUDm/APRvnrfpV/q6TO6jjh7+oRqB4uIsHJ7RHuIOxfvqLggPFw108OBmkPcIPrYqf/qIWgeLhLh6cDHK++H0QjqvHT3+xTaB4uIsHJ7RHuIOxfvqLggPFw108OBmkPfjARYoUoXbt2vEiXb16lW7fvi2feQ7xdevWUebMmalkyZLy8/q5c+fE/xbF5eieSpUqyV6Gbm7ifyWxrZKcnZ1pypQpavt7p1TPXywEioe7eHCK1tXWxpY2r95OG7eup82ik8vSlYvkDp3adKEfB4+WecWLlqRRP4yV+SNEXpV6XvRcjEYrkM+DUiRPQbz+5avwnpjFihSXnUx4Y/4cXbGclxy5c/LMcRo5xFd+fq/mXYMCb92Ux+vfczBVqVRVfnYpmL8QLVw2T36RnzNHLvqh/3Aa/dMIud34EWLu+QyZ5LL2jzgFB3kCeZ4DR1c6ceKE/Gcu8rphw4bJrovc2EjmIcDBk6ZNm8qT4fnK3r17R6dPn5av+Z/5nDlzmseJfj2LsK+LBl9SftnIIYYGL82ABShBQt+0RalgGVe9SkqfITOV8/ShA6LXXUrxzQkPKc4sAgzRJe1AXnTbKPk8JLln+/Dr9tnTx3Tq+GGaNn64LOfAqfCehR269qMW4pe3knjewsbVS8uXtwNvyMBfviwRg0wvnj8jBxF0mT9rMrWo70WpUjvI7b2r1aEzIsjiniuvJkiZTwRU4po8y5SP6y5RtlcCdxwg48Aa3+yAU3BwsPx2b8+e8G+b9u/fT4ULFxZ/tIP0vv6cHB3EH7DXmjKVstKmddLkRbfA3zhy4K9bt260fft2zWY81Lh8+a/nnT17drlOGX5QrVq1CB8ecufOrdnXyclJfmDhDDs7O5nP3edjCg6myuSp2V8tC0qQUPEc0GIU1SbveFdvwawlVKp4+LWsHIQDhnnE9ak992ABEVTnb4Q5OMj5HBjkVL5MBfFt5A3ZA5Bft23ZgfYd3CO/jazmU0N+COEAIg8rbtKqgeaYVSpX481lKl6khHw+ffYk5XTPKQODnJFflJnQ9C74g97XbOSyFGNDvD8il6X9WilXOy/ysjHfIw9EjzUe6m6glBh/V+Xfy8ALD4giXtrxqvKL5+FfBuXJn5tOHTsl5r99RIWyRPydzdvcDLhJHXq215TRvG341Bac37Xf178frm5Z5THOnjwn/g64y8Ag75TXI59m3zuBd6IthzcqX6l8hN91mh31X0gMZ31Lk+2h78axbYf2iE0o1vWJ2h6xlqZ7gyS//vD7QHdDfMlN8vaIsTZxWInfB3HA0r1pov8+4CmJlJRKdMrg0Sg8mocTjwzSTjzk2F50+uAgIs9byLGDDBkyyACish0HEvlL/zikpLyeo6tWFFeOjdiL4cRdO/SQjyfif06/Datp2uzJVE58lr51J5BKiuCfkrKKjiecnon/J2NLWb/8T8xfXmh/fufXnz6HT2fFQcVKtSvIUUDcg1E7tW/diSbP+El8xs9CjeuH/0+svZ6X4xQcPH78uAz08Y58QSxcuJDq1KnDLyl9et09dHgYmHKTALmh+f7wFafGD7NPNjY2sqswnyj32uG5wFq3bi3PWwk6mBmClYHOR9cvtTGiLF/xCAsLOmugYvU/rE/drrLHWeReYpGPwDdU4H90lcS919yzZ5H7PrGJ+M+Vsk10z7XrN6NdW9fJIFudhhH/uPA+ISEfNbs+uHdbsxzbQq68+Wn63BVys+k//UilynpS5aq19f5DlMbRiQoXK0UrNx+UxwgV3eOvifkEc+TKQ1PHDaNAMXfbITHxbFbxi7iv6OrNKZsIrASK3oifREDdRgyh5F6FcU3HTp+givkjBiRjOoauf+a5Zyf3TOO7Ez969IhWrVolD7F+/XoKCAgg/hKHEwfheE4RJ6c09Ph6eMBQrojmBw8hV4LAyibeXiVlWa07jVKyYnzu3bs3LViwQA4JVjbkAOVff30dPs515FSoUCH6/ffwee+UbfnZVthqJ55LLy7p7aNjYl6QFHHZJcK2yk0nDu2cHyE/ri+iazvuObh4UrhBXI8Z0/a5c+ah+6KXLgdP+fc6/72+LIYGDx80UuR9jrBrhvQZqUBeD1qw9FfyFJMscy9DHib8Ubwfm315ny5aPk/0CrxJx/edIf4Aw/OZaCelXXjuwxsi2M5DKfgbVu5lmNCU0j456fM7MzpjQ7w/tM8ppnJ1rdPe11jvkSyZM9L9q7u0q5Ioy1/ON25v0vDpNyKXL/9euhfOoutvaeRtY339uxgGzMk1ezZKI770KFSsEC3fvEzmhYi7GAeIeQM5yJe/YH7Ruz18niReuX/nfsriKnrJF/GQgT65g/gReP0WVfSpSBwkDLweKP4OiPeZ6GX+6MFDZZMYy9FslLCFuDrrW5ouc9ke4gC61ul7XM12aA8NhT4LuswTtT30qYSObZL8+sPvAx2t8DUrydtDFK3r2vxaIz2X8PtAT6jwzXSZJ/rvA12BvNSpw290t3XrVhkM5OoEBgbKICB3JPvtt99k/IhH9vA23CkhAclQ13N0VdLLdcuOjTR55kT68+gFeRz+/MxDgVet+41u37lN+fMUoIv//aspI/D2TbmcL09+OvfXGU2+rgUbaxtd2Zo8DjyOHD+MfhajxOrVakA3bl2XcxQqG6xet1J+ec+jhn4Xo/NqV6+rrNI8xyk8y4EfFxcX+eAjcEBQec3/sOmaPF5Tklj4559/ZG8Q5fbYy5Yto6JFixL3SOSJK7kXEE+mWKZMGTkpJR+P1/GE+UriMeo8fp0nnueJLHXdTUfZNomfR4vy/MXDVzzMOvE/eKVKiTubigcHEzjyr7zmbw6Q9BLwFVuF9xcO35x/afMvOd/wl6b1UwkMclCQg0M8xxYHSmILKuo6y6o168tefQf37iBe1k6ZMmcl7vXHPfL4TsZrln8NSGpvxwGHV2JOQO3k6OhMFUQ3a35kEHM+5C1QSC5zT0V9EgcTL/x1lv4Vc63xe2C56CHVs0MzOaySA4OFipaSgUHubXhEzPvAX4qULFtRBjnX/DZf9NJ7R2uWJSx4FFs9OUjLPfmUxEFBDphw4INT/dretHLFMuKed/zgobr8RY/ymm/+seK3ZXI75RjRPXNZ2oFBbvdDu+bHud25d9+8efNI6b3I5fGXTvx3gicu5rR69WqqX78+KcN8ZKaZ/Yit7QxxuiWLhX9zyXOPcKBOmVOwaOHiOovjXoA7ft9GZUSP3hxiXk8e+uB/9KDsVcg7cGCwSMGiMjDIEyLzfCYceIyc+K5t3Ctx1drfiO/qtsJveeRNDPI6NuPEfH9on0Bs5Wpvq2sZ7xH5dzHR/14+Fj0jb4qg3dXL1+RNRcYPHU+jJo8SgXJr8bu7JP3717/i9734AC9+369cuIL6dOgrf99Xq1OVtq3bRvfu3KOAKwHUt2M/Su2QmqrWrkpb1oobmty6K6cy2CWGJnv6eFKJsiXE34FUtPa3tfQ++L24K/LXeXVjKkfXtaCSPF9RD7SHShpDVMMg7bF27Vo6evSoes7ya00Mcr74ffAVOI5LaI84ghl480Rpj4cPH8obBvJIHn5wxwF9Ut68eeVm/Jmev3Q+f/48denShV68eEEPHojpptzdiUf7vHr1St4w0IQ6kOntWkJ0JOG5u/nmITzPIp8jf1bmgFyBfAXIR/wfyjcTOfNn+KjLrTs3Ew8LVkY7Kc5K8PVVHO5W/OJl+AgIz/Je4f+rrloiD/c57LPssThWfMaZ6DtF3hzlx7FDNUOXlTL52Vb7RXyXlcnj+/UTQ/LEBPE8WTw/a/9R4YkqeXL4wYMHy0nmd+/eTe3bt6dZs2bJf1B5mS+iQYMGEd8Bly+a2bNnyzHrnTt3lj3T+MYXPNk8R5o5Cs0XG09Yz8FEFaQxog4cIKysVRdfrWWzXVR6g5jtCRrmxPha4cTXjS8vmGrif3w5KT3G4hMQVK4hfs4o7upUQnS7/iCGvPKNRZQ7O3EZucXww4oiQNGqkY8MupUXgb0r4mYgnHhf5Repp09NGjWkBzmK+czC10X9HkQpU24Qyw/e1tO7OrXv1l+WzZunE98EzRA3ceAegW3E/G181+TN4luhtOkyUONv29Ccn8dTzbpNaMCwcTR2eF/54PPiYcdxKTuWqkVYrQRplZ6CEVaKF/26f0OlKrchTy9vzU1JFDPeloNxo33H0tnDv0XeNcprnlOSU0LaXTmoj48PtWzZUgYBOY/nJalbty55eXmRg4OD/PZRGXas3c7K/pGfI/tGfh15ezW8jq3t4ltHK/mdg+69eULjoWL+EZ6seMK0sfKOwVPH/Sx78+kyq1jOUw4bLlm8lDxgZU9vuhpwhdKLa54TD1fgO6RtED1/0zmnkz0KZ82bQTWr1pLrlbrw8N0hfYfSqAk/ygcPd5ZDm8X7zJApNuPEfH9on0ds5WpvG92yhb9HEv3vJX/eXPC/hfLB5kVLFqUfxF0ClSHCFbwrUNtubalto3aySXjuv2nzpsqef/Wa1qPtG3ZQjdI1ZdCvW/+ulD1ndqotAoCbxE1JapYNv96552G9JnXllAZ9h/WRNy7hm5cUL1Nc7sfvsZjK4fXW1oZ9T8iTi/sPtEfczQy5R6K3B1eW/wfj/9v477DKUqKfL34fJKiF0R4J4kv0nROlPfhOxPxQEncC4s/pMSX+m+Xo6Ei+vr7yMXfuXLk5x2v4poH8eZ7nGOfP95waN24sRzLxnY/D/95F/V9NbqiOH3q78nDfKWK+/CGjBtKYSeGjqHgYL9+sr4LoaMId26qK/2Wbfd9QfvblL9qXzA3/v4sd7L7MkZ7GIY2cDqh6Q2868vuJWBV436Lippn8RX4Zn/Av+Tu26SznBf9h1CA5p2G50hWoQe1Gcs5Cng+R72DMddVO/KlD1DFMO0+vZa4AN3CjRo1o+PDhdOjQIeLuopx4cknukXLr1i3iC4ODh6dOnaLmzZvLYCBv06BBAzn3ldIrkCeN516BHGHm3mcHDx4k/jDMd7vh3iyXL1+Wd8jhMewHDhwgnsySj8u91rJkycKH1CtxvUUy1KetyJBjvlTKN6xkybB3WncF1auy2MjoAinFdWZ17lxiXy++X05MedZ1niYzrDi2ocfrT3wkqxSuVDSfi67zjFce3wTESQT+kiWzi3b/Vy+fi94cjvJLh2g3iseK58+e0NMnjym7mNg1ufiFrqSP4k5UfCOVrNnc5R853s7RKa0sn3s5vhbf/HCw88vvIGW3GJ8Pnb5CBTMH6TWsWAnSKr0Eozuw36aD1LbLCBrjO5K+b9Ne9hzkbwS5xyAHBpfPH0stmlaLbneZz2XxUFouK7pgsGv+uuR/+Jj8hjDGg8Wwkucu4b8B3IM88tDhGHaL0yr+pu7l3UNGHVYcW9uFhoTJYcW123nH6dz03TjodRA9ENeuW7bsZJ/CXt/ddG7Hc848Eu9PvlsbX+s8h4qTGJLP/3xFTs9F797Xb4LkXd3i8r6IfJzgN+/p2NbT1HForsirNK9jM1Y2TIz3h3IsftanXB5mG5/PYXx8Q71Hbt68SRUrlFPDsGJfPk+RfOVPHT/Gbu8S1rS0Ye5K/vzZC3Hn4qfklsMtSs9lnpOQg4Yc7FYSD8e/d/suJbNLJubLzRzh9z3PmfUm6I0YtuwaIZ/3jakc5dhxfd54ZhaNqr8gyT+/oD10t5Sx2kPUJl7/5+k+C/1zDfT/lu+XGijPUSqE6y8Kicww1vWH9lBXe4hAXZhysz/dNUucXB4Jyj0FeZQpBwWVxJ91+HML36yEPxe+fftWfr6P68ggvkOymJIosf++KdWM/Oz7JUN5jrye5g5cHVa3g0+EfB4Zc/vOLUotRsoocwVqb8Cflfn83dyyyy/ltddpL3PPQcc0jtpZsS7zlEH82TulmPuQ50DkuyVzsDG2tHPJocTpORjb5PFKjw/u7ack7knI+dpRae2Lh4cNc1Ly+MSaNGlCbdu2lbe45nzubThx4kTlkHF5jhzEi2lf/5hWxrJOiTLHshlWW5iArzmdb0LnWYuPBQ8Lji1xYM4QiXsG8iNysrNLLuaWyqHJ1t6G75oc1zsnaw6k50JsQUHlMC2aVKGC+X6jmb+uFz30isqbj/Acg/VrV5Y9BgsXzK1sGu0zl5UUv9x42gpLSPq2naEs+AODPh8a9Cmfg608p6CS0qVNpyxGeeY7FfMjKZK+xonx/tA+H33L1d4nLssW8B7xjYtHYm+bNp2z+H3vrPOwfDfjyImHJHMgUVfiOxXzQ1eKqRxd2xsxz9eIZcu2QHtEaAGjtkeEmiTNC6Oeb0zvU/w+SJoLQLsUtIe2hlz2jZJjpIwUKVLI3oKRi+cvDSLfyCTyNip87RufOvGX7TyPYHQpkx7/y/K+cQ0M8j4uYhSekjjwGpfgq62yY0KeY5o8nie8b9iwoRxqzLe85oAgzx2VNm1a+uGHHzST0PNYdB7friRdvQz4xheTJk0ijnjzBJa9evWSE9TzsOM4prhEmr3jcOzI2/KcLIHi4S8eSfG/tCgGCQIQgEDMAhwAXPzLMLHRMHk3Un1uPhLzEbEWAuYjgPeH+bQlzgQCEIAABCAAAQhAQD+BRBncHdvk8TzxJAcQuQtojx495O2reQJ8HpbMXU7fvHlDPXv2pGnTpsVY6y1btlC7du3kNk2bNpU3JuFuqwZO/uL4+jy8xXaHxYMTBwX/Eo/G4sGDvv3FAwkCEICAqgSUIY/Ks6oqh8pAwMgCyvtCeTZydVA8BCAAAQhAAAIQgAAEDCaQKMFB7cnjeX5Anj9wxIgRmkorE96PHDlS3mhkypQpNHDgQHJ1dZXzUfFdkHn8Oc85GF3ibqh8k5OLFy/KXodOTk7y7i+tWrWKbpekzueegZXFA0HBpJZHeRCAQLwENDdK+HJTmXgdBDtBwEwF8P4w04bFaUEAAhCAAAQgAAEIRBGI97Bi7cmzOXC3Zs0amj59epTJ43kYsJKcnZ0pKChIeSmHBvNNS3g+Qb719ZfJa6NMzK1dVkBAAN24cYP4WDyZpUqSr6iHv3iM+fIsnpAgAAEIqFcgcm8ofm3o+dHUq4GaQSCiAN4fET3wCgIQgAAEIAABCEDAvAUSpeegQsQTY+fLl0/vu0pyMNDd3V3uowQGlWNF98wTKvKdkFUUGOSq+ouHz5dn8YQEAQgktsCzp48pb2Zb6tamUYRD37t7i3Zv36DJ27drC90OvK55HdcF7eMFB7+TZd66GRDXw6h+e6VXlFLRyK+VfDybtsCtO4GUvWAWGji8b4QT8duwiho0rx0hT9eLPft3Ex8jsZP/0YNUq3HVxD5soh0v8vsh8utEKwgHggAEIAABCEAAAhCAgAoEEjU4qILzMVYV/I1VMMqFgKUI/L5jI6VK7UAH9+6g58+eaE77yqULNG38cM3rWdPG0MUL5zWv47qgfbzkyVPQqi2HKKPWXZ/iejw1bh+5V5RSx+jylfV4Nl2BDVvX0amzJzUnEKZZinlhxpxp9K94j1lSiu59EF2+JdngXCEAAQhAAAIQgAAEzFMAwUHzbFecFQTMTmDDqiU0eMRESpc+I3HvQE53b9+kCSMH0J1bN6h3p29p5uTRxMG9iaMG0fEjBygk5KMMHFYtm5caVy9NO7eslft9+PCemtYqR+tXL6E6lYoQr1+/anGU44WGhtCMiWKu1JfP6dOnTzR3xgSqVNydyhdyoYmjB9H798HyeD8O6EKrls6l75tUlevGil5avL1aE/eCcnJ0oGKF80aoInpHReAwqxfNm7akoaMHivdEiM7zWi/eG9yTz6tmOfr5l6kU+imUps2eTJevXqJx4n214/dtsqfhvft35f7jp/iK4w2Syx8/fqRGLevRnbu3KeDGNWreril5lMkjtz97/ozc5uLlf6lbv040f8ncKD0Gg14HUceebWnuotk665bUmXh/JLU4yoMABCAAAQhAAAIQMLYAgoPGbgGUDwEIxCpw/dpl2RuwVv2m1KR5W9q8foXcJ12GTPRtqw4yYNit7zBq2KwlZcuek75t3ZEKFCpK/5vsK4ccDx45kdp27kP9u7WiU8cPy5sZXfjrLC0UvaKGj51O5Sp6048Du5JDGscIx+MA39lTx+h9cDBtXLNUbt+1zxCatWgt7d62geb9L3xO1esB/9GYYX2oWcsO1LXPNQRKPgAAG71JREFUD7RyyRy5X6wnZoQNuPcTBwU3r5lG5/9YLWsQFnSWfId1kcvoHWWERkmCInt36UvB4jpeunJRlNJ4iO+gH/tRC/H+meg7hdZtWkNzFsyiJvWakZtrdvrum9ZUoawnPX7yiM6J9w3PA7xaDEteIx4cbLxw6W+6GnCF0qfLQK07NacUKVLQ8nmrqJKnN7Xp2pKePX9Kb9+9pd37dpLfxlXUTrxnlfRODN1v3721DEZ2atNVyTbaM94fRqNHwRCAAAQgAAEIQAACRhRAcNCI+CgaAhDQT2DH5rVUpUY9SiuCD9XrNKI/Tx+ne2IeNHv7lJQnfyFKmSo1FSxcnHLkyieWU1GuvAXI0SktLfhlCvUZPJpq1WtKjb79nhqJIMfenZs1hY6dMpc8vavLACFn8ryG2sfTbCgW1oqgCgcYW7XvQaXLeVHvQSNpk99yzSZcTsNmraidCMIULlaKbqt0nsLKXiVlUNDbs6Sm7rzANyPhICGSeQqkTJmKxo74iSZMG0v3H9yLcJIrxHXMPQvbtepInuUr0YBeg2mLGMafM0cuSiX2y50zD6V1TktVxXuFg4OBosduCjHkPl3a9HTxv3/pzLnTVLNqLTp17iQ9ePSA5k6fT6VLlKFBvX+Q5Rw7eVRT3tJfV4ogZCv5mgOGXfp0kAHGeTMXkZ2dnWY7Yy3g/WEseZQLAQhAAAIQgAAEIGBMAVtjFo6yIQABCMQmwL33/H5bIIfw8vDfEDGEkdPv2zdSxx4Do9396eOHct3gXm2JH0qq0+AbZZGyuLjKZZ7LkNPHD+HHli8i/bghekZ17/d1bkNXtxz08EH4EEve1MXVTbOHkwikfPz4QfNaTQuRg4KR64Y7FkcWMZ/XNarUoiqVq9FYMUy4siffQys83QgMoP3+e2ntxvCepJybSgTcIyevCpVp5pzpoudpcbG/N1lbWdOfIlh44sxxalS3CfGQ4zy58kbYt4AI1D99+pSyZHKR+e7ifaOk2+JmQvzgIOOn0FAl26jPeH8YlR+FQwACEIAABCAAAQgYSQDBQSPBo1gIQEA/AR7Wyz36lvjt1twJfbsY9rhR9HaKKTjIQ4Q5zfttC5X3qiKXH96/Q9bWNnKZf9jYfF3WZEazUKhICXqkFQy8ef0qefnU0GxtY4NfpxoMLKhWYPTQsVS5dgV6J3rtKcnR0Zm6d+xFfXsMkFmvXr2iJ+I9FzmVLVVezkG479Ae4kAhv3/4bsY8LHnymOnyrsb3H96X823yOh5+fPnqZRouetl++vQ58uFkUHDP5gNU/9taNPPXn2mE6H2LBAEIQAACEIAABCAAAQgkvQCGFSe9OUqEAATiILBNzGtWs14TOfy3nOjtxI+W7btTgLhRwlVxkwNra2t69/aNpueRrQjSvXrxnOzFcMhiJcsS78+9DXkYcttmNenksUMxlh75eMrG1Wo3pE1rf5M3P+EbnezY7CeCgzWV1XiGgEkIcM89HjZ8+A9/TX09y3vRngO75JyCHDQcOX4YLVj2q1xvY2tDL1+9lMvOTs5UtFAx2rlnO5UoWlIOHeYeh9xbMHOmzFSyWPhQdT/RA5FvaHL4y3utqOhpqCtlFDcXyiAePNx54bJ5MvCoazvkQQACEIBA0gqsXbuWjh79OiVE0paO0iAAAQhAwBgCCA4aQx1lQgACegkEi5sV8B2F6zZqHmF7DxGgyJzFlfbs3ES8zKl25SLy2VME7EYN6SFvRDJu6jz688wJKpUvvbwrceHipahpi3ZyO10/rKysohyPt+P8Og2/lUOFeWhzwWwpie94XL/Jd7oOgzwIqFqgiwiuZ8mURVPHLu26i+CeC1WqVZ5KeBWmR2JI/rABI+T6yhV9aPiYITIgyBk+larK4cEcEORAIw8J5rkIOdnaJqOh/YfL7YuUL0BtxQ2AfEVPRQ7Y83sousTDnbkn4oixQ6PbBPkQgAAEIJCEArNnz6adO3cmYYkoCgIQgAAEjC2AcXDGbgGUDwEIRCvANxy5+jDqXGQcaDhyPlCz37G/bss5CTlj4PDx1EkMj0zt4CiHPR46E0C3xJxqfNMSDihysk2WLMpxtctRjhe5/C37ztJdcTOGZOLGCVlcsmkCHn7bjsjjKj8Wr9mlLFr0c9q0aS36/NVw8tmzudOtiw8iVMU+hT2dPPinJi+NQxpavXidnDPwo+hlm8M9p+baHtJvGHEw0eHLvJz9ew4ifijpz6MXlEX53Oa79tRI3ADogRhe7JYtO3FZnPgGJZdOX5PL/MNbDPXnh5JWLvRTFvGsAgFnZ2cV1AJVgAAEjCVw7NgxYxWNciEAAQhAwEgCCA4aCZ6LXT5qqxFLR9G6BNqObagrG3kqF7CxtSXlpiJcVb5TsZJ4Xc7c+ZWXej1HPp6yE8+jlj1HbuUlnmMQCH7/gdKlSxfDFupYZWODDvTcEhxwd82aTWejODk66cyPLpODjfxA0l8gpp6V+h8lcbd0dgqftzVxj4qjQQACEIAABCAAAQioUQDBQSO3St0OX+8YaeSqWHzxO5fEPBedxQMBAAJxEHgWuD8OWxt30xCV3CnXuAoo3VgCYUFnjVU0yoUABCAAAQhAAAIQgIAUQJcJXAgQgAAEIGDRAslE71IkCEAAAhCAAAQgAAEIQAACliqA4KCltjzOGwIQgAAEIAABCEAAAhCAAAQgAAEIQMDiBRActPhLAAAQgAAEIAABCEAAAhCAAAQgAAEIQAACliqA4KCltjzOGwIQgAAEIAABCEAAAhCAAAQgAAEIQMDiBRActPhLAAAQgAAEIAABCEAAAhCAAAQgAAEIQAACliqA4KCltjzOGwIQgAAEIAABCEAAAhCAAAQgAAEIQMDiBRActPhLAAAQgAAEIAABCEAAAhCAAAQgAAEIQAACliqA4KCltjzOGwJJKJA6ZfIkLA1FQQACliSQzM7Wkk4X5woBCEAAAhCAAAQgAIFEF8An6kQnxQEhAAFtgVdvP9ORi5e0s7Csp0AqezsqmBnf4ejJZdabff4cRjuXHDLrc0zIydnY4n2SED/sCwEIQAACEIAABCBg2QIIDlp2++PsIWBwgU7VUogy+IEUH4FX78Lisxv2MSMBaxsr6j46rxmdEU4FAhCAAAQgAAEIQAACEFCTAL5qV1NroC4QgAAEIgk4prSKlIOXliZgjb/UltbkOF8IQAACEIAABCAAAQgkqQD+5UhSbhQGAQhAAAIQgAAEIAABCEAAAhCAAAQgAAH1CCA4qJ62QE0gAAEIQAACEIAABCAAAQhAAAIQgAAEIJCkAggOJik3CkssgU+fPhE/kCAAAQhAAAIQgAAEIAABCEAAAhCAAATiL4DgYPztjLrnHyePUvaCWSI8OvZsSydO/xGvegW/D5bHCrx9kz5+/EjrNq0hztPOj9eBI+2kq97KeTx6/DDS1tG/HDVhOM2ePzP6DbAGAhCAAAQgkEABb6+SCTwCdocABCBgPIGcOXPe9Pf3N14FUDIEIAABCJiMAO5WbDJNFbGiYWHhdzA9e/hvshaz1b97945miWBZz4Hd6LT/ebK1iVvTJrdLTuuWb6ZMGTPTu+B3NHjkAKrs6UMZ0mfU5EesQfxeKfU+tudUlAOkT5chSh4yIAABCKhdwNuzJPkcPaf2aqJ+cRTwP4Y2jSMZNocABFQm8ObNm9dJXaUxY8aQl5fX2qNHjyZ10SgPAhCAAAQSIICegwnAU8Ou6dKmJ35kc3WjDt93omfPn9K161flkNvZ82ZSuSolqIRXYRo3eTS9f/9eVnnP/t3UvF1T8iiTh/oP6038uSE0NJSmzZpEL1+9pK59O8rt2nZtRY+ePNLkc+a+Q3uoWoPKct/OvdvTg0cP5Lar1q2g6bOnUL+hvWR5bbu1EnV5Jtfp+sH1jfywsbEhPs74Kb6yXlx3Xt61dwf51K0oHwcP79cc7mrAFfqmTSNZlz5DetKroFeadViAAAQgkJQC3MMMwaSkFDd8WYdFwJcDv0gQgAAETFXAyclpmI+PDyVV70Eux9fXlwICAu6bqhnqDQEIQMBSBRAcNPGWV4b+3rt/l1at/U0GCvPmykfrNvvRr0vmUI/OvenXGQtp557t9MvC/9HzF8+pS98O1Oa7drTgf4vp8n+XaM3G1fTp8yc6fe6UCCAGU88ufaRK/56DKFXKVJp8Djp26tWOKlWsTKsWraXQT6HUa2BX4t6APCR41rwZlCN7Tho/ciJduPgPrVy7PFrdrbs2k/bj5Jnjcls+zsLl8ylbVjfq22OgXB4xbhj17zmYSpUoS6N/GqE5Jp+TV4XKNGHkJDp24ghNmfmTZh0WIAABCEAAAhCAAAQgYMkCV69e3eXh4bGAA4Tco89QiYOC/OBycuTIMfvBgwcDDFUWjgsBCEAAAoYRiNvYU8PUAUdNgIBH6dyavQvk9aDJY6cR98Bbs36l7EnY5rv2cn0/EWibOXc6tWzWWr5++uwJeXtVoSVzf9P0KFQOVKRgUblYrEhxSpYsmZJNm7dvpOJFS9KoH8bKvBGDR1OVel704OF9+bpMybLUt3v4Z4F/L12g6zeva/aNvLBg6a8RskqLwF+50hVkXqnipWlAr8Fyeer/JslAZoM6jWTgkedCDA0Nkeu4Ln269ZfLr0Xvx0kzJtCEUZPla/yAAAQgkJQCo4d1oTETF5D3zvlJWSzKMqCAr2jPsKCzBiwBh4YABCBgeIFLly51dXBweH7kyJHcVlZWzQxRYu7cuW+KIcxvK1euPPbw4cPrDVEGjgkBCEAAAoYVQHDQsL4GP/rh3cdJ/KGXcwxmdXHVlBdwM4B6de2rec1DeHkIsEuWrMRBvVETfpSPKpWriWCfft8k3roTSCVFQE5JWbOEl6cMH86ezV1ZReJDCL3/EKx5HXlh5/q9kbM0r93dcmiWHdOkIQ56clIClZ8+fZavPct7yWf+4ZG/IL19+0YOp+bgKBIEIKCfAG64oJ9TbFvx8FP+TcpDizEUNTYt9a/nQK+vCPgiQQACEDAHgdevXw87ePCgwU5FDCOWx374UP+bCxqsMjgwBCAAAQjES8Ba3MXqOncDt4TE58nna07n6uaanTgopx0Y5PMr7FGEHn6ZD5Bf3wi8QZUretOLly+oepWadO38LfJbukHONzhjznTeJNaUP08BuvfgnmY7vrMxp3x58stn60QKytnYRopZi+CnrvRCDJFW0s1bN4h7LiIwqIgkzjMHOXjeLSTzFMAceYnbrtx70KdO18Q9KI6W5AIyMCiCg9yeSBCAAAQgAAEIQAACELAEAeu3b9++s4QTVc5R3NU3/K4cSoaZPtesWos2bFlHt+/eopCQENom5vir7FmFeG7COs1q0MPHD6h8mYry8fpNUAQFvvsxp8g3+PCpVJWOHD9MZ/48Lddv3bmZqnnXIDs7O/k6Lj8uX71EkR/KDVP0Pc7mHZuIA5R8Tn4bVhHXDylxBSrjJguJC6qyo+GGC4nbIBxM595mVmlKySHGiXt0HM3QAhws96nbVfb+PLQLw8MN7Y3jQwACEIAABCAAAQioR8C2aNGiPw0dOnTRyZMnU6mnWoapye7du1+kSpXqkGGOnrRH5aHEMaX6tRvSuk1+5FWznNysaKFi1KheY3nDEm9PH5nPdznmYbvTJszUHIqPm8YhDfG8f9UbetOR30/IdZxfsEAhqiqGITf7viGlSpWaUiRPIecs1OwcacHaKur9bpR612ocNZD3++YDkY4Q/jLyqSrHyJ0jN1WuHT5PIQ89btbwW537IxMCEIBAUglwbzNl/kEOEipDUznQjuHGSdUK+pWj3XOWewv6i17S3F7oMaifH7aCAAQgAAEIQAACEDAfAdu9e/f6idNZw0Nuvb29zefMdJzJlClTnEV2bx2rTC6rYjkvunXxQbT1zpA+I+3csJfu3LtNdsnsKEtmFzk3Ie8w9+cFsrfdx5CP8iYfykG0j7dx5TbZc9AxjWOEcmZP/VXOWSh6nJKbW3Y51yHvr9xARDlW9469lMUIz7HVW5lfUNnp0M4/lEXKn7eApi7KjUc+fPhAT54+lsOqlaChZgcsJFiAgxmYRy3BjKo9AG64YLimiRxg4uCTD4boGw48HkdW5tvk33PhQV1CADcejtgFAhCAAAQgAAEIQMD0BeTkbkWKFFn0ww8/ND916pSD6Z+S7jPo16/fHQ8Pj13ijl26NzDDXJ5/T/vmHtqnGHmOQu11yjIHBnWlTBkz68o2Sl7y5MnJNWs2o5RtKYUqvaBwF1bzanHccMHw7akdIBxt+OJQAgQgAAEIQAACEIAABCAAgXgJyHGf//zzT+c7IonhxS/jdRSV7zR8+PC34hxPi8BgN5VXFdWDgOoElKGQHExCMg8BGRjEDRfMozFxFhCAAAQgAAEIQAACEIAABBIooJkU7sGDBwVXrlz5oH///vcTeEzV7M5DpUuXLv1KzKf4+6FDh5qppmKoCARMTODQzvDJ+XmyfgQJTazxtKqLGy5oYWARAhCAAAQgAAEIQAACEIAABKSAHFasWNy7d89jx44dc2bOnNlj2LBhr2vUqCGHGZvSXIQcEOQkegsGnzhxwl4MJfY7e/YsegxKFfyAQPwF5BBJ0duM56lTEt9kgZPSu1DJx7M6BHDDBXW0A2oBAQhAAAIQgAAEIAABCEBAzQIRgoNc0YCAgJ7iqeeKFStmLlu2rLq9vX3yGzdu5FLzSWjXLWfOnNffvXv3vly5cpNF/gpLmmNQ2wHLEDCEQPik/V00vQcPixssyN5ouNGCIbgTfEzccCHBhDgABCAAAQhAAAIQgAAEIAABsxeIEhxUzvju3bv9lGVTehaBTFndLVu2mFK1UVcImJQAbrRgUs2FykIAAhCAAAQgAAEIQAACEIAABKIV0Mw5GO0WWAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQiYpQCCg2bZrDgpCEAAAhCAAAQgAAEIQAACEIAABCAAAQjELoDgYOxG2AICEIAABCAAAQhAAAIQgAAEIAABCEAAAmYpgOCgWTYrTgoCEIAABCAAAQhAAAIQgAAEIAABCEAAArELIDgYuxG2gAAEIAABCEAAAhCAAAQgAAEIQAACEICAWQogOGiWzYqTggAEIAABCEAAAhCAAAQgAAEIQAACEIBA7AIIDsZuhC0gAAEIQAACEIAABCAAAQhAAAIQgAAEIGCWAggOmmWz4qQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBC7AIKDsRthCwhAAAIQgAAEIAABCEAAAhCAAAQgAAEImKUAgoNm2aw4KQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIxC5gG/sm2MJQAilTp6Br5wMNdXgcNw4C9qItkCAAAQhAAAIQgAAEIAABCEAAAhCAgKUJIDhopBZ/8/Id5S3tbqTSUWxUgTDKXdwtajZyIAABCEAAAhCAAAQgAAEIQAACEICAGQsgOGikxk3tlJKK+uQzUukoFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACRJhzEFcBBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQsVADBQQtteJw2BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQQHMQ1AAEIQAACEIAABCAAAQhAAAIQgAAEIAABCxVAcNBCGx6nDQEIQAACEIAABCAAAQhAAAIQgAAEIAABBAdxDUAAAhCAAAQgAAEIQAACEIAABCAAATMVcHJyuhwQEGDSZ8f1d3Z2/k9NJ5EiVfLLzx6+VFOV4lwXrr99quT/ITgYZzrsAAEIQAACEIAABCAAAQhAAAIQgAAETEPAzs7uyK5duz6YRm111/Lq1avB9vb2x3SvNU6uTTKbI1fP3TBp12f3XwTbJU92DMFB41xDKBUCEIAABCAAAQhAIIECKZM5XH3y+l4Cj2Jeu7NHyuQOV41xVmiPqOrGbI+otTHvHFx/UdvXmNcf2kNd7fH06VO/mzdvJjfl3oP79u2z9/X17RxV1ng5714F+z1/9Cq5KfcevPZXoH2rHxt0RnDQeNcRSoYABCAAAQhAAAIQSIBAaFhIcAJ2N8tdn76+S/bJUp82xsmhPaKqG7M9otbGvHNw/UVtX2Nef2gPdbXHvHnz/LNly7Z0+/btr6PWTP05mzZtuu3i4rJIbTXtPu07f8d0Dksvnw4wSdeLp67ddkybWroiOKi2qwv1gQAEIAABCEAAAhDQS8DK2mrwv3ePmeQHcr1OMB4bhYR+fBwU/Nwo3SnRHlEbzJjtEbU25p2D6y9q+xrz+kN7qKs9uDYjR47sYG1tvW3r1q1G+RsRVST2HO7pOHPmzLf37t07rrZeg0rtWw2v38HG2mrbpdMBJuPKPR3/2H7ubdCTN8e51yCfi5VyQng2rEBYyZJh744cMWwhOHqiC6SsVImszp0zxvskLCzobKKfDw4IAQhAAAIQMKaAVZpSXHyi/l39ee+QmyVyVHXP4JDVmKemirIv3z9Fl+6dolH1FySqcVxODu3xVUsN7fG1NpaxhOvvazur4fpDe6irPZTajBs3bsmdO3faV61aNSh//vxpcufOraxSzTMHBXfv3h1648YNW+4xqNbAoDbYqp+2L3n17HX7XEWyB2VwTZsmXWYn7dWqWOagoJgjMVQMhbZ1ED0Gv/8SGOTK2aqihqgEBCAAAQhAAAIQgAAE4iHgmDrtaNF78BefAs0d4rG7We3yMfTjXXu71JuMeVJoj6/6amiPr7WxjCVcf1/bWQ3XH9pDXe2h1IZ7EIrlDhkzZpx37ty5Si9fviygrFPLM9+VWPRy3C8eG0Vg0F8t9YqpHtyDUKzvsHzclnn3rj+s9P7tB9W58l2JrYSrlZXVRhEYjOBqtG8VY0I1x3XoOWiarYqeg6bZbqg1BCAAAQioU8AQPQf5TKfuGXDJLV3+rIVcK6RR55kbvlYX7554d+vZ5duDa/5s9H9G0B5EamoPw1996ioB15+6rj+0h7raQ13vVtRGTQKYc1BNrYG6QAACEIAABCAAAQjEWUAExDzuPL/66NK9kx/jvLMZ7MCBqNvPr9xTQ2CQOdEe6moPM7jE43QKuP7Udf2hPdTVHnF6M2FjixJAz8Ekam70HEwi6EQuBj0HExkUh4MABCAAAYsWMFTPQQWVe6hkTZs7pZ1N8uwFXMoq2Wb7/OT1Pbpw+1jQ+9C399USGNTGRntoa2A5qQVw/SW1eMzloT1i9sFaCBhbAMHBJGoBBAeTCDqRi0FwMJFBcTgIQAACELBoAUMHBxl3+t7Bv7z98KpnnszF7yezsXNJ7+BK5nSzEg4Icrpw59jbkNAPTxzsnYd39hq2Rmaq8AfaQ4WNYkFVwvWnrsZGe6irPVAbCGgLIDiorWHAZQ4OGvDwOLQBBYx1t2IDnhIODQEIQAACEDCmQJJ8/pyyu99U++QOGT+EBJd/9zEojzFPODHLTpnc4eqnT6Hvba3tfhxYc+qOxDy2IY+F9jCkLo4dmwCuv9iEknY92iNpvVEaBPQR+D/jdE59szHoSwAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "47d11c5c", "metadata": {}, "source": [ "## 1. Эмбеддинги (Embeddings)\n", "\n", + "![image.png](attachment:image.png)\n", "\n", - "![](https://ucarecdn.com/4ce51ba3-83fc-46c3-a6e8-efa064663df0/)\n", "\n", "Перед тем как текст подается в трансформер, его необходимо преобразовать в числовое представление. \n", "Это делается с помощью **эмбеддингов** — плотных векторов, которые кодируют смысл и структуру слов.\n", @@ -251,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "1464a012", "metadata": {}, "outputs": [], @@ -293,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "94ddd50d", "metadata": {}, "outputs": [], @@ -316,14 +321,19 @@ ] }, { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQgAAAH1CAYAAAC6IxO6AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFCKADAAQAAAABAAAB9QAAAAAKhl38AABAAElEQVR4AeydB1wUxxfHH0WsKNhFVOyKvTcQsPeeaNRYE3vvWLHFHo1GYy+x966xY4m9/WPUqKjYe+8C8p83uOdxHHDAHbfH/ebz2dvZ2Slvvm/3bu/tmxkbQogXAh06dAiNl4bQiNEJzJ0718bolUZfIa6X6BkhBwiAAAiAgGUSiJff1Sm7+tcJCvk02t4+UbL3n97ksUxUEaVOlsjxamKHZMdffXh6e2jtP4ZFzKHOFOhDnXqxFqlw/alL09CHuvQBaUBAIRAvD2hKY9a8ZwPh1KlTrRmBRfa9d+/eZC4DYejr0xbJDEKDAAiAAAiAQGQEbFKW5FMmff5cdHRKuxdvHw1LZJc4daGsHim5wXSOmXmXIMKTN/fo6Zu7FBTy+f61h+dckidONbNvtUnd1No56EOtmrEOuXD9qUvP0Ie69AFpQECXgEkf0HQbs+ZjGAgtU/swEFqm3iA1CIAACICAOgmY2kA4cVfvS0ntU2Rmw2BCMgpGps3L909IQ+Hd59de9a/+q3tk+cyVDn2YizzaZQK4/tR1HUAf6tIHpAEBfQTs9SUiDQRAAARAAARAAARAAAQsicDkXX2vZU2Tz6WAa7lkliR3XGTN71KGi7vY2tilmLy739V+1SarZig19KEufcTlOrPEsrj+1HX9QR/q0ocl3tOQOX4I2MZPM2gFBEAABEAABEAABEAABExDgD1TrM04qE2yoGv5lNnS5Ms2aVefS9rp5opDH+rSh7muA3O1i+tPXdcf9KEufZjrvkS7lkEAHoSWoSdICQIgAAIgAAIgAAIgoIfAr3sG/JExVXZHa/Ic1IOB3DOXdXj4MtBlwdHxrdqXH/SnvjzxkQZ9hFFWiz7iQ+dqagPXn7quP+hDXfrQvlc7derknTFjxhYfPnzwePHiRT7tc2qIOzk5XXFwcPAfM2ZMJzXIY6gMf/Rb6Z3SOXmLz5+CPD68+6Q6rkmSJ7lil8jWv/WwBnq5wkBoqKaRDwRAAARAAARAAARAQHUE3n582ckhjYPq5DKHQIWyeqY6e3PfSNG22QyE0Mc3zatBH9+ksY4Yrr9velbD9Qd9qEsfijR+fn7z7t+//1OSJEmCGzZsaJ8rVy7llGr2AQEBecWWW6zl0DF9+vRzLMFQuHzslnmvnr/9yS6RXXCRsrnt02R0Ug1PRZBnD1/mffbgZe5ZfVd0TO6UbI6uoRBDjBVS2IMACIAACIAACIAACFgUgXE7uo/PlaHY3a9z8VmU7KYQlhdmcUiUOM3v/sMbmqL+6OqEPsITMrc+wkuT8I9w/YXXsbmvP+hDXfpQpBk/fvxKOzu777p27Urdu3dXpXGQZWWjZY0aNWynTp1K7u7udSZMmLBa6YMa96sm7FhJtrbfla1VjMrVLq5K4yBzY6NlnmJutrXb+VB61zR1Vk/aGY4rDIRqvLogEwiAAAiAAAiAAAiAQLQEUiRJld7B3sE12oxWlKGgq4fj2w8vR5ijy9BHROrm1EdEaRJ2Cq6/iPo15/UHfahLHywNew5my5bNp0+fPqnU6DUYkVhYSv369TMHBQXVHDp06OzI8pgznT0HndKn9PGoVyKVGr0GI2PjXjpX5uDg4JpLRm/ScIWBMDJaSAcBEAABEAABEAABEFA1gU/BHyqkdYR9UFdJ9rYOZlnJGfrQ1UTYsbn0oV+ahJuK60+/bs11/UEf6tIHS8PDiuvVq5dBv2TqTq1bt67j48ePO/LciWqTlIcV5y+d0yK55i+dy/Hdy/cdee5E5goDodquLsgDAiAAAiAAAiAAAiBgEIH3n97k4WF0CN8IMI/3n1/n/pYSfzHoIyJrc+ojojQJOwXXX0T9mvP6gz7UpQ9fX98ZVatW/RBRKstIYY9HsYWmTZu2mZokXuy3cUbuom4Wy5U9HtNkcgpNliqp5AoDoZquLsgCAiAAAiAAAiAAAiAAAiAAAiAAAiAAAkYk8OXLlyp58uRJasQq472q6tWr23z+/Nk73huOosFQwTWNi7NFc81dLLtNSNAXyRUGwiiUjVMgAAIgAAIgAAIgAAIgAAIgAAIgAAIgYMkEXrx4kc+S5h3Ux5rlf/nyZV5958yV9uHdp3yWNO+gPk4s/8d3HyVXGAj1EUIaCIAACIAACIAACIAACIAACIAACIAACIAACFgJARgIrUTR6CYIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAI6CMAA6E+KkgDARAAARAAARAAARAAARAAARAAARAAARAAASshAAOhlSga3QQBEAABEAABEAABEAABEAABEAABEAABEAABfQTs9SUizfQEXrz5RGeuPjV9Q2jBYAKsk++8cxicHxlBAARAAARAAARAAARAAARAAARAAARAICEQgIHQTFp0dkxMJy4/o/w5MphJAjSrTSBl8iR0+so9GAi1oSAOAiAAAiAAAiAAAiAAAiAAAiAAAiBgFQRgIDSjml+/+0hlCmU1owRoWpvAnuNXtA8RBwEQAAEQAAEQAAEQAAEQAAEQAAEQAAGrIIA5CK1CzegkCIAACIAACIAACIAACIAACIAACIAACIAACOgnAAOhfi5IBQEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAGrIAADoVWoGZ0EARAAARAAARAAARAAARAAARAAARAAARAAAf0EYCDUzwWpIAACIAACIAACIAACIAACIAACIAACIAACIGAVBGAgtAo1o5MgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgoJ8ADIT6uSAVBEAABEAABEAABEAABEAABEAABEAABEAABKyCAAyEVqFmdBIEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAE9BOAgVA/F6SCAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAgFUQgIHQKtSMToIACIAACIAACIAACIAACIAACIAACIAACICAfgIwEOrnglQQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQsAoCMBBahZrRSRAAARAAARAAARAAARAAARAAARAAARAAARDQTwAGQv1ckAoCIAACIAACIAACIAACIAACIAACIAACIAACVkEABkKrUDM6CQIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAL6CcBAqJ8LUlVEIDgoSEXSQBQQAAEQAAEQAAEQAAEQAAEQAAEQAAEQSFgEYCBMQPqsXCYP5clor3c7f+aE3p5OGTuEJo4apPdcXBOb1auoV5ZRg3saXPXDB3fJPUtS+vTpo8FlkBEEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQMBwAvaGZ0VOtRNYve0wfQkJkWJ6FM1KY6fMIa/KNeWxc5q0esUPDQ2lL6Ff9J4zRmLHHoOoacv24apK4Zgy3DEOQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEzEcAHoTmY2/0ltOmy0DpM7rIjSt3Tp1Wc3xo/y6qVbEwFcvlTF3aNCL2zNMNVy5doO9rV6Aj/nvkqQ2rl1DdSsWIPROnTxpJIcHB0pOvcY2ytHbFQlkfn1u7fIFuVZrj1KnTkGvW7OE2J+c0mnqWzJsu22BvQ263d6cWVK6gi9x//PhBU8+c6RNkerUK7rR7+0ZNOiIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAJxIwADYdz4WUTpgKuXqHPrhuThXZUWr9lFwcLQ16tjc2LvQSXcvH6F2EjHHoec79D+v2hQz/b0fYv2NHrSH7RuxSL647dx9OXLF7pw/jTNmzmZBo+aQmUreNOQvh0jHQL8j8i7beOqcNvLF8809axeOp+69B5CiewTUbtmNSl5CkcaPXk2bd+0mvbv2qqIRwf37ZTpxUuWo27tv6N7dwI15xABARAAARAAARAAARAAARAAARAAARAAARCIPQEMMY49O4spuXndCipaoow06LHQg/wmUg2PgvTg/h3Zh8DrV6l5fR9q1LQ1de0zVKatWDybvmvejn5s300e9xgwgub+Ponad+krj0dNnCWNg8VKhnkTssEuR6588pz2x/EjB4jr1w553QsLj0I3mTRs7DQq51mJPn38SCeOHiRfv0nSSFipWh0KvHGNipcuL/P1HTyWylesTJy+a/sGOnp4v5RPu17EQQAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEYk4ABsKYM7O4EncCr1Mx4XmnBBfXbDL6/NlTud+/e5vca3vl3RBGPU7nocRKYO8+JWRycZVRJe3zp8/KqXD7Dt36U9tOvcOl8cGHD+9lmotrVrlPnCQJ5crjLo2DnJA4cRIK+TqfIh+zIZKDra2tNHayFyICCIAACIAACIAACIAACIAACIAACIAACIBA3AlEOsS4dOnSDTNmzPivm5tbgGiGx6JaxJYjR46ADBky/OPq6jot7ngSRg158hek+/duazpz++Z1Gc+Tr4DcV6lRj7YdOC8Ngoqx0MnJmTp0G0D/u/labofP3aKlG/Zp6rCzs9PE4xIxtJ5Xr15omvnv4j9UuFhpzTEiIAACIAACIAACIAACIAACkRLwFv/rLuTMmZP/BJjkP12ZMmWWOjo6jotUApwAARAAARBQPYEIBkJ3d/fZQupQYbhZvnLlygKLFi3KyXPVWcq2YMGCnKtWrSrUrFmz5tyPwoULz1O9FkwsoFeVWnIBkDMn/pYtbd2wUg7VdXBILI+zZs9FbERs27EX+Q3sJr37ylesQrt3bqInjx7Q+3dvaaRvd1owa0qMJX344B7x4ifam7anoqEVLp0/kz5//kTrVy2mZ08fSy9CQ8siHwiAAAiAAAiAAAiAAAhYI4GiRYvycKAD4n9dvvnz5+cw1X+6mjVrtnzz5s0g8V9yjjVyRp9BAARAICEQCDfE2MXF5aJ485P1wIED5O3tndQSOyjklmKLfbpJkyZR7969a6VJk2aN6NP3ltgfY8jsXrAoeQsj4Q/1veQQ3iRJktKcpZs1VdvahNmJu/QZQmvEisTzxQIk7cSw4LOnjlKVsnllvkJFS9KMBWs0ZXQjNjY2uknyeNGcacSbdqhepxFNnLFYO0lvXLvOf86dpIJZk8t8I8ZNl0OQ9RZCIgiAAAiAAAiAAAiAAAiAABPwO3/+fNuv/+3C/e8zNp4RI0aQl5cX+fj4dMiTJ8/mq1ev7jB2G6gPBEAABEDAtAQ0PxRsHGzRokWGiRMnpjBtk/Fb+9SpU10GDRpUVXhErt+7d2/j+G3dfK1dfRisaZwNbVNnL5cLgLx794ayZstJdvZhqu839BdNvlSpnOlcwLehvEvW7qb7d29Jzz23HHlIMdhp182FdY+VCldtOaRE9e61y9Ws24R4U8Jv81YpUU39vKgKy5gseYK6RDX9RAQEQAAEQAAEQAAEQAAEjEXA09MznzDYfRGOExFGjRmrDe162FGDjZHiP+UkkQ4DoTYcxEEABEDAAghIKxEPKxZu4WmEcTCNBcgcYxHHjx/vJObFqJorV66ZAQEBXWNcQQIpkD6jS4x6wgbBzFncYlTGlJkzuWQxZfWoGwRAAARAAARAAARAAAQSDIHDhw83PXQo6hf2puhsEh6uhAACIAACIGBxBKSB8NKlSx0vXrxoccLHROAJEyY4ijdoXUQZqzUQxoQX8oIACIAACIAACIAACIAACIBATAiwF+GNGzeyx6QM8oIACIAACKiDgG369OknDRgw4Nu4UnXIZXQp+MeqfPnyn6tVq9bM6JWjQhAAARAAARAAARAAARAAARAAARAAARAAARCwUAK2IojRxTWdLVT+GIk9duxYhwsXLgyLUSFkBgEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIEETMBWzBGRJAH3L0LXkiZNmjhCIhJAAARAAARAAARAAARAAARAAARAAARAAARAwEoJ2AYGBubk4bfWEL7OiZHTGvqKPoIACCQQAs9eJZCOoBuxJfDlS2xLohwIgAAIgAAIgAAIgAAIgAAIGEZALlJiWFbkAgEQAIGYEwgdMYdsDp2NeUGUoJDUacmubQ2iOp6gYcUEvoSE0twxARQaGmrFFKLuukNiO2o/CO//oqaEsyAAAiAAAiAAAiAAAiAQOQEYCCNngzMgAALGIJDWmR4MmUBvy3sbozarqiPj72PJ0ap6jM5GRsDGhqhWW5/ITlt1evDnYDqw9qhVM0DnQQAEQAAEQAAEQAAEQCCuBGzjWgHKgwAIgEB0BOyfPo4uC86DAAiAQKwIBAkDIQIIgAAIgAAIgAAIgAAIgEDcCMBAGDd+KA0CIAACIAACIAACIAACIAACIAACIAACIAACFk0ABkKLVh+EBwEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIG4EYCBMG78UBoEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAELJoADIQWrT4IDwIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAJxIwADYdz4oTQIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIWDQBGAgtWn0QHgRAAARAAARAAARAAARAAARAAARAAARAAATiRgAGwrjxQ2kQAAEQAAELJxAUHGzhPYD4IAACIAACIAACIAACIAACIBA3AvZxK47ScSUwfcXhuFaB8iAAAiog8OXLFwoVm509vlZZHWncqtDz5y9VoJnoRXj36Aglgt6iBxWHHMEhwWRvh3tDH0KblCX1JZs9zdkpFT2/vc/sckAAEAABEAABEAABEACB+CGAp/X44ay3lQkdS+tNRyIIgIB+An27/EhbN6ykP9ftobIePppMZ08do2Z1Palm3Sb027xVmnRDI29ev6ISedLQqStPKFUqZ0OLhcu3euk8OnJwD81cuC5curUeJE2SmJ49e0apU6dWNQIHBwdVyxcfwjVuWY9OnzsVoakls5eTt2elCOkxTbhy7T+q1sCHbl18ENOiVpM/NDRUVX19+fIluefPqyqZIAwIgAAIgAAIgAAIgIBpCcBAaFq+qB0EQMCIBNhLj8OubRvCGQj37tws07+Ehp2XB7H5UNmf9Nh0QU1lnj9/rnoDoZp4mVOWn9t0otY/tA0nQtq06cId48B6CLx48cJ6OoueggAIgAAIgAAIgAAISAKYgxAXAgiAgEURKFqiDG1at4xCvs4bx0bDjWv+JE5XwssXz2hY/85UrqALNatXkdYuX6Ccoj07NtGPjSpTsVzONKB7G3r75rXmHEe4vnF+/Ym9FYODgujJ44fUq8MPsq62TWvQpQvnZX7ON2PyKKpWwZ04/X9nT4arBwcgYEkEnJ2cKYtr1nBb0iRJZRfWblpNNRpWJs/qZenX3ycRDxfm8OTpY+ratyMV9yxELX9uRhcv/yvT+WPH7m1U+7tqVK9pTdq4db0mHREQAAEQAAEQAAEQAAEQAAF1EoCBUJ16gVQgAAKREChVtiIlEYaLUyeOyBz//u8Mffz4QXgUfhsKOWPyaLp25SL9vmAt/dCqIw0RRozHD+/Ti+dPqWu7JtS8bWc5FPjyxf+FMx7yML8JIwfQzs1rqd/QX+R8gp1aNaBXr17QlFlLqWDhEtSgakl6/eol7dyylhbOnirq70DlxDDMDauXRCIxkkFA/QTYuLd5x0bNdvzUUSm0/+H91G9IL2rWpLkwnE+kNWKI/8y504nvlfZdW9MrMTx/+sSZVMi9MNVqUpVeC4P7vft3qXPvn6lU8TLUunk7WrMx5sP+1U8MEoIACIAACIAACIAACIBAwiKAIcYJS5/oDQgkeAI2NjZUr3Fz2r19I5Wt4C09Ahs0aUmJEiXS9L1qzfrU6qdulClzFkqaLLlMvxFwhbJmzynjz548Iq9KNWjO0s30SRgXlTB1/HDasn4Fbd57mjK5ZKF//zlLF86fpgOnAihzFjdpCFy3chEdE0aTg/t20vctf6K2HXvJ4vAgVChib4kE/I8coMvCqK6E8mU8qGyp8rR01RJqKu63Ni3ay1N9uvWnPxb8TpUqVqH//Xue/t59klzFfVahrCetFsbDv48fpjdv31D+PO7k5ztalnn77g0NHztEqRp7EAABEAABEAABEAABEAABFRKAgVCFSoFIIAACUROoWqsB/dyiLg0eOZk2r1tO439bQGdO/q0pZGNrS93af0dXLl2gjJlcNekumbPSoBETadTgnnLzrlKLBo+aojm/cskcGWcPQQ53bt2Qe59SueRe+Xj+7AntEfMejps2X0mi4iXL0dnTxzTHiICAJRHo+nN36vpzjwgi3wgMoL3+u2m1MJwrIXnyFHT77i15WKFa+MW2nj1/JhY8OUmlS5ZVslPhgkU1cURAAARAAARAAARAAARAAATUSQBDjNWpF0gFAiAQBYFiJcKMD4vmTqM3b15RqXKemtwhISHUXwx95KHIvCrxwbM3KXkKR3me5yasXKMe/Xv7Hf25fq+cf5DnEVTCBuENVbfRDzSsXyfiehwdU8lTRy/co//dfC23DbtOUPU6jSiveyF69OCeUpRu3rimiSMCAgmFAK/q3bl9N/rvzA25ndh/jlYvWi/ujZSyi2cO/aM5t3XNX1Szam1yy5qdHogh/Uq4dTtQiWIPAiAAAiAAAiAAAiAAAiCgUgIwEKpUMRALBEAgcgJ29vbEw4onjfalmnWbiOHFDprMwcFBGqMhG/h4AZN3YsgjLypy7+5tMYdgKWnY4+HJZT186I2YQ00JWbK6Uf9h4+jihXO0Ztl8KlC4mDy1ee0yshdtnvjbnxpVL0PPnj6h6rUb0aY1S+nWzQAx3+El2vfXFqUa7EEgwRDwEMb3Xft20GMxLP/9+3c0bIwvzV38BxXMX0j2ccOWdWRvZ0/HTvxNdb+vQc/EPJ+VvKrQ32KO0GPCq/f5i+e0bvOaBMMDHQEBEAABayCwevVqOnz4sDV0FX0EARAAARDQIoAhxlowEAUBEFA3AVsxdJjnIORQrXZDWi4MFbxXgq2NLSVOnIQ69RhIPcWqquw5WLxUOaoo5hvkxUnOBbygij7VqXKZPJQmbXpyTOVE46d9W+FYVC6HJPcdMpYmjh4kPQWnzVlBvTo2pwmjBspm+g4eQ7nzupOTWPV17fKFVLVcPpnOw5VZPgQQSEgEOrTpTGfOnaaKNcrJbhURw4Vni6H1qZ1T0++TZ1M34W079qsX7oBevpQnV15pjK9Y3ouatW0iy1QT9x8CCIAACICA5RCYMWMGeXh4kKfntxEaliM9JAUBEAABEIgtARgIY0sO5UAABOKdAK8krAReOfjqw2DlkLr3G66Jd+wxiJqJ1YWDgoIobboMcsXVZ08fy/O/zVtFA8T8aUGfP5NbjtyaMtp1dew+kHjjUKv+9+Qjhk3eEcMkM2RyIR5yySFdhky0df9Zun3rOqXP4KIZxixP4gMELIjA+mWRe7+mFEOJVyxYI1cm/izumexuOTRG+rpiMaDK3lXpjvDMzSjuh1Qpw4bks6GcjYh3790RBvvElE4Y4xFAAARAAAQsh8CRI0csR1hICgIgAAIgYDQCMBAaDSUqAgEQUBOBVE6pNeKw1yEbCpWQ2TWbEjVozysh58lXIEJeHuqcPWfeCOlIAIGERIDvH16pWF9IljQZ5c0d5kWrez6yMrr5cAwCIAACIAACIAACIAACIGB+AhgPZ34dQAIQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQMBsBGAjNhh4NgwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgID5CcBAaH4dQAIQAAErIhAS/G3eRDV0OyhIXfKogQlkiH8CwSHqvA5xf8T/tWANLYYEh1hDNy2mj9CHxagqQQqK609daoU+1KUPS5bmxcsX9Or1qxh3ITZlYtxIFAVgIIwCDk6BAAjED4Hr1y5Tnoz21KxexQgNtv+hljx35dKFCOe0E2b/No76d2stk/bs2ES3A6/L+AyxwurAHu20s+qN88rGq5fOC3fu4oVzsu0Xz5+GS4/LQcl86ei/i//EpYo4l71wMYDadxtH6XNWpxSZKso9H3N6fIQMGTJQzpw56ePHj5rm/vvvP7n4xevXrzVpiMSdADPOViCT3u3t2zdxb8BINRQul58uX7lopNriVo257w+WHvdI3HQYXel6FetTgYwFNVvtCnVo5uRZFBxPL0zK5StPVy5eiU5MqzkPfViNqlXZUVx/6lIL9GFefdSvX592794dQYjTp08Tn0OInsCRY4eo5c/NqGgFdypcLh81blmP9h3cE21BNgxy3nJVShIvDLhmw0r68PFDtOWMnQEGQmMTRX0gED0Bb5HFL/pslpFj5Li5xFtcQmhoqCx+9uRRevTgnqYqNswdPhDxR0qTQSvCdXz58kWmTJ88kti4x6Hh9z9Sxx4DZDy6D0UO3XyRpevmM+ex/5EzBulh1fq9VNKrFeXOV4zOnfsfffr0Se5z5y8p01eti563oW1FxePGjRs0efJkTRZLYKwR1sgRY9xDkYkUSmH31qxf59KRXSfCbcmTp4isWIJLN/SaNcb9oQ3P0Ha1yyhx3COShLf49JMxI36EhIRQT9+edPjfQ7Tt721Up1FtWrV4FQ3vO8KIrSTIqrxFr/yM3TPoI9ZEvUVJv1iXtryC3kJkP2OLjesv1kS9RUm/WJeOpCD0EQmY6JO9RRa/6LNFn0PfM3nevHnpl19+ib5wwsvhLbrkZ2i32KDX4qem5FmuIl0+fZ2O7TtDpYqXoXZdWkXrTfjf1ct0+twpOnvoAr3/8J76D+tDr2PhgWiorJHlg4EwMjJIN4jAqVOnaNu2bQblRSYNAX8RY1c3/ufuJzaLD37CQNi280iDDFRRdbZoiTK0d9cWTZYDe7YTpynh7Klj1KlVA+WQ2KDY/afvNcccmTZhBLG34bjh/ejooX107MgB2rVtQ7g8Sxf8TqdPHAmXZsjBP+JLu3l9bypX0IUGdG9DL1880xSbM3081apYmKqJt0XjRvQjfsDhcPW/i9SqSVWZPn3SSHpnIq8tb48StHj5NrJJWTJSPbBnVOuOw2nfvn00yHcIXbx4kebPn0+ZM2emQYMGyfTWnfyi9SQ0pC0NmEgi7du3p2HDhtH162GenrrZtmzZQgUKFKCUKVNSgwYN6O7duzLLokWLaPjw4cTlO3bsSHPmzKG+fftSq1atKEuWLDK+bt064gcZ3rZv365bteqOR/h2IL6HotJdXIXOkD4jZXHNGm7j1YkDblyjpm0ak3vp3FSvaU35YMJtXbz8L3Xq9RPNWTiLajSsTD93b0u79/8lxdi8YyM1aF5HGpc5wdevP+3au1OemzlvOlWp50U+tSvQaHEv8n3AG9e9ZuMqee7mrRt05dp/9EO772S+X3+fRO/evZXlTfVhyDVrrPtDuw+GtKudXzuOe0TS8BefJvm9dEyZglKnTS1Wonejzn0704Tfx9PmNZvp7u2wl1QXzl2gVvVbk2fBiuTb3Vd837+UAvHwM/Y25HT2dFmxcEVYesgXmj11DlUqVlmemzBiovCS/iTPXfvvGrVr0p7YU/H3STPF78A7mc4fkbWzcdVGmjHxdxrWexj59R+pyW/miL9oH/qwAn2Y+TqLrHlcf/g+kNdGZN+b+H42zfczQ7937x6tXLlS8udn9AULFtCYMWOkV+GAAQPo5cuw38jnz5/TiBEjZHqfPn3o2rVrsgx/HDlyhLp16ybPcdknT57Iczt27JD1TZgwIZzzgKageSP+onmDf/cePX4opS1csAglS5qMXDK6UK8ufaln5z7imSDMG3DPgV3yeZifvfn5+sGjB8TlhowaKMt27CX+4/RsL+OtO7agBw/vy+fohWKkGz+Ts5fhoaMHqXv/zlTcs5DcK6Oy/hX/gfn5ndPbdvmRTp45Iev5ZcpomY+dafi5vEufDjR7wUx5TvcDBkJdIjiOEYHAwED63//+F6MyyCwJtP3KYYTYh4rN7+uxxe3YuMFh8fKt0sgRF0NhjTqNafvG1RoGf21dT5ymhLdvXtGlC+eVQ/FW5WW4Yz5Rv0lzypItB33fsj3lF1/OD+7doZvXr2rKcOTvg3vp1s2Iw2n99+6gub9P1GzrVy7WlHv65BE1qVlO1FmUps9fLf4sPqcuwrDC4aowpiyeO536DB5DY6fMoS3rV9D+XVvluc6tG1KiRImo96BRdPTwPplmqo9Fs/lyEhdTJMamaX+soZF+w8nDw0Pmu3TpEh06dEjG+YPTR44cSdP+WKtJiyzCbblldYm0rcjKKel16tSh77//nnr27KkkafYsFw9jqFatGu3Zs4eCxbyNzZo1I36jef/+fRo9erR8UOE0Pv71118pe/bs0nDI8a5du8p+cH969OihqVfNET/lPloRtZE3tn04KAzlbNhTtmvinuDhCy3FW84kSZLQktnLqaKHN7Xq2JyeCc/dd+/f0U5hoF+1fjm1adGOnJycievgsM9/L5373xn69/I/so4Va5eRW7bsxG8+F/w5jwb08qXxI6fQRmGY3ys8gNmL8X//nhfXyjCqW7M+pU2dln7q1oYS2dtTvx6D6O/jh2PbrRiVi8/7Q1uw6NrVzqsdxz2ioREvv5clypWQDd4MuEHPnjyjZjV/oHwF89HU+b/SqxevqEebsO+q9SvWi/tlCY2ZNoZ+7vEzjR38izQqbly5gRbOXCjSfpJldm3ZRfN+C/Ou79a6O9knsqceg7rT8cPHNR2Lqp3HD5/Q7F9n06OHj6lWg5qaMiqIQB9WqA8VXHeKCLj+rPD6w/ezcvlHuzfZ/fH27Vu6cOGCFODp06e0ZMkScnV1pd69e9OVK1do06ZN8jmdHQ7evHkjnQD4RT2/7OSyQUFBNGnSJKpcuTKxIZANiatWrQpXHxsM+bwKg8FcXTNnoayu2cRUTm3kcy+/XP/0+RP16daf+GU9P3/zM3DFCl60XPyf5Dm4u/XtSKlSOlHz71oSj+7pJYyJXTuE/X/p3bWfTOPnaH7e7t6pF9nbJ6IfxRDm5MmSi+ftSbRFTK3FRkcO3ft3ImfxzL549jLKmT0XDR45QOqlWaPmMt/6LWvFs/0K8hfP9I3qNdGL2l5vKhJBAARMTcBfNBAoNjexcWDLDm8jxeYnNosKbNxgoxQHNhRyCLz9QBiQMtHwFE7y2JAPn2q1xRfdAHos3pQkTpqU2GA3eNQUmWZIec6TPWdeSpY8OeXMk5+chSEiJuGG+NJmY5QSXr96oURpm/B+ypjJlYaOmSrnykubLj1Vr1CAnog3Pnb2djRz0XoqUrw0PXxwl1yEp9Z/l/4Rw3gL0B3hLbVu51EpSza3XNSgaklNncaOsLcSG+0Cb9+XVbNO5Cb0w4bcrTsP0rlfpkfZ7I8//kjFivHQX98o83Fb2kG3Le1zkcWnTJkivf42btxI+fLl02RbtmwZlS1blqZOnSrTeChy/vz56c6dO/I4ffr0xG8bbW1tyd/fnypUqCANgnxy6NCh1KVLF2lQzJ07Ny1cuFA+lLCRVs1B8SIMvBWmu8XCUKjobki/n+Ms+vI1S8XDR0pNPZ1/6k73xHB+fmu5b+sh+fBRSly/C5fOpyPCYJcpg4vMu+gPYfzLmp2SiYeQqTMnyTSeW6WgeyE6e/4M2drYUhpxn+XJlZeuC6P7vBkLqWih4vRQ1Ovq4kqXr16iyj5VZbmRwoD+XYOmxB6Et+/eos2rdlBq59Sy/lrCy9bUIT7vD+2+RNeudl7dOO4RScRffAaKzU1sHEzye5k4cWJZ+aePn8WLqh2UIVMG8h0zSH7fp0mXluoI77+nj5/S+hUbhMd8G/KqEjZn7vt37+nh/Qe0dtk68cDekn5o+4Osp0u/LjRLeBrW+64e3b11l1btXCl+B5wpq1tWalL1O5knqnY4A3s4zl7+h/yukwXU8eEvxAgUm5vYOEAfYRzM9ekvGg4Um5vYOJhEH2FVq+LTX0gRKDY3sXEwSX/xfRAG14BPf5EnUGxuYuMAfYRxMNenv2g4UGxuYuNgEn1wxYULF6Y2bdpwlK5evUq3b9+We55TfM2aNZQxY0YqUaKEfF4/c+aM+G9RTI7yqVixovQ2zJpV/FcSeZXg7OxMEydOVNvvnSKev4gEis1NbBwi5WpvZ08bV2yl9ZvX0kbh6LJo2XxZ4KdWHWhI/xEyrViREjR84CiZPlSkVarjSc/FqLT8ed0pSeIkxOdfvgrzyCxauJh0NOHM/BxdoaynHMFz/NRRGjbATz6/V/GuRoG3bsr6enftT5UqVpbPLgXyFaR5i2fLl/k5suekgb0H04hfhsp8Y4aKuejTZZBx3Y8YGQh5UnmeE0dfOHbsmPxDp3vO19dXujGywhESBgE2oDRu3Fh2hucve//+PZ08eVIe8x/6HDlyJIyOfutF6LeoyWPKF44cbmjy1kzYgGIo9PrpByqQrqhBLaVNl5HKevjQPuF9l0y8QeHhxRmFkSGyoG3MiyyPks7Dk7u2Dbtunz19TCeOHqTJYwbLdvadCPMwbNexFzUTX+BK4HkMG1YtJQ9vB96Qxr+8mcIbml48f0aOwvAyZ/oEalbXk5KncJT5vavUolPC0OKWM4/GUJlXGFViGmya945pkQj5FeMdG8nYuMYLIHD48OGDfMu3a1fYW6e9e/dSoUKFxA/3a4OvP6dUjuJH7I2mTaWt1KmjNwzzm0c2/nXq1Im2bt2qqYOHHZcrV05znC1bNhlXhiJUqVIl3ANErly5NHmdnJzkQwsnODg4yHR2pY/KQJg8g4emvFoiiqFQ4dmn2XCqSd6xFm/u9IVUsljYtaxUwkbD3OL61J6LML8wrPObYTYQcjobBzmUK11evJW8IT0B+bh183a0Z/8u+Vayik81+SDCRkQeYtyoRT1NnZW8qnB2GYoVLi73J08fpxxuOaRxkBPyiTbjGt5/+GTwNavblsLYFPeHblvax0q72mm6cXPeI3xf87B3EwVj/K7K38vACw+Iwl/asRL5xfOwF0K58+WiE0dOiPlwH1HBTOG/sznPzYCb1K5rW00bTVuHTXPB6R17ffv9cM2aWdZx+vgZ8TvgJo2DXCiPe15N2TuBdyJthzOVq1gu3HedpqDhEWNwNrQ1qQ9DM0eXD/qIjlC0542qj2hb058h3q8/fB/oV8TX1HjXR5TSxOAkvg9iAEt/VqN/H/D0REpILhwzeFQKj+rhwCOEtAMPP04qHD/YkMjzGLLtIF26dNKIqORjYyK/+I9BiM/rOTKxInBl20hSMbS4Y7sucnsi/nOuWreCJs+YQGXFs/StO4FUQhgAlZBZOJ9weCb+T0YXMn/9T8wvMLSf3/k45EvY1FZsWKxYs7wcDcSejNqhbcufaMLUX8QzfiZqWDfsP7H2eSUeIwPh0aNHpbGPC/NFMW/ePKpVq5asK21a/Z46PCRMWThAaTSB7v1Ev3hL8MHOzk66DXNH2XuH5wZr2bKl7LdieEhgEGxM1B99X2wjRVt+YgsNfX3aRM0aXq1P7Y7S80zXW0y3Bl5kgf/sKoG92NyyZZJlvc5dp6fKCQP2Nes2oR2b10hDW6364X9guHhQ0GdNLQ/u3dbEo4vkzJOPpsxaKrNN+WUIlSzjQV6Vaxr8Y5QylRMVKlqSlm3cL+sIFq7y18T8gtlz5qZJo30pUMzldkBMRptZfBn3FG7fHLII40qg8EoMEUZ1OzGckr0LYxpCVwgvOvFmydCg7w89e3iyhxqvWvzo0SNavny5rG7t2rUUEBBA/CKHAxvieI4RJ6eU9Ph6mNFQnojkg4eTK4ZgJYu3ZwnZVsufhitJUe67d+9Oc+fOlcODlYxspDx//rxyKGXkg4IFC9Jff4XNg6c5KSL2gq124Ln1YhLePToi5glJEpMi4fIqC1Ec2D4nXHpMDyLTHXsQLhgfENPqos2fK0duui+8ddmAyt/r/Ht9WQwTHtxvmEj7Eq58urTpKX8ed5q76A/yEBMvs7chDxn+LO7HJl/v0/lLZgvvwJt0dM8p4ocYnt9EOyh64bkQbwiDOw+r4Det7G0Y15AsaWIy5DszMsamuD+0+xRVu/rOaZc11z3Cxv/3jw5ri2KU+Nf+xuwmDZuKQ7d9+XvpViiTvt9S3bzRHv8lhgRzcM2WhVKKvhcsWpCWbFws04LE6sYBYh5BNvTlK5BPeLmHzZvEJ/du30uZXDORe2F3aeyTBcRH4PVbVMGnArGhMPB6oPgdEPeZ8DZ/9OChkiXKdjSZ4haJKWdDW9PHXOpDVKDvnKH1avJBHxoUhkT0MTeqPgwRQk+eeL/+8H2gRwvfkuJdH6JpfdfmN4kMjOH7wEBQYdn0MTf694E+Y16KFCmkBJs3b5YGQT4IDAyUhkB2Jvvzzz+l/YhH+HAedkyIQzDV9RyZSAZx3bRtPU2YNo7OHr4g6+HnZx4WvHzNn3T7zm3Klzs/XfzvX00bgbdvynje3PnozPlTmnR9ETtbO33JmjQ2Pg4b40u/itFidWrUoxu3rss5C5UMK9Ysky/wefTQX2KUXs2qtZVT4fYxMtOy8cfFxUVuXAsbBZVj/tOmb0J57db++ecf6RWiLJ29ePFiKlKkCLFnIk9myd5APMFi6dKl5USVXB+f40n0lcBj1nk8O09Gz5Nb6ltlR8kbz/sRoj1/sfmJLUEH/pNXsqRY8VRsbFDgNwDKMb9BQDCIgJ/IFeY7HJadv7j5i84v7NCyPhXjIBsG2UDEc26xsSQ6w6K+XlauXld69+3fvY04rh0yZMxM7P3Hnnm8wvHKJd+Mktr52OjwSswRqB1SpXKm8sLlmrd0Yg6IPPkLyjh7LBoS2KB44fxp+lfMvcb3wBLhKdW1XRM5xJKNgwWLlJTGQfY6PCTmgeAXIyXKVJCGzpV/zhHeeu9p5eK4GZCik5MNtfynXglsGGSjCRs/ONSt6U3Lli4m9sDjjYft8sse5ZgXBFn652KZT6kjsj23pW0cZL0f2DEnxnpnL7/Zs2eT4sXI7fGLJ/6d4MmMOaxYsYLq1q1LypAfmZjAPqLTnSm6W6Jo2BtMnouEjXXKHINFChXT2xx7A277awuVFp692cU8nzwMwv/wfuldyAXYOFi4QBFpHORJknl+EzY+6gZezY29E5ev/pN4tbelq5boZjHJcXSMjXl/aHcguna18+qL4x6Rv4tG/718LOb2uykMd1cvX5MLjYwZNIaGTxgujOW24ru7BP17/l/xfS8e4sX3/bJ5S6lHu57y+75Krcq0Zc0WunfnHgVcCaCe7XtRCscUVLlmZdq0WixycuuunNZghxim7OHjQcXLFBe/A8lp9Z+r6eOHj2K15G/z7EbVjr5rQSVpfkIO6EMlyhBimEQfq1evpsOHjf+CwAjYTNJffB/EWjPQR6zRmaSgUfTx8OFDuYggj+jhjZ0HDAl58uSR2fiZnl88nzt3jjp06EAvXrygBw/E1FNubsSjfl69eiUXEbQgJzKDuRYXziQ8lzcvKMLzLnIf+VmZjXL58+YnH/E/lBcYOXU2bPTl5u0biYcIK6OeFM6KAfZVDFYxfvEybCSERznPsP+qyxfK6r6EfpGei6PEM844v4lywZQhowZphjErbSp7eyUSl70yoXyvXmJ4npg0nieQ5732DwtPXskTxvfv319OPL9z505q27YtTZ8+Xf5J5ThfSP369SNeGZcvnBkzZsgx7D///LP0UOPFMHgCerY4szWaLziexJ4NiioII4UMbCT00pLFTyueYKOKV0iC7aBpOsbXCge+bvw4YqmB//xyUDzHYmMUVK4h3qcXqz0VFy7Yn8TwV15sRFnxidvIJYYiVhBGihYNfKThrZww7l0RC4Rw4LLKl6mHT3UaPqALpRLzm4Wdi/guRGlTZojmg/N6eFeltp16y7Y5exrxRmiqWNiBPQNbifnceDXljeLtUOo06ajh961o5q9jqHrtRtTHdzSNGtxTbtwvHoIck7ajES3cacVQq3gMhjspDnp1/o5KerUiD09vzUIlCjPOywa5EX6j6PTBP3WLRjjmOSY5xEXvSqU+Pj7UvHlzaQjkNJ6npHbt2uTp6UmOjo7yLaQyBFlbz0p53b0uX91j3fxqOI5Od7GV0Ua+d9Bfmic5HiTmI+EJjMdOHiVXEp40+lfp1aePWYWyHnIIcYliJWWFXh7edDXgCqUV1zwHHrrAK6etEx7AaZzTSM/C6bOnUvXKNeR5RRYeyjug5yAaPnaI3HjosxzmLO4zU4boGBvz/tDuR3TtaueNLG7l94jRfy/5eXPub/PkxsyLlChCA8Xqgcpw4fLe5al1p9bUukEbqRKeC3Dy7EnSA7BO4zq0dd02qlaqujT8derdkbLlyEY1hRFwg1iopHqZsOudPRDrNKotpzfo6dtDLmbCC5oUK11MluN7LKp2+LytrWnvCdm5mH9AHzFnZsoSRtcHC8v/wfh/G/8OqywYvb/4PoiThqGPOOEzemGj6INXKOZNCewIxM/pUQX+zUqVKhX5+fnJbdasWTI722t4IUF+nuc5x/n5nkPDhg3liCZeETns9y7ifzWZUR0fBnPlob8Txfz5A4b3pZHjw0ZT8ZBeXsCvvHA2Yee2yuK/bJMf68tnX37ZvnBW2P8u5uDwdc70lI4p5dRAVet706G/jkVLgcsWEQtp8sv80j5hL/rbt/pZzhM+cHg/Ocdh2VLlqV7NBnIOQ54fkVc2Zll1Az95CDlDddOjPWYhWMkNGjSgwYMH04EDB4hdRznwhJPsmXLr1i3ii4MNiCdOnKCmTZtKgyDnqVevnpwLS/EO5Ink2TuQLc3shbZ//37iB2JeBYe9Wi5fvixXzuEx7fv27SOe4JLrZe+1TJkycZUGBZZbBFM9cemCHPlVKD9xc4QqE+4bJCgyqYIAr8wkhj8a+3rx+9o5Za+vrxYzxDi6YcihM9bQUzEH4ct6EYcL6+u4IWm8MIiTMP4lSuQQafZXL58Lr45U8sVDpJliceL5syf09MljyiYme00svtSV8FmsUMWLq2TO4iZ/6DhfKqfUsn32dnwj3gCxwfPrd5BSLMp9xt/HkqO7WFjCgCHGiqFW8RaMrOJVG/ZT6w5DaaTfMPqxVVvpQchvBtlzkI2DS+aMomaNq0RWXKZzWzysltuKzCDsmq82+R88It8URllZFCd5LhP+DWBPct1hxFEUi9EpfmP38u4Bsw4xjk53wUGhcohxzTbeMeqboZlfv3lND8S1mzVLNkqaJKmhxfTm4zloHon7k1dx42ud51RxEsPz+Q+YbnguvHzfvH0tV3uLyX2hW8+Htx/pyOaT1H5QTt1TmuPoGCsZjXF/KHXx3pB2echtbJ7DuH5T3SM3b96kCuXL0v2rO7gZo4YYDjH2+9q4so8gy6itHUIblwpb7S/CyTgmPH/2Qqxo/JSyZs8awYOZ5yhkwyEbvJXAQ/Pv3b5LiRwSiflzM4b7vuc5tN6+fiuGMLuGS+eyUbWj1B3T/fpT02l43fh/foE+9GvKXPoQ0sTqf57+XhieaqL/W35fJVD2EQTC9RcBiUww1/UHfahLH/Flj+ARoewxyKNN2TCoBH7W4ecWXsCEnwvfvXsnn+9jOkLIRP/PFTF1935fE5S97nma1XdFaO12PuHSeYTM7Tu3KIUYMaPMHaidgZ+Vuf9Zs2aTL+a1z2nH2YMwVcpU2knRxnn6IH72TibmQuQ5EXkVZTY4Rhe2LzxAXaY0tzGKB2F0E8ornh/s9acE9ijkdG3rtPYFxEOIOShp3LlGjRpR69at5fLXnM5eh+PGjVOqjMle15AXVVn/qE5Gc06xNkeTDaetjIBfQupvXOddiw0LHiIcXWDjnCkCewjyphscHBKLuaaya5K18/BqyjFdUVlTkYGR6AyDSjXNGlWiAnn/pGl/rBWeekXkgiQ852Ddml7Sc7BQgVxK1kj33FZ8fLnxFBbWEAzVnalY8EODIQ8OhrTPBleeY1AJaVKnUaIR9ryCMW/xEQxlbIz7Q7s/hrarXSYmcSu4R/xiwsPYeVOncRbf9856q+VVjnUDD09mY6K+wCsY86YvRNWOvvxmTPMzY9tSF9BHOA2YVR/hJImfA7P2N6r7FN8H8XMBaLcCfWjTkHG/CClmSkiSJIn0GtRtnl8c6C5uoptHhcd+sZGJX7jzvIKRhQwG/JflsjE1DnIZFzEaTwlsfI2pAdYoBsKoJpTnSfDr168vhx3zcthsFOS5pFKnTk0DBw7UTEzPY9N5vLsS9Hkb8GIY48ePJ/bE40ktu3XrJiet5yHIMQwx8QjzjkHdunl5jpZAsfmLLT7+T4tmEEAABEAgagJsBFzwu6/I5CtXKTVkQZKoa8RZEEg4BHB/JBxdoicgAAIgAAIgAAIgAAKGEzDKYO/oJpTnySjZiMjuoF26dJFLW/Ok+DxEmd1P3759S127dqXJkydHKfmmTZuoTZs2Mk/jxo3lYiXswmri4C/qN2TzFvkOio0DGwbPi62h2HgQuL/YEEAABEBAVQSU4Y/KXlXCQRgQMDMB5b5Q9mYWB82DAAiAAAiAAAiAAAiAgEkJGMVAqD2hPM8XyPMJDh06VCO4Mgn+sGHD5OIjEydOpL59+5Krq6ucn4pXR+bx6DwHYWSBXVJ54ZOLFy9K70MnJye5KkyLFi0iKxLf6ewh6CU2GAbjmzzaAwEQiBUBzeIJXxeaiVUlKAQCCZQA7o8Eqlh0CwRAAARAAARAAARAQC+BWA8x1p5Qm413K1eupClTpkSYUJ6HBCvB2dmZXr9+rRzKYcK8kAnPL8jLYn+d0DbCZN3abQUEBNCNGzeI6+IJLlUS/IQc/mIb+XUvdgggAAIgoF4Cul5RfGzq+dLUSwOSgUB4Arg/wvPAEQiAAAiAAAiAAAiAQMInYBQPQgUTT5adN29eg1ebZIOgm5ubLKMYB5W6ItvzJIu8QrKKjIMsqr/YfL7uxQ4BBEDA2ASePX1MeTLaU6dWDcJVfe/uLdq5dZ0mbc+OTXQ78LrmOKYR7fo+fHgv27x1MyCm1ag+v+IdpQiqe6ykY2/ZBG7dCaRsBTJR38E9w3Vk1brlVK9pzXBp+g527d1JXIexg//h/VSjYWVjV2u0+nTvB91jozWEikAABEAABEAABEAABEBAJQSMaiBUSZ/MIYa/ORpFmyBgTQT+2raekqdwpP27t9HzZ080Xb9y6QJNHjNYczx98ki6eOGc5jimEe36EidOQss3HaD0WqtBxbQ+NebX9Y5SZIwsXTmPveUSWLd5DZ04fVzTgVBNLOrI1JmT6V9xj1lTiOw+iCzdmtigryAAAiAAAiAAAiAAAgmXAAyECVe36BkIJCgC65YvpP5Dx1GatOmJvQQ53L19k8YO60N3bt2g7j99T9MmjCA28I0b3o+OHtpHQUGfpfGwcpk81LBqKdq+abUs9+nTR2pcoyytXbGQalUsTHx+7fIFEeoLDg6iqePE3Kkvn1NISAjNmjqWKhZzo3IFXWjciH708eMHWd+QPh1o+aJZ9GOjyvLcKOGtxfnVGtgbyimVIxUtlCeciPCSCocjQR00bdycBo3oK+6JIL39WivuDfbo86xeln79fRIFhwTT5BkT6PLVSzRa3Ffb/toiPQ7v3b8ry4+Z6Cfq6yfjnz9/pgbN69Cdu7cp4MY1atqmMbmXzi3znz53Sua5ePlf6tTrJ5qzcFYEz8HXb15T+66tadb8GXpli+9E3B/xTRztgQAIgAAIgAAIgAAIqIEADIRq0AJkAAEQiJLA9WuXpVdgjbqNqVHT1rRx7VKZP026DPR9i3bSaNippy/Vb9KcsmTLQd+3bE/5Cxah3yb4yeHH/YeNo9Y/96DenVrQiaMH5QJHF86fpnnCO2rwqClUtoI3DenbkRxTpgpXHxv5Tp84Qh8/fKD1KxfJ/B17DKDp81fTzi3raPZvYXOsXg/4j0b69qAmzdtRxx4DadnCmbJclJ0y00n2gmLD4MaVk+nc3yukFKGvT5OfbwcZh5eUmRRj4ma7d+hJH8R1vGjZ/Agt8XDffkN6UTNx/4zzm0hrKfiHdwAAQABJREFUNqykmXOnU6M6TSirazb64buWVL6MBz1+8ojOiPuG5wVeIYYorxQbGxwvXPofXQ24QmnTpKOWPzWlJEmS0JLZy6mihze16ticnj1/Su/ev6Ode7bTqvXLqY24Z5XwXgzjb9u5pTRI/tSqo5Jstj3uD7OhR8MgAAIgAAIgAAIgAAJmJgADoZkVgOZBAASiJ7Bt42qqVK0OpRYGiKq1GtDZk0fpnpgXLWnSZJQ7X0FKljwFFShUjLLnzCviySlnnvyUyik1zf19IvXoP4Jq1GlMDb7/kRoIQ8fu7Rs1DY6aOIs8vKtKIyEn8jyH2vVpMorIamFYYSNji7ZdqFRZT+rebxhtWLVEk4Xbqd+kBbURhphCRUvSbZXOW+jlWUIaBr09Smhk5wgvUMKGQoSESSBZsuQ0augvNHbyKLr/4F64Ti4V1zF7GLZp0Z48ylWkPt360yYxpD9H9pyUXJTLlSM3pXZOTZXFvcIGwkDhuZtEDL9PkzotXfzvXzp15iRVr1yDTpw5Tg8ePaBZU+ZQqeKlqV/3gbKdI8cPa9pb9McyYYhsIY/ZaNihRztpZJw9bT45ODho8pkrgvvDXOTRLgiAAAiAAAiAAAiAgLkJ2JtbALQPAiAAAlERYC++VX/OlcN5eShwkBjOyOGvreupfZe+kRZ9+vihPNe/W2viTQm16n2nRCmTi6uM89yGHD5/CqtbHuh83BAeUp17fZvr0DVrdnr4IGy4JWd1cc2qKeEkjCmfP3/SHKspomsY1JUNKxnrEkk4x9Uq1aBKXlVolBgy7OXB62qFhRuBAbTXfzetXh/mUcqpyYXRXTd4lveiaTOnCA/UYqK8N9na2NJZYTA8duooNajdiHj4ce6cecKVzS+M9U+fPqVMGVxkupu4b5RwWywwxBsbGkOCg5Vks+5xf5gVPxoHARAAARAAARAAARAwIwEYCM0IH02DAAhET4CH+LJn38JVOzUrpG8VQyDXC6+nqAyEPFyYw+w/N1E5z0oy/vD+HbK1tZNx/rCz+xbXJEYSKVi4OD3SMgjevH6VPH2qaXLb2eHrVAMDEdUSGDFoFHnVLE/vhfeeElKlcqbO7btRzy59ZNKrV6/oibjndEOZkuXknIR7DuwiNhby/cOrHPMQ5Qkjp8jVju8/vC/n3+RzPBT58tXLNFh424aEfNGtThoGd23cR3W/r0HT/viVhgovXAQQAAEQAAEQAAEQAAEQAAHzEMAQY/NwR6sgAAIGEtgi5jmrXqeRHApcVng98da8bWcKEIsnXBULH9ja2tL7d281Hkj2wlD36sVzSiqGRhYtUYa4PHsd8pDk1k2q0/EjB6JsWbc+JXOVmvVpw+o/5YIovPjJto2rhIGwunIaexCwCALswcdDiA/+7a+R16OcJ+3at0POMciGw2FjfGnu4j/keTt7O3r56qWMOzs5U5GCRWn7rq1UvEgJOYyYPQ/ZazBjhoxUomjYsPVVwhORFzk5+PVeKyI8DvWF9GLBoXRi46HP8xbPlsZHffmQBgIgAAIgEL8EVq9eTYcPf5seIn5bR2sgAAIgAALmIgADobnIo10QAIFoCXwQCxjwSsO1GzQNl9ddGCkyZnKlXds3EMc51PQqLPcewmg3fEAXuTjJ6Emz6eypY1Qyb1q5WnGhYiWpcbM2Mp++Dxsbmwj1cT5Or1X/ezlsmIc5F8iSjHgl5LqNftBXDdJAQNUEOggDe6YMmTQydmjTWRj4XKhijXJU3LMQPRLD8337DJXnvSr40OCRA6RRkBN8KlaWQ4XZKMjGRh4ezHMTcrC3T0SDeg+W+QuXy0+txaJAfsJjkY32fA9FFnjoM3skDh01KLIsSAcBEAABEIhHAjNmzKDt27fHY4toCgRAAARAQA0EMCZODVqADCAAAnoJ8CIkVx9GnJuMjQ2HzgVqyhw5f1vOUcgJfQePoZ/EUMkUjqnkEMgDpwLolphjjRcyYaMiB/tEiSLUq92OUp9u+5v2nKa7YoGGRGIxhUwuWTRGj1VbDsl6lY8FK3coUavep06d2qr7r4bOZ8viRrcuPggnStIkSen4/rOatJSOKWnFgjVyDsHPwts2u1sOzbU9oJcvsUHR8es8nb279iPelHD28AUlKvetfmhLDcSiQA/EUOOsWbIRt8WBFy25dPKajPOHtxj2z5sSls1bpUSxVwEBZ2dnFUgBEUAABMxF4MiRI+ZqGu2CAAiAAAiYkQAMhGaEv2T4ZjO2jqb1EWg9qr6+ZKSpnICdvT0pC42wqLyCsRL4XI5c+ZRDg/a69SmFeF61bNlzKYfYR0Hgw8dPlCZNmihyqOOUnR0c6VkTbHR3zZxFr1KcUjnpTY8skQ2OvCEYTiAqD0vDazFuTmensHlcjVsragMBEAABEAABEAABEFArARgIzayZ2u2+rSRpZlGsvvntC6Oem87qAQEACMSAwLPAvTHIbd6sQSpZQde8FNC6uQiEvj5trqbRLgiAAAiAAAiAAAiAAAhoCMB1QoMCERAAARAAAWskkEh4mSKAAAiAAAiAAAiAAAiAAAiAgDUTgIHQmrWPvoMACIAACIAACIAACIAACIAACIAACIAACFg9ARgIrf4SAAAQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAFrJgADoTVrH30HARAAARAAARAAARAAARAAARAAARAAARCwegIwEFr9JQAAIAACIAACIAACIAACIAACIAACIAACIAAC1kwABkJr1j76DgIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgYPUEYCC0+ksAAEAABEAABEAABEAABEAABEAABEAABEAABKyZAAyE1qx99B0E4olAcNr08dQSmgEBELA2Aokc7K2ty+gvCIAACIAACIAACIAACBidAJ6qjY4UFYIACIQj8PQFZRo7MFwSDgwjEJI6LY28bEMj6ngaVgC5EiyBL19CafvCAwm2f3HtmJ093nfGlSHKgwAIgAAIgAAIgAAIWDcBGAitW//oPQiYlID/kTPkPbKjSdtIyJXbcefGzSWblCXJz7cDjRAbgvURsLWzoc4j8lhfx9FjEAABEAABEAABEAABEACBeCOAV+7xhhoNgYB1ERgpDFsHD5+xrk6boLdsFAx9fZq8PEuYoHZUaQkEbPFLbQlqgowgAAIgAAIgAAIgAAIgYNEE4EFo0eqD8CCgTgJsHPQTGxu2EIxDwNvjm4GQPTM5aKcZpxXUAgIgAAIgAAIgAAIgAAIgAAIgYI0E4JdgjVpHn0HAxATY6+3AjjkmbsV6q2fPTJ9aHYkNsQggAAIgAAIgAAIgAAIgAAIgAAIgEFcCMBDGlSDKm4VASEgI8YagXgLwbjOdbjDs2HRsUTMIgAAIgAAIgAAIgAAIgAAIWCMBGAgtVOt/Hz9M2QpkCre179qajp38O1Y9+vDxg6wr8PZN+vz5M63ZsJI4TTs9VhXrFNInt9KPR48f6uSO/HD42ME0Y860yDPgjFkIKENfzdK4FTaqbYRl9vAotMKLAF02KQFvzP1pUr6oHARAwLQEcuTIcdPf39+0jaB2EAABEACBBEMAcxBaqCpDQ0Ol5KcP/o9sxQz279+/p+nCYNa1byc66X+O7O1iptrEDolpzZKNlCF9Rnr/4T31H9aHvDx8KF3a9Jp0Y6BS5D6y60SE6tKmSRchDQmWQ4ANVDzsFfMOmkdnPOyY533kgNWO41cHbKj1wYI88Qs9HlrDC494gIwmQAAETErg7du3b0zagJ7KR44cSZ6enqsPHz6s5yySQAAEQAAE1EwAHoRq1o4BsqVJnZZ4y+Kaldr9+BM9e/6Url2/Koffzpg9jcpWKk7FPQvR6Akj6OPHj7LGXXt3UtM2jcm9dG7q7dud+NkhODiYJk8fTy9fvaSOPdvLfK07tqBHTx5p0jlxz4FdVKWelyz7c/e29ODRA5l3+ZqlNGXGROo1qJtsr3WnFkKWZ/Kcvg+WV3ezs7MjrmfMRD8pF8vO8R27t5FP7Qpy239wr6a6qwFX6LtWDaQsPQZ0pVevX2nOIRL/BOTCJGLuQQTzEFCGHZundbTKnmYwKCWs64CN7tpeugmrd+gNCICANRBwcnLy9fHxofjyIuR2/Pz8KCAg4L418EUfQQAEQCChEYCB0MI1qgwDvnf/Li1f/ac0FubJmZfWbFxFfyycSV1+7k5/TJ1H23dtpd/n/UbPXzynDj3bUasf2tDc3xbQ5f8u0cr1KyjkSwidPHNCGBE/UNcOPSSV3l37UfJkyTXpbHj8qVsbqljBi5bPX03BIcHUra/wGBPejDw8ePrsqZQ9Ww4aM2wcXbj4Dy1bvSRSupt3bCTt7fipozIv1zNvyRzKkjkr9ezSV8aHjval3l37U8niZWjEL0M1dXKfPMt70dhh4+nIsUM0cdovmnOIxD8BNlDBcy3+ueu2qK0DDDvWpYNjEAABEAABELAeAlevXt3h7u4+l42E7NlnqsCGQd64nezZs8948OBBH1O1hXpBAARAAARMRyBm41BNJwdqjiUB91K5NCXz53GnCaMmE3virVy7THoUtvqhrTzfSxjbps2aQs2btJTHT589IW/PSrRw1p8az0KlosIFisho0cLFKFGiREoybdy6nooVKUHDB46SaUP7j6BKdTzpwcP78rh0iTLUs3PY88C/ly7Q9ZvXNWV1I3MX/REuqZQw/pUtVV6mlSxWivp06y/jk34bL42Z9Wo1kMZHnhsxODhInmNZenTqLeNvhBfk+KljaezwCfIYH/FPAJ428c88uhYx7Dg6QsY7z4ZZ9qL13o7Vu41H1bw18ZB9TJlgXh2gdRAAgbgTuHTpUkdHR8fnhw4dymVjY9Mk7jVGrCFXrlw3xXDmd15eXqMOHjy4NmIOpIAACIAACFgCARgILUFLUch4cOdREj/2cs7BzC6umpwBNwOoW8eemmMezsvDgV0yZSY27A0fO0RulbyqCIOfYW8Ub90JpBLCKKeEzJnC2lOGEmfL4qacIvEgQh8/fdAc60a2r92tm6Q5dsuaXRNPlTIlseGTg2KsDAn5Io89ynnKPX+45ytA7969lUOr2UCKEH8E2Cii7bUWfy2jpegIsF4Uw1VkebEIQ2RkYpbOBnL+JmWvTRjLY8ZOjbkxZYIatQKZQAAEYkvgzZs3vvv3749t8WjLiSHFMs/Dh4YvOBhtpcgAAiAAAiAQ7wRsxepW19kl3BoC95P7m5D6mtU1G7FhTts4yP0r5F6YHn6dH5CPbwTeIK8K3vTi5QuqWqk6XTt3i1YtWifnH5w6cwpniTbky52f7j24p8nHKx5zyJs7n9zbGskwZ2evY7cWBlB94YUYLq2Em7duEHswwjioEDHOng0d7IUWWeA/0QjqJ6BrwFX0hjnzjKs75swL9SBYNgFpHMSLD8tWIqQHARAAARAAARAAARCIMQHbd+/evY9xKQsuIFb7DVupw4L7YIjo1SvXoHWb1tDtu7coKCiItog5/7w8KhHPVVirSTV6+PgBlStdQW5v3r4OVyWvisxBd9EPn4qV6dDRg3Tq7El5fvP2jVTFuxo5ODjI45h8XL56iXQ3ZREVQ+vZuG0DsZGS+7Rq3XJi+RCMS8ArioUXFCOTrvHJuBKgNmMTYKMgD51k/WERBuPSZYO6nzAS2qQsKfkat3bUZmoCfG/41O4ovUAP7MBQcVPzRv0gAAIgAAIgAAIgAALqImBfpEiRXwYNGjT/+PHjydUlmvGl2blz54vkyZMfMH7N8V8jDyuOKtStWZ/WbFhFntXLymxFChalBnUaykVMvD18ZDqvfsxDeCePnaapiutN6ZiSeB7AqvW96dBfx+Q5Ti+QvyBVFkOSm/xYn5InT0FJEieRcxhqCutEbG0iroGjyF2jYURj3l8b9+nUEHao21WljlzZc5FXzbB5C3kYcpP63+stj0TTEIBh0DRcTV0rG7F4XjXFS4oNWgjGI8D3BW/Mlw2FCl82tmPosfE4G6MmbQ9a1pe/8JZmfeG7zRh0UQcIgAAIgAAIgAAIgIClEbDfvXv3KiH0Sh5+6+3tbWnyx0jeiRMnOosC3WNUSKWZK5T1pFsXH0QqXbq06Wn7ut10595tckjkQJkyusi5CrnArF/nSq+7z0Gf5cIfSiXa9a1ftkV6EKZKmSpcOzMm/SHnMBSep5Q1azY59yGXVxYVUerq3L6bEg23j05uZb5BpdCB7X8rUcqXJ79GFmUxkk+fPtGTp4/lEGvFcKgpgEicCbBBA/OqxRmjKitgIwh7EirGEDaQKHFVCmxhQumyZL4+UQzXt7DuJQhxlfk3+XuO9TXCl2DETRCaRSdAAARAAARAAARAAARiQ0BO9la4cOH5AwcObHrixAnH2FRiCWV69ep1x93dfYdYycsSxDWKjDwfn/aCH9qV6s5ZqH1OibNxUF/IkD6jvmSzpCVOnJhcM2cxS9vW0ij/cWbjhrI6K8fhDWX52mc9Kt5t7EklvalEmq5hy/J7ar4eaLMcYT4x0DIIgAAIgAAIgAAIgAAIgAAIREtAjgH9559/fr4jghhq/DLaEhaYYfDgwe9EH08K42AnCxQfIoOAWQkowyLZoMQbG5KUNLMKhsZjTUAaB7WMgazPA9vD5lzjcwggAAIgAAIgAAIgAAIgAAIgAALWRUAzSdyDBw8KLFu27EHv3r3vJxQEPGy6VKlSr8T8in8dOHCgSULpF/oBAvFNQDEe8ZBUBMslwMbdqBZhCBtm+W1OQulVaLndheQgAAIgAAIgAAIgAAIgAAIgAAIGEpBDjJW89+7dc9+2bdvMadOmdfH19X1TrVo1OeTYkuYmZKMgB+E1+OHYsWNJxbDiVadPn4bnoKSCDxCIPQFluKSyAi7XxEONOcCjUGJQ3Ye2gU96f8ZgEQYuy6sc84Yh5apTLQQCARAAARAAARAAARAAARAAAaMSCGcg5JoDAgK6il3XpUuXTlu8eHHVpEmTJr5x40ZOo7Zqwspy5Mhx/f379x/Lli07QTSz1JrmHDQhVlQNApKA4mGmDENl45H0ShN7BPURiMsiDGz05Y11zXqGEVh9+oVEIAACIAACIAACIAACIAACIGAsAhEMhErFd+/e7aXELWkvjJlS3E2bNlmS2JAVBFRLQDEGKh6ELGi4uGolh2DGIKCta66PDcIwFhqDLOoAARAAARAAARAAARAAARAAAfUQ0MxBqB6RIAkIgICaCGDeQTVpw/yysDchz2OoGI7NLxEkAAEQAAEQAAEQAAEQAAEQAAEQiCsBGAjjShDlQSABE2BvMT/fDuE8BhNwd9E1AwiwRyF7EPK1gQACIAACIAACIAACIAACIAACIJAwCEQ6xDhhdA+9AAEQiAsBNgRhOGlcCCbMsmwkHKHVNQw71oKBKAiAAAiAAAiAAAiAAAiAAAhYIAF4EFqg0iAyCIAACKiJAA87tklZEsOO1aQUyAICIAACIAACIAACIAACIAACMSAAA2EMYCErCFgLAZ5jDkNIrUXbce8nexTyUHTMVxl3lqgBBEAABEAABEAABEAABEAABMxBAAZCc1BHmyCgYgK8+ASGFqtYQSoVjY2Eoa9Pq1Q6iAUCIAACIAACIAACIAACIAACIBAVARgIo6KDcyBgpQTY2IMAAnEhwB6oGHYcF4IoCwIgAAIgAAIgAAIgAAIgAALxRwAGwvhjjZZAwCIIwDhoEWpSvZDshYphx6pXEwQEARAAARAAARAAARAAARAAAUkABkJcCCAAAiAAAiYhgGHHJsGKSkEABEAABEAABEAABEAABEDA6ARgIDQ6UlQIApZHgOcd5A0BBExJAMOOTUkXdYMACIAACIAACIAACIAACIBA7AnYx74oSsaVQLIUSejaucC4VoPyRiCQVOjCWgMbbXj1WSwwYa1XQPz1Wxl2zNecl9j4GAEEQAAEQAAEQAAEQAAEQAAEQMD8BGAgNJMO3r58T3lKuZmpdTQbkUAo5SqWNWKyFaQcPCwMhFiUxAo0rY4u8rDjEeoQBVKAAAiAAAiAAAiAAAiAAAiAAAh8JQADoZkuhRROyaiIT14ztY5mQeAbASxK8o0FYvFPgL0JfWp1lEZqXIvxzx8tggAIgAAIgAAIgAAIgAAIgAATwByEuA5AwEoJsGEGAQTMTYCHGR/YMUeKgWvS3NpA+yAAAiAAAiAAAiAAAiAAAtZKAB6E1qp59NvqCbDXFuYdtPrLQBUA2EiI+QhVoQoIAQIgAAIgAAIgAAIgAAIgYKUE4EFopYpHt62bgE/tsCGd1k0BvVczAZuUJbGytpoVBNlAAARAAARAAARAAARAAAQSFAEYCBOUOtEZEDCMgFwoAguTGAYLucxCQPFuHSlW2EYAARAAARAAARAAARAAARAAARAwLQEYCE3LF7WDgCoJYDinKtUCoXQIsCHby7OETioOQQAEQAAEQAAEQAAEQAAEYkLAycnpckBAQEyKqC4vy+/s7PyfmgRLkjzx5WcPX6pJpBjLwvInTZ5YcoWBMMb4UAAELJcAvLEsV3fWKrm2MRvDjq31KkC/QQAEQAAEQAAEQAAE4kLAwcHh0I4dOz7FpQ5zl7169eqHpEmTHjG3HNrt2yWyO3T1zA2L5vrs/osPDokTSa4wEGprF3EQSMAEYBxMwMq1kq4pw47ZUIgAAiAAAkwgWSLHq0/e3AMMLQLMI1lix6taSfEWhT4iojanPiJKk7BTcP1F1K85rz/oQ136ePr06aqbN28mtmQvwj179iT18/P7OSJZ86W8f/Vh1fNHrxJbshfhtfOBSVsMqSe5wkBovmsJLYNAvBFg46D/kTPEQzYRQMCSCfA1fGDHHEvuAmQHARAwIoHg0KAPRqwuQVT19M1dSpooxUlzdAb6iEjdnPqIKE3CTsH1F1G/5rz+oA916WP27Nn+WbJkWbR169Y3ESVTf8qGDRtuu7i4zFebpJ0n/+CfKo3jossnAyyS68UT126nSp1CwxUGQrVdYZAHBExAQBpVtsOoYgK0qNIMBLSHHbPxG96xZlACmgQBlRCwsbXp/+/dIxb5UG4qhEHBnx+//vDcLG6V0EdErZpTHxGlSdgpuP4i6tec1x/0oS59sDTDhg1rZ2tru2Xz5s1m+Y2ISCT6FPZ4nDZt2rt79+4dVZv3oCJ9i8F129nZ2my5dDLAYriyx+PfW8+8e/3k7VHFe5D7AwOholXsQQAEQAAELI6A4hWLYccWpzoIDAJGITCw+m97Pgd9eoZhxmE4L98/QdcenUvvW2vGIKMAjmEl0Ed4YObWR3hpEv4Rrr/wOjb39Qd9qEsfijSDBw9uef369d29e/embdu2vVbrkGOWa8aMGcEzZ86koKCglYMGDfpB6YMa980G1mn5/MHL3dsXHqD/Tt94rdYhxyzXse1ng4/vOEchIV9WNhtYKxxXezXChUwgAALGIcDDirW9rYxTK2oBAXURYCMhVjtWl04gDQjEJ4FUKVKPEF6Ev/vkb+oYn+2qsa3PwZ/vJnVIscGcskEf3+irQR/fpLGOGK6/b3pWw/UHfahLH4o07Eko4u3Sp08/+8yZMxVfvnyZXzmnlj2vViy8HfeKbb3wHPRXi1xRycGehOJ8uyWjN82+d/1hxY/vPqmOK69WbCO42tjYrP9xSL0IXG2i6iDOGY9Ahw4dQqdOnWq8ClFTvBDgNytz5841x30SqizIENuO8rBLP7HFtZ7Yto9yIGAuAsqQY8W70FxyoF0QAIGIBL56+xr9d3XSrj6XsqbJl7mga/mUEVu1jpSLd4+9v/Xs8u3+1X81+x8S6INITfqwjjvgWy9x/anr+oM+1KWPb3cKYiAQkQCGGEdkghQQSBAE2DiIxRwShCrRiRgSUAyDbIhgL1oEEACBhE9AGMXc7zy/+ujSveOfE35vI/aQjVG3n1+5pwbjIEsHfahLHxGvmISdgutPXdcf9KEufSTsux+9iysBo7/BjatACbU8PAgtU7OW7EGI4cWWec1BauMRwD1gPJaoCQSMRcBUHoSKfOypkjl1rmQOdomz5XcpoyQn2D3PvXjh9pHXH4Pf3VeLcVAbNvShTQPx+CaA6y++iUfdHvQRNR+cBQE1EMAchGrQAmQAARMQwNyDJoCKKi2KgPY9gGHHFqU6CAsCsSbAnipTdvf//d2nV12DQj7fT2Tn4JLW0ZXSOWaOdZ1qK6gsyHLhzpF3QcGfnjgmdR7cvfLolWqTk+WBPtSoFeuRCdefunQNfahLH5AGBPQRgAehPiomSGMPQhNUiyrjgYC55iCMh66hCRAAARAAARAwB4F4ef6cuLPXpKSJHdN/CvpQ7v3n17nN0VFTtJkssePVkJDgj/a2DkP6Vp+0zRRtmKJO6MMUVFGnoQRw/RlKKn7yQR/xwxmtgAAIgAAIWDcBNkT7WTcC9B4EoiTgHeVZnAQBEAABEAABEAABEAABEAABEAABEAABCybgLWT3s2D5IToImIOAnzkaRZsgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAALqIOAnxGDPW2+xIYAACIAACIAACIAACIAACIAACIAACIAACIAACFgpAW8r7Te6DQIgAAIgAAIgAAIgAAIgAAIgAAIgkAAIHBB98E4A/UAXQEAtBPzUIgjkAAEQAAEQAAEQAAEQAAEQAIH4IGAbH42gDRAAAZMR8BM1HxSbv9gQQAAEjEcAC/4YjyVqAgEQAAEQAAEQAAEQAAEQAAEQAAEQMBEBb1EvGzEQQAAETEPA2zTVolYQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAFLI+BtaQJDXhAAARAAARAAARAAARAAARAwlACGGBtKCvlAAARA4P/s3QeYFEXawPF32SXnjCCwwBJUVJKKkhoRAyYEzAExoiiKOX406h3nnfnUU8xnRBQxYMZt1APJIibykhGUHJa4X73NzDC7DBtmJ/TM/Ot5arq6urvCrwfYfemAQCoLWGby3Hacyt8A5o4AAggggAACCCCAAAIIIICAhwRsMxbLQ+NhKAikkoCVSpNlrggggAACCCCAAAIIIIAAAggg4D0BywxJr2LSJQkBBOIrYJnuNZMQQAABBBBAAAEEEEAAgYQWSE/o0TN4BFJPINNMeYnJr5pMQgCB+Apcbrp/xeQ0kx2TSQgggAACCCCAAAIIIIAAAggggAACCCCQggJWCs6ZKSOAAAIIIIAAAggggAACCCCAQIwFrBj3R3cIIBCegGUO00xCAAEEEEAAAQQQQAABBBBAAAEEIirAcwcjykljCERNwDYt87bjqPHSMAIIIIAAAggggAACCCCAAAKpKWCbaWsmIYBA4gjYiTNURooAAggggAACCCCAAAIIIIAAAl4XsLw+QMaHAAJFCthF7sEOCCCAAAIIIIAAAggggAACCCCAAAIIIJCUApaZFbcdJ+WpZVIIIIAAAggggAACCCSHQJnkmAazQAABBBBAwLMCjhlZmm90lm/JAgEEEEAAAQQQQAABBBBAAAEEEChUwDZbNZMQQCB5BezknRozQwABBBBAAAEEEEAAAQQQQACB0gjY5uDs0jTAsQgg4HkBy4yQ2449f5oYIAIIIIAAAggggAACqSHALcapcZ6ZZeIJjEi8ITNiBBAogYBj9vXfdmyX4Dh2RQABBBBAAAEEEEAAAQQQQAABBBBAAIEkFrCSeG5MDQEEEEAAAQQQQAABBBBAAAEEihCwitjOZgQQSG4By0xPHy9gm0xCAAEEEEAAAQQQQAABBBBAAIEUE7DNfPV5ZCQEEEDANgSaSQgggAACCCCAAAIIIIAAAgggkEICvKwghU42U0WghAJWCfdndwQQQAABBBBAAAEEEEAAAQQQSEABKwHHzJARQCA2Av7bjq3YdEcvCCCAAAIIIIAAAgggkGoCvMU41c448/WqgOPVgTEuBBCIu0BP3wisuI+EASCAAAIIIIAAAggggAACCCCAQEQFLNOaHdEWaQwBBFJFwEqViTJPBBBAAAEEEEAAAQQQiL4AVxBG35geEDiYwPCDbaAeAQQQKELAMtv9tx4XsSubEUAAAQQQQAABBBBAAAEEEEDAiwK2GZRmEgIIIBCugG0O1BcckRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAbEwQAABBBBAAAEEEEAAAQTCEeAW43DUOAYBBBBAAAFvCugVhbY3h8aoEEAAAQQQQAABBBBAAAEEEEBABSwYEEAAgSgK2KZtbjuOIjBNI4AAAggggAACCCCAAAIIIFAaAdscrC8VICGAAAIIIIAAAggggAACCCCAAAIIIIBACgpwVU8KnnSmjECcBSzTP7cdx/kk0D0CCCCAAAIIIIAAAggggAACfgHLX2CJAAIIxFDANn1pkNAymYQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOwXSN9fpIQAAlEQsE2blsmOySQEEEDACwKWGcRik9NMdkwmIYAAAggggAACCCCAQIoL6C8HJAQQiJ6A3tbX02Qnel14t+W8jh11/qRwBNLS9qZNn85/4oRjxzHFEbDNTj1MHmGyYzIJAQQQQAABBBBAAAEEUlggI4XnztQRiLaAZTpI+V++54+fEm3npGs/bc8eyTq7S9LNiwl5SsD21GgYDAIIIIAAAggggAACCMRVoExce6dzBJJbwDHTs5N7iswuKgImQEhCIA4CesWvHYd+6RIBBBBAAAEEEEAAAQTiLECAMM4ngO4RQAABBBDwiIA+DkGT5X7ygQACCCCAAAIIIIAAAikjwC3GKXOqmWgMBVL6uYMxdKYrBBCIrIBjmtNMQgABBBBAAAEEEEAAgRQT4ArCFDvhTDfqArbpIeWfOxh1ZTpAAIFYCXDbcayk6QcBBBBAAAEEEEAAgTgKECCMIz5dJ52AZWakbwW1TSYhgAACySDgv+04OxkmwxwQQAABBBBAAAEEEEAgtAC3GId2oRaBcAQcc5BmEgIIIJAsAo6ZiGbLZBICCCCAAAIIIIAAAggkqQBXECbpiWVaCCCAAAIIRFDACWrLNmXNJAQQQAABBBBAAAEEEEgSAQKESXIimUZcBWzTuxXXEdA5AgggEDsB29eVPp+QhAACCCCAAAIIIIAAAkkgkJYEc2AKCMRTwDadDzc5pf4s5XXsSGAg3G9derrM/2hSoUen7dwpWf26702bPj290B3ZiEB8BSzTvRPfIdA7AggggAACCCCAAAIIREKAZxBGQpE2Ul1A31qccmn++CkpN+fSTjhtzx7JOqdbaZvheAS8IuAEDcT2lf3LoE0UEUAAAQQQQAABBBBAwOsC3GLs9TPE+LwuYJsBaiYhULSACRCSEEhSAds3L7262PKVWSCAAAIIIIAAAggggECCCBAgTJATxTA9J2B5bkQMCAEEEIivgG2672myYzIJAQQQQAABBBBAAAEEEkiAAGECnSyG6hkBy4wk2zOjYSAIIICAdwScoKHYpqyZhAACCCCAAAIIIIAAAh4XIEDo8RPE8DwpoC8lScnnDnrybDAoBBDwqoDtGxi3HXv1DDEuBBBAAAEEEEAAAQR8ArykhK8CAiUX0OCgU/LDOAIBBBBIOQHbN2Mn5WbOhBFAAAEEEEAAAQQQSCABriBMoJPFUD0j4HhmJAwEAQQQ8L6AHTREy5SD14M2UUQAAQQQQAABBBBAAIF4CRAgjJc8/SKAAAIIIJB6Ao5vytx2nHrnnhkjgAACCCCAAAIIeFiAW4w9fHIYmqcEbN9o/EtPDY7BIIAAAgkkYJuxOr5sFiQEEEAAAQQQQAABBBCItwABwnifAfpPBAHbN0j/MhHGHNYY8zp21Kt6ipVann5csfZLmZ3S02X+R5OSfro1a9acWb169So5OTktIzHZzMzM+aa9b2fPnn1VJNorbhvJMo/izteD+zkFxmSbdc0kBBBAAAEEEEAAAQQQiIMAAcI4oNNlQgrYCTnqMAY9f/yUMI5K7UPS9uyRrHO6JT1C06ZN5w4YMKDaGWec0cCyrIjM13Gclp988knVDRs2zF2yZEnriDRaRCPJMo8ippmIm/U/KPQlUHYiDp4xI4AAAggggAACCCCQyAIECBP57DH2WAnYseqIfhJUwAQIkz0dffTRL55zzjkthw8fnhbJuWqg0eQGVatWrf/kk0/OXL9+fYdItl+wrWSZR8F5JcG6beag2TKZhAACCCCAAAIIIIAAAjEW4CUlMQanu4QSsBJqtAwWgSgKbN682erRo0dEg4PBw9W2zW2/1YLrolFOlnlEw8YjbTpB47CCyhQRQAABBBBAAAEEEEAgigIECKOIS9MJLWCb0Q9P6BkweAQiKLBo0aIWkbqtONSwtG3tI9S2SNYlyzwiaeLhtiwzNr3t2DaZhAACCCCAAAIIIIAAAlEUIEAYRVyaTmgBDQ7qs7BICERUQKMdJAQQKJaAbfbSq1Ydk0kIIIAAAggggAACCCAQRQEChFHEpemEFuhpRu8k9AwYPAJxFNhjnstonicoeXmERON4GpKlaydoIlZQmSICCCCAAAIIIIAAAghESIAAYYQgaSbpBJykmxETQiAGAmPHjpWOHTtKRkaG1KpVS8qUKSPnn3++LFiwIAa900UKCFhmjtx2nAInmikigAACCCCAAAIIxFaAAGFsvenN2wK2GZ5mEgIIhCHw0EMPSf/+/aVRo0by/PPPi+M48vrrr8vixYulQ4cOsmLFijBa5RAE8gnYZo3bjvORsIIAAggggAACCCCAQOkFMkrfBC0gkDQCPHcwaU4lE4m1gN5OfP/998uYMWNkwIAB+bq/8MIL5bTTThMNIP7nP//Jt81rKzt37pRnn3220GG1bt3anU+hO7Ex2gJOUAeWKQevB22iiAACCCCAAAIIIIAAAsURIEBYHCX2SQUB20xSX0qiy6RLeR07FvtBcC1PPy7p5l+qCaWny/yPJpWqiVQ4eO7cue40zznnnAOmm24Mr7vuOrFt+4BtXqvYvn27DBs2TA4//HD3NulQ4zv99NMJEIaCiV+dZbrONjlp/w6PHy09I4AAAggggAACCKSKAAHCVDnTzLMoAbuoHRJ9+/zxUxJ9CjEff5p50UbWOd1i3m8idlitWjV32PpyEg0IFkx6heHu3bsLVnt2XW+Prlu3rmfHx8DyCdhmzZ/zbWAFAQQQQAABBBBAAAEEiifAMwiL58ReCCCQigIm2EUqnkDLli2lXr168uCDD8revXvzHaTBwZdfflm6dOmSr54VBCIsYAe1Z5myZhICCCCAAAIIIIAAAggUQ4AAYTGQ2CWpBeyknh2TQyBGAmXLlpV3331XRo0aJU2bNpWFCxe6Pe/YscNdnz9/vvuMwhgNh24QUAG97djWAgkBBBBAAAEEEEAAAQQKFyBAWLgPW5NbwE7u6TE7Lwro61eTNfXo0UOWLFkif//73yUtbd9My5QpIyNHjpRffvlFGjdunKxTZ17eE3DMkJL5j5v3xBkRAggggAACCCCAQEILECBM6NPH4EshYJlj9a3FtskkBEotUOy3wJS6J283sGXLFsnLy5Nx48bJN998I3pl4ZAhQ6ROnTreHrhvdFWrVpWff/5ZatasmRDjZZBFCtgF9ii4XmAzqwgggAACCCCAAAIIpKYALylJzfPOrEUcg9ATCAQQiJzAbbfdJo8++qgcddRR7huAb731Vjn77LPl/fffD/niksj1HLmWtm3bJv369QvZ4AsvvCCffvqp+7KVRx55JOQ+VHpawDKj0/8Y0mS7n3wggAACCCCAAAIIIICAK0CAkC9CKgs4qTx55o5AJAUWLVrkBge///77wMtIli1bJk2aNJHx48fLWWedFcnuotZWhQoV5OGHHw7ZfqtWraRy5coHvIQl5M5UelHAMYPS247toGyKJAQQQAABBBBAAAEEECBAyHcg1QRsM2HHl82ChAACkRBYtWqV+xbj448/PtCcPnPwiiuuEH1BSaKk9PR0OfbYY0MOt0aNGtKgQYOQ26hMKAG7wGh1vWBdgV1YRQABBBBAAAEEEEAguQV4BmFyn19ml1/AMqt6e5ljMgkBBCIooFfXrVmzRl555RX3FlxtesWKFeI4jrRu3TqCPUW3qU2bNkmjRo1C5s8//zy6ndN6PAQs0ynPo42HPH0igAACCCCAAAIIeEqAAKGnTgeDibKAZdofEeU+aD6OAnv37pU9u3fHcQSp23XdunVFn9E3bNgw98UkLVq0kEMPPVTat28vffr0SRiY6tWry7p16wJ59erVMmbMGGnevLl069YtYebBQIst4Jg9/W87tot9FDsigAACCCCAAAIIIJBkAgQIk+yEMp1CBWyzVTOpFAK3Xn+ptGqQIT98n52vlZnTJrv1N119Qb764q5s3rTRPX7jxvXFPeSA/Ua//oIMvSa8/g9oLLUqLDNdu7RTvuqqq2T9+vUyZcoUGT58uEyePFnee+89KVMmZv/URGQe+gZjf65fv74MGDBAOnXqJJ999llpiUpzfETmVpoBJPmxtpmfZhICCCCAAAIIIIAAAikpELPf2lJSl0kjkIQCepWepi8+GZtvdl9/9qG7vjdv3/Z8G0uykpdXkr3ZNzICjmlmoMmKb5tc4rR9+3a58cYb5eabb5bXX39dpk2bJm+++aZbN3v27BK3F+YBjjmuVPPQfjds2BDIGvCcNWtWvIODOizH5LNNDvscmWNJCCCAAAIIIIAAAggggEBIAQKEIVmoTDIB/YWaFEGBdh2Pk3HvvRG4nVeDhh+8+1/Ren/asP4vuf/26+T4tg3lgrO6y5g3X/Jvkq8+HSeX9usl7bNqyh03Xi5bNm8KbNOCtjfSvl30asXdu3bJ2jWr5eZrLnTbGnT+qfLrnB/d/XW/fz/ygJzc5XDR+tkzp+Zrh5USCQzy7T3cLEschEpLS5NKlSoFsl41+O2338q7774r5cuXL9FASrlzqeaxcePGwNWDehVhrVq1pEOHDtKmTRsv3Co9zNhsMDmsc1RKVw5HAAEEEEAAAQQQQACBJBbISOK5MTUEVCDbZJ47GOHvwjGdu8uyJYtl2pTvpXMXS36ePUNyc7dL564nyuKFc93e/v3IgzJ/7i/y9EtjZPmyHLn9hoHSo9dpUrZcORlyxQB58oV3pHr1miYQeJsbPBxw0RXucXnmCsKHR9whn330nowe/52kZ2TI4Mv6SrXqNeTRZ1+Xyd99I317d5Lpc/+U77K/kJefe1yG3j5cdu3aKY88dI/07tM3wrMtXnP+h5gVb29P7uWYUeWYnGmyJg1CadY/P7bJhaYKFSrIww8/nG+fnTt3us8g1CvyYpgc01eOyZkmayrRPKpVqyY5OTnugf4PfXuxPpvQA8kxY8gxuZ3Jmko0t32H8IkAAggggAACCCCAAAIIHChAgPBAE2qSR8AyU5losm0yKYICerXYWf0vki/Hf+AGCPWKwL4DLnFfTuHvpvdpZ8tlV90ghzRqLBUrVXarFy2YK02atXDLf639Q3qceKo8//qHssMEF/3p8X/8n3z0/lvy4dfT5ZCGjeXnn2bKnB+nS/a0BdKocaYc3+1Eee/tV9xA4cQJn8l5l1wlg6692T08GlcQ5vkHFuOluVFbr/COV/fBs/UHoYLrilUuZ4LBtWvXdm/R7dy5c7GOMTtFa87Fmod+tzXfe++98uWXX7pjtixLHnjggZK+jTla8wjl6J9bT7PRCbUDdQgggAACCCCAAAIIIIBAYQLcYlyYDtsSXcAxE7ATfRJeHb9eqae3FestwB++9+YBV+6lmVtMb7jyXGnbpLJ7BaB/Hg0bNZG7hv9THrjnJmnXoobYd95gAjL7/yp6+7XnZeuWzbJp476rzpYtWeQe2vOYLPclJq0PKSt//blG1v21Vr4yzz1s32l/4KlDp+P93ST80ojowxzTYpxDuY3wjSHUtkBdbm6u3HXXXYF85513Sr9+/eS7776To48+OrBfMQqRmHOoboo1D73qsXfv3vLHH3/I+eefL3Xq1JE9e/ZI9+7dZe3ataHaPVhdJOYRqo3g/vyXZvrn5gRvpIwAAggggAACCCCAAAIIFFdg/2/lxT2C/RBAAAEj0L7jvsDcK6OekM2bN8oxx3cLuGhA5fYhA0VvRZ42d61MnLlYKlep6m7XZxP2OvUs+XnpVvnv+1+7zx/U5wj609gvp8qZ/S6U+28b7AZmqlbdd2vnpDkrZPbiTW4e+8UUOeWMftL68CPlj1Ur/IfK4kXzA2UKJRawzRH+gJMe7A86aX2RSW8NX7duXSDryz1at27tvtzjhBNOKPL4CO5gm7bCnsecOXNk1apV8v7778u5557rzkHfxHzooYcGriiM4FhL2pTOTZN/fk+asgYRbZNJCCCAAAIIIIAAAggggEDYAtxiHDYdB3pYwDZjc3zZLEjRENBnA+ptxf968G4ZcOEgc3txuUA3u3fvCgQNNcCnVxrqVYH6UpEVy5fKJeecKB9NmOHenjy1a0/3GYb+gxs3yZTb7x8p3dtnyrtvvCinntnf3fThmDfksqtvlP9N/FquueQsGT/xJznl9H4y7t3XxTqpj+iVXxM+/0g6HBvTYJR/2Mmw1NtUNWlg0NZCSVLFihVl1KhR7iELFixw3wKclZUl+vy+GKdSzUMDnZr0JSv+tHv3btmyZYv4t/nr47D0z00Dg3Yc+qdLBBBAAAEEEEAAAQQQSFKB/b8BJekEmVbKCdhmxj1MdkwmRUFAAyf6jDZNJ59+Tr6lrpQxtwuXL19BBg+9U266+gLp2Kq2jB83Wrqb5w3qy0mOOLK9dO95ivQ6rpX7VuJPzLbBN93ttuN+mLYbHHKo3Hrv3+SfD97lBmWeeP4tefiBO+WIxpXc4OCt9zwkLVsfLmf0PV927NghvY9vI6f3OEqObNcpX2Bnf6OUihCwzfYSXTEYqr0PP/zQvZ24ZcuWcswxx7hvA37kkUdC7RqtOts0XKp56BuLmzVrJldccYVoYHDhwoVy7bXXulcVnnjiidEad3HaLfXcitMJ+yCAAAIIIIAAAggggEBqCuz7LT81586sk1PANtNyfNksSCqQ17Fj3vzxU2KOsXHDOvN24V1Sp259N9Cnzw7UsqYVy5fILnPVX2bzlsUa1/ZtW2XZ0hypf0hD9+3H/oP2mCDO0iULpV79hoHbmP3bSrtMM+NrMcCSBR9NKrQp3S/L7Dc/kvv16743bfr09EI7ju1GcwHdvqvrQnW7ceNG92rBf/zjH3L55ZeLvqBk4sSJctlll8mnn34qXbt2DXVYvjpf4Dna/y4VOg8d0NKlS+W+++6Tq6++Wq666io58sgj3WcrdurUKd94D7YSo3kcrHvqEUAAAQQQQAABBBBAAIESC3CLcYnJOMDjArbHx5dSw6teo1Zgvho08QcHtbLRoU0D24pT0Dcht2pzxAG76q3OzVq0PqCeitgKLFmyRKpWrSq33XabpKfvi2v27dvXfVHJtGnTihUgjO2ID95bkyZN5Mknn3SvgJw7d+7Bd2QLAggggAACCCCAAAIIIJAkAtxinCQnkmkggAAC8RQ4/PDD3e7Hjh0beFafXok3YcKEkr7FOJ7TcPu+5pprpFatWnLEEUfIihUr5O9//7t89NFHgXnFfYAMAAEEEEAAAQQQQAABBBCIsAABwgiD0hwCCCCQigIZ5krOV155RW655RbJzs52Cbp06SInn3xyQl09qM8cfOedd+T777+Xww47TF5++WU57rjj5JJLLhF9wzEJAQQQQAABBBBAAAEEEEhGAW4xTsazypwQQKBQAX1uod6aXJwU7QfiFWcMibJP//79pXv37lKpUiV3yD/99JN7m26ijN8/zkMOOUQ0uKkvwPnnP/8p999/v5x77rkyadIkOeqoo/y7sUQAAQQQQAABBBBAAAEEkkaAKwiT5lQyEQRKJ7Bw/m/SqkGGXHBW9wMauvLCPu62ub8WfgXVc0+OlNtvGOge/9Wn42RpzkK3/O9HHpA7h15xQLsFK/TNxqNffyFf9S9zZrl9r1/3Z7760qx0alNXfv/lp9I0wbEhBPTW3Hr16smxxx7r3pr7n//8J+FuzW3RooU0bNhQxowZI23atJFZs2bJ+vXrRZ9F2LRpyZ6bGYKIKgQQQAABBBBAAAEEEEDAkwIECD15WhgUArEX8L+hdubUSfLHqhWBAWhg7rvsLwPrhRW0jb1797q7PPXICNHgnqZzzrtUrh16h1su6sM/joL7Hay+4H6sx0cgWW7N1asG16xZI+edd540atTILevzCLdv3y6dO3eODy69IoAAAggggAACCCCAAAJRFiBAGGVgmkcg0QTadTxOvv7io8Cws78aL1rnTzOnTZbBl/X1r4oGFG+86rzAuhaeeHi46NWGI//vNpn07QSZ/H22fPHJ2Hz7vP7S0zJ9yvf56oqz8tOsaXLR2ZYc37ah3HHj5bJh/V+Bw55/6h/Sp/tRcnKXw2Xk8Ntkz5497rZ5v/8ilw3o7dY/9a8RsnXL5sAxFCIn4L819/rrr5f//e9/0qtXr8CtuZHrJbotLVu2TKpVqyYzZsyQmTNnunn27Nmib2KuWbNmdDundQQQQAABBBBAAAEEEEAgTgIECOMET7cIeFXg1DP6y/gPRgeG9/nH74vW+dOWzRvl1zk/+ldl06YN+dZ1w9kDLpLGTZvLeZdcKYe1PVpWrVgmixfOCxyjhf9N/FqWLF6Qr05XnK8/lVFP/zOQ33/71cA+f679Qwacdrxps5089eJoExxcJ9dfvm9s8377WV4d9ZTccs9D8rdHn5eP3n9LvvniY/fY6waeI2XLlpVhdz0gk76bEGiPQuQEkuXW3KysLPnkk0/c24mbNGkimvVKQr3NeOfOnZEDoyUEEEAAAQQQQAABBBBAwEMCxXtKv4cGzFAQQCC6Aj1PPl3+MeIOWbN6pZSvWNEN2N3zwKNuXXF7btaitVSqXFlatDpMataqU9zD3P0WmUDibvMSEX/atHG9vyiffPCONDjkULnvocclLS1N6tStJ6d0OULWrlltXjqSLs+88r4c3eFYWb1quTQ8tIn8/utP0rLNEbJsySJ577NJ7liaZmZJ396dAm16spCe7slhFTao4Ftz/fvprbkdOnRIqFtzN27cKHXqhP7OfvDBB9K37/6rZ/3zZIkAAggggAACCCCAAAIIJLoAAcJEP4OMH4EIC9Sp20A6d+0pE8zVd5UqV3FvL27Q8NCD9hIczDvoTr4NenvykEH7rvj76881MmXSRHnkoXvcfiZM2XeF4RXX3iwXXHZNoCl9juE5vY9x15fmLHKDf60PKRvYroX16/6Squa20OefelguOLObVK5S1d1undRHpv3wnWS2aBUIVLY+/Mh8x8Z8xTynseXp+2/ZPmj/GgFNoBR8a65/6Okm0Nm2bVspUyZxLlbX24tXrVoVkNdnD77xxhsyatQo6dGjR6CeAgIIIIAAAggggAACCCCQTAIECJPpbDIXBCIkcNqZA+TTD991A219zs7/fEHtYteu/bdarlqxtNi9tmjVRh599nV3/0f/fq90Oq6r9Oh1WrEDSNWq15Aj23WSNz74xm1j965dMt88X7BZi5byrwfvlpxF8yV7+kJpdGhTuenqC9x9GjdpJjnmqsQ95qrE9IwMN8BY7AFHY8e8vL1pM2Yk3iWCRVjorbmTJ08+YK9//etfcsIJJ0iXLl0O2ObFCg1uNmjQIN/Q7r33XjdA+PHHH8tll12WbxsrCCCAAAIIIIAAAggggEAyCCTOZR3JoM0cEEgQgV6nnOle3ffNl5+IloNT/QaNRK/+0yvz9A3Hb782KnhzoJyRniEbzTMCg1P16jXlhO693Fy3XgNpdVhbt6xXLBYnaUBxzo/T5efZM9xbjF974SkZcsUAKZNWxg0Otj26kxsc1KsOv83+wn2jcsfjuriBzrf/+7x5E+02efvV54vTFfuEIaDBs/6LgjAAAEAASURBVPr16+fLd9xxh5x22mlu3bp1+b8PYXQRl0P0CsiffvpJBgwYEJf+6RQBBBBAAAEEEEAAAQQQiLYAVxBGW5j2EUgQAf9tobqs16ChdDj2BNlhbq/Ul43k5m4PzCLLPFewS4+T5OK+Pd3A2/EmuDfXvCBEkx7rv520a89T5P/uuF6q16zl23bg/0f4+3R3KOJD9+1q9ZZBg4e5fevutevUk8efe9O9MvCyq25036b8wbv/lVq168o5510mzzz2kJxyej+55e4H5YF7bnKzzktvQS5J30UMjc1GYMmSJfL666/Lhx9+KJUqVQqYjBw5Urp27SrdunWTqlX33fod2JhABd5gnEAni6EigAACCCCAAAIIIIBAiQUS6hlXJZ4dByCAgCuQ17Fj3vzxUyKqoS8GqWGCf2XLljtouxs3rJMqVauLPosukmndX2vlz7VrpGmzFlK+fIVA0zt37nBfrtKocaYbANT9qteo5favVztu3rTRDXgWNziYZt5amzXAkvkfTQr0EapQov36dd+bNn16ZEFCDSrydXkmHbRVfcPvlClT3EBg8E5z5syRevXquVcQBteHKvvOS7T/XSp0HqHGVdK6GM2jpMNifwQQQAABBBBAAAEEEEDgoAJcQXhQGjYggEBhAnqLcFFJg3PRSHqFoOaCqVy58nKoeeagPwXvo29TLukblf3tsCxaoFy5cgcEB/WoI4+M80thih46eyCAAAIIIIAAAggggAACKS9w4D1/KU8CAAIIIIAAAggggAACCCCAAAIIIIAAAqkjQIAwdc41M0UAAQTCFmjWrNkCx3HCPr6oA7Vt7aOo/Uq7PVnmUVoHjkcAAQQQQAABBBBAAAEEggUIEAZrUEYAAQQQCCmwZcuWrV988cXGkBsjUKlt161bt/CHPUagn2SZRwQoaAIBBBBAAAEEEEAAAQQQCAjwDMIABQUEEEAgygIRfllLlEebr/m1a9e2e+utt37XylNOOaW6ZVn5toe7olcOanDQtL166dKlA8Ntp7jHJcs8ijtf9kMAAQQQQAABBBBAAAEEiiNAgLA4SuyDAAKuwF9/rpHj2zaUE08+Q57777iAyorlS+SnWdPktDMHuHVffTpOWh9+pDTJbBHYpySF4Pa2b98mRzerJl9N/t28tTirJM3Edl/zht+Wpx9XdJ/FfYVy0S3FfA8TwGvzzTffvDZ69OgTFi9eHJGTobf86lV9GriL1YSSZR6x8qIfBBBAAAEEEEAAAQQQSH4BAoTJf46ZIQIRE/j8k/elcpWq8s2Xn8i6v9YG3iQ899c58shD9wQChE89MkKuH3Zv2AHC4PbKl68gb47LlnoNGkZsHlFpKC9vb9qMGelRadtDjU6dOjWiV/mZQGNcZpcs84gLHp0igAACCCCAAAIIIIBA0gnwDMKkO6VMCIHoCbz35sty+30jpXadeqJXCWpavnSx/O3+W2TZkkVy41XnyRMPDxcN8I38v9tk0rcTZNeunW7wsNdxreSc3sfI+HGj3eN27MiV/qd2ljFvvSx9uh8lun3Mmy8d0N7u3bvk8ZH3y8YN62TPnj3y7ON/k+7tM90rGUcOv01yc7e77d17yzXy5ivPyqX9ernbHrjnJnd/dyMfCCCAAAIIIIAAAggggAACCCBwUAEChAelYQMCCAQLLJz/m/wyZ5acemZ/6Xf+QPlgzOvu5tp168t5F1/hBg0H33S3nD3gImnctLmcd8mVcljbo+XJh2357OP35Pb7R8rAq4fKsMEXy5RJE2Xv3r0y58fp8sIzj8g9DzwqnbtYcu+t10rVatXztadBwelTvpfc7dvl/bdfcfe/dugd8tSLo+Wzj96T5578hzuOhQt+lxF3D5UBF10h1w69U954+Rn3uOA5UEYAAQQQQAABBBBAAAEEEEAAgQMFCBAeaEINAgiEEPjkg9Huswdr1a4rvfv0lZlTJ8mKZTlSsWIladmmrVSqXEWOOLK9NGvR2pQrS4tWh0n1GrVk1NP/lKG3D5dTz+gvfc+7VPqee4l8Of6DQA8P/PNZ6Wr1doOEWqnPOQxuL7CjKYx+40U3yHjxoOvlmM7d5Mbb7pex77wW2EX7OXvAxXL5NTfJke06ydLFCwLbKCCAAAIIIIAAAggggAACCCCAQGgBAoShXahFAIEgAb2K753/jnKv/NNbgYdedb679fOP3w/a68Din2tWu5W33zBQWjXIcPO4MW/IX2v/COx8SMND3bI+21DTzh073WWoj0UL5krbozsGNh3apJmsXrU8sN7w0CaBco2atWTnzh2BdQoIIIAAAggggAACCCCAAAIIIBBagJeUhHahFgEEggT0Fl+9su/ldz6TjIx9f218PPZted9cvXfl9bcG7Zm/qLcLa9I3Hh/f7US3vHrlMilTZv+7PNLT95fdHQr5aHtUB/kjKCC4eOE86dbz5MAR6en8lRbAoIAAAggggAACCCCAAAIIIIBAMQW4grCYUOyGQCoLfPTem3LKGf3cW4E7d+0pmi8adJ0smPerzPvtZxPwKyPbtm6RPbt3u0wZJlC3cf06qVipsrTreJzo8bt27nRvSR444BT54fvsQjkLtuff+aTTzpaxo//rvhBFX37yyQfvmADhKf7NLBFAAAEEEEAAAQQQQAABBBBAIAwBAoRhoHEIAqkksH37NvdNw6f33XdbsX/uh7dtJw0OOVS+GD9WtKzptB5HucuuJmj3f3dc776c5MF/PSczp02WTq3ruG8rPrJ9J+l/weXufqE+0tLSDmhP99P6Pmef5942rLc5H9G4kuibkM/sd2GoZqhDAAEEEEAAAQQQQAABBBBAAIFiCqQVcz92QwCBBBbI69gxb/74KVGdgV49mJu7XfzPEty4YZ1UqVpd9BZi3bYkZ4H7IhMNKhYnFWzPf4w+D3H50sVStlw5OaRhYzdw6N8W6WWaueoxa4Al8z+aVGjTaWZMWWd32Zs2fXrx75cutEU2IoAAAggggAACCCCAAAIIIBA7AR7YFTtrekIgqQXSzbMJ/cFBnai+wdifdFvzrDb+1WItC7bnP0gDjk2bZflXo7/My5OWpx9XdD96iSMJAQQQQAABBBBAAAEEEEAAgQQUIECYgCeNISOAQAwF8vL2ps2YwZWBMSSnKwQQQAABBBBAAAEEEEAAgdgK8AzC2HrTGwIIIIAAAggggAACCCCAAAIIIIAAAp4SIEDoqdPBYBBAAAEEEEAAAQQQQAABBBBAAAEEEIitAAHC2HrTGwIIIIAAAggggAACCCCAAAIIIIAAAp4SIEDoqdPBYBBAAAEEEEAAAQQQQAABBBBAAAEEEIitAAHC2HrTGwIIIIAAAggggAACCCCAAAIIIIAAAp4SIEDoqdPBYBBAAAEEEEAAAQQQQAABBBBAAAEEEIitAAHC2HrTGwIIIIAAAggggAACCCCAAAIIIIAAAp4SIEDoqdPBYBBAwFMC6emeGg6DQQABBBBAAAEEEEAAAQQQQCAaAhnRaJQ2EUDAewItTz/Oe4NKhBGlpaWZYdom9zB5osmOL5sFCQEEEEAAAQQQQAABBBBAAAEEEEAAAW8KWGZY2SbrkhQZAcs0Y5usS3+yTcGf/XUsEUAAAQQQQAABBBBAAAEEEEgoAe6fS6jTxWARKJaAbfYaaPIIkx2TSZERyDHNOCbrMjhlBq3k+MqWWV7uK+f4liwQQAABBBBAAAEEEEAAAQQQQAABBBCIioBlWrWj0jKNhiug50Nzwas4LVOnmYQAAggggAACCCCAAAIIIIAAAggggECpBSzTQp7JBYNQpW6YBqImYJuW9XzpeQtOVvAKZQQQQAABBBBAAAEEEEAAAQQQQAABBA4mYB1sA/UJLeAPGhYMHCb0pBg8AggggAACCCCAAAIIIIAAAggggEDkBGzTlAaPNJBESh0BPeec99Q538wUAQQQQAABBBBAAAEEEEAAAQQQQACBkAJWUK2W/UFDO6ieIgIIIIAAAggggAACCCCAAAIIIIBAkgjoVYIaALKTZD5MIzoClmlWsz9ZpqDfHduXzYKEAAIIIIAAAggggAACCCCAQNECaUXvwh4IIBBDAcvXlxPDPukqeQQsMxXNji+bRb5Ac3C9biMhgAACCCCAAAIIIIAAAgggIAQI+RIgED8By3Q93GRd8mfRIJCiJmAHtewvW6ZOs+PLZkFCAAEEEEAAAQQQQAABBBBAAAEEEIilgG06s2LZIX0hECRgmbJtsv+2ZFN0k2U+NZMQQAABBBBAAAEEEEAAAQQQQAABBCIoYJm2NBCjSxICXhawzeD0u5pnspb9yfIXWCKAAAIIIIAAAggggAACCCCAAAIIlEzAMrsTHCyZGXt7T8A2Q9KgoWbLZBICCCCAAAIIIIAAAggggAACCCCAwEEELFNvH2Qb1Qgkm4A/aEgQPNnOLPNBAAEEEEAAAQQQQAABBBBAAIGwBDRIQqAkLDoOSnABq8D4NXCofxbsAvWsIoAAAggggAACCCCAAAIIIIAAAkklYBWYTcH1AptZRSClBCwzW7vAjP1Bw4L1BXZjFQEEEEAAAQQQQAABBBBAIFYCabHqiH4QSDIBy8xnuG9OPZNsbkwHgWgKWKZxzY4vm4WbbN/SMUvNJAQQQAABBBBAAAEEEEAAgRgJECCMETTdJJ2A5ZuRk3QzY0IIxEfADuq2YNkx2zSTEEAAAQQQQAABBBBAAAEEEEAAgbgIWKZX/22RcRkAnSKQogKWmbdtcqg/f7qNhAACCCCAAAIIIIAAAggggAACCMREQIMTVkx6ohMEECiOgGV20j+XeSbbJvuT5S+wRAABBBBAAAEEEEAAAQQQQAABBMIVsMyBBATD1eM4BGIvYAV1qWUNGmrWMgkBBBBAAAEEEEAAAQQQQAABBBAokYAGBgkOloiMnRFICAHbjFKDhvz5TojTxSARQAABBBBAAAEEEEAAAQQQiJ2AZbqyY9cdPSGAQJwF7AL9+/9TQOutAttYRQABBBBAAAEEEEAAAQQQQACBJBawzNy4miiJTzBTQ6AEApbZ1y6wv677c4FNrCKAAAIIIIAAAggggAACySeQlnxTYkYIhBSwTK0TcguVCCCAQH4By6xq1mS7n/s+/GXHrGomIYAAAggggAACCCCAAAIIIIBAAgjoLYT+qwUTYLgMEQEEPCxgm7Fp1r9XgpNtVqzgCsoIIIAAAggggAACCCCAAAIIIOAdAcs7Q2EkCCCQhAKWmZNtsv8/I0wxkKxAiQICCCCAAAIIIIAAAggggAACCERdwDI9+H9Bt6PeGx0ggAAChQtYZjN/JxVuxFYEEEAAAQQQQAABBBBAAAEEIipgmdY0kxBAAAGvCVhBA9Jyni/bZklCAAEEEEAAAQQQQAABBBBAAIEwBCxzjF6Zo5mEAAIIJKKAZQat2Z9sU9DAoS4tk0kIIIAAAggggAACCCCAAAIIIFCIgAYGrUK2swkBBBBIVAHbDNwKGryu6995urRMJiGAAAIIIIAAAggggAACERdIi3iLNIhAZAUs09xwk0eY7JhMQgABBFJNwA6asL/sX+qm4LKukxBAAAEEEEAAAQQQQACBEgmkl2hvdkYgtgK26W6gyQQHY+tObwgg4C0BxwzHn4NHlhm0kuMrW2Z5ua+c41uyQAABBBBAAAEEEEAAAQQQQCBhBCwzUjthRstAEUAAAe8J2GZImvNMtkz2J8sUNJMQQAABBBBAAAEEEEAAAQQQ8KyAPmNLs+XZETIwBBBAIHEFbDN0/TtWA4fByQpeoYwAAggggAACCCCAAAIIIIBALAWsAp0VXC+wmVUEEEAAgSgI+IOGuiQhgAACCCCAAAIIIIAAAgggEBMBy/Siv4jyy2hMuOkEAQQQKJaAVWCvPLOuf0/bBepZRQABBBBAAAEEEEAAAQQQQKDUArZpwSp1KzSAAAIIIBBtAct0oNmfLFPQwKHty2ZBQgABBBBAAAEEEEAAgWQQSEuGSTAHzwpYZmTDTZ5osm0yCQEEEEAgsQUsM3zNji+bhbtuacEkx5e1TEIAAQQQQAABBBBAAIEEESBAmCAnKgGHaZkxa3BwhMmOySQEEEAAgeQVsIOm5i/7l7opuKzrJAQQQAABBBBAAAEEEEAAgSQUsMyc9HlVJAQQQAABBFTAMtk2Wf9t0KU/WaZg+1dYIoAAAggggAACCCCAAAIIJIeA/vKn2UqO6TALBBBAAIEoClimbdvkPN/SLNxkmU/NJAQQQAABBBBAAAEEEEAAgQQQsMwYNZMQQAABBBCIlIBtGtKgoWbLZH+y/AWWCCCAAAIIIIAAAggggAAC8RewzBD0F7dsk7VMQgABBBBAINoCtumAf3uirUz7CCCAAAIIIIAAAggggEAhAlYh29iEAAIIIIBArASsAh35g4a2qS+4rcCurCKAAAIIIIAAAggggAACCIQjoFcJ+n/5Cud4jkEAAQQQQCDaApbpwC7Qif77pXWaSQgggAACCCCAAAIIIFAMgbRi7MMuqSlgmWk7qTl1Zo0AAgggkMAClhm7Zk22+7nvw192zKpmEgIIIIAAAggggAACCCCAgE/AMkv/1YJaJiGAAAIIIJCMAraZlD8Hz0/rrOAKyggggAACCCCAAAIIIIBAqglYZsKaSQgggAACCKSagGUmbJus/1GmOTjZwSuUEUAAAQQQQAABBBBIZgFuMU7ms3vg3CxTNdxX3fPAzYlRM3jwYKtChQqPmlxt3bp1WbEedc2aNedXqVJl0ooVK1597rnnnFj3X8r+rDp16jxhxl8pJyenZSnbCuvwzMzM+bVr1540Y8aMV00DTliNcBACCCAQXQHLNK//XupyhMm2ySQEEEAAAQQQQAABBJJWgABh0p7aAyZmmRr9ZUd/0XFMTshk2/aLK1euvHLIkCHu+LOyYh4flAULFsi8efNyv/rqqwqNGzd+7f777788ETCPPfbY16ZOnXrZ119/vS09Pb2SZVlxGbbjODJhwoTchx56qELHjh1fM4HChPCLCxadIoCA1wQsMyD/lYb6H22OyZoskx2TSQgggAACCCCAAAIIJKQAAcKEPG3FGrRl9kr4gGDwTDU4mJGRce6wYcOqBdfHs/zYY49t2LFjx2gT7Bocz3EU1fcRRxwxqmLFiudNmzatelH7xnJ7p06dNmzdunX077//7mm/WJrQFwIIJIyAZUbq+EZrm6X+m+uYnND/EWfGT0IAAQQQQAABBBBIQQEChMl50m0zrR4mJ80vKXpb8d69e7Mff/xxz50xE7AUc8vs6SNHjvzUc4MzAzLBwTN/+eWXj/Ly8rw4PElLS5PmzZufvmjRIk/6eRKNQSGAgFcFLN/AHN/SNkv993iiyY4vmwUJAQQQQAABBBBAAAFvCZTx1nAYTZgCljlOsz/ZptDTZMfkpEj169e/+NRTT/XkXPR259zc3L95cnBmUOZ5g+eaqy+9OjzJzs6WTZs2edbPs3AMDAEEvCjgmEFp9ifbFPQ/6zQ57ue+D9ss/HlfDZ8IIIAAAggggAACCMRRgABhHPEj1HW2aWd4hNrybDPmNl6rRYsWnh1f+fLlq3h1cGvWrOnSo4dewOLdVLVqVc/6eVeNkSGAQIIIOGacdoGxal2oZJlK22RdkhBAAAEEEEAAAQQQiJlARsx6oqNICVimISeosaS5jThoTgcU9W3F8XghyQEDCVGh44rH25RDDCVk1eLFi5vH64UkIQdUoFLHZsaYVaCaVQQQQCCZBRwzOc0Fk+Wr0P/4c3xlXdgmO75sFiQEEEAAAQQQQAABBCIrQIAwsp7RbM0yjfuvFHSCOgouB1VTRAABBBBAAIEEE7ALGa/+DJBtclrQPpYpO0HrFBFAAAEEEEAAAQQQCEuAAGFYbHE5yDK9psTVgnHRpVMEEEAAAQS8K2CHGJpl6vxBQ90cHDjUdRICCCCAAAIIIIAAAsUW4BmExaaK6Y6W6U2vEtClP9mm4PhXWCKAAAKlEbj58ezM0hxf8Fivt9fncrtdwTGzjkCCCzhm/D1N1sBgcHDQMut5vmybJQkBBBBAAAEEEEAAgSIFuIKwSKKY72CZHvWKgBEmOyaTEEAgxQUGDP33rAaZbSMW4CpfLkN27NwtNzym/w9R+uT19qpVriAzJ33umJlqMIUUYQHzPdJgVMTS07ek5GkKDvCV1tIxDfjbs4Ias01Zf75wTJ5osm0yCQEEEEAAAQQQQAABV4AAYfy/CJYZgmbbZE2OL2uZhAACCMiWjX9u6N25tRzWvF5ENMZOmCOHNaufMu1NmbPUBAgjQkcjBxEYelG3g2wpefXTt5jL3/IiF3NMS0vzfHslVyr2EU7QnrYpa7ZMDk62WelhsgYNHV82CxICCCCAAAIIIIBAKgkQIIzv2dbfgByTR8R3GPSOAAJeF9i0NTeiQ0y19iKKR2MIJLaAU2D4tlm3fNksAskOlPb/J2ZQFUUEEEAAAQQQQACBZBIgQBjbs2n5unN8S/8tQL5VFggggAACCCCAQMwFHNOj5uBkmxXNmmxf1rLly45ZaiYhgAACCCCAAAIIJIFAmSSYQyJMwTaD1KsFhyfCYBN9jLt27ZLu3bvLp59+GpjK559/7tbNnj07UPfyyy/LBRdcEFingAACCCCAAAL5BGyz5s/+DZavoD/T+MtapWXNJAQQQAABBBBAAIEEFCBAGL2TZgU1bZuyXi3Y02THZFIUBcqWLSudOnWSOXPmBHqZPn26W545c2agToOFuh+paIErr7xSbrzxxsCOW7dulV69eknjxo1lyZIlgXoKCCCAAAJJL2CbGWou+DONZeo0aKj/Iaplf7L8BZYIIIAAAggggAAC3hUgQBj5c5Ntmiz4w3Hke0muFi0zHTuSU+rYsaPMmjXLbXLv3r3y/fffS79+/WTy5MlunV5lqNvbt28fyW7j0ZZtOtUc1aSGmjVpcPCMM86QnJwcmTRpkjRt2jSqfdM4AggggEBCCNhmlBo0TDPZMdmfhpuC/lykmYQAAggggAACCCDgUQEChJE/MSNMk/rDsR35ppO2RcfMbKDJ+suDbXKpU7t27WTlypWyYcMGWbhwoWzbtk0uuugi+f3332XTpk2yaNEit4+jjjqq1H3FuQHb9D/c5IjZFTafLVu2uMHBNWvWyP/+9z/3CsLC9mcbAggggEDKC/iDhvqzUXDSf7c0ZwdXUkYAAQQQQAABBBCIjwABwvDdLXOo/lCrP9xq2Z8cf4FliQQG+fYebpZqavvWw1q0atXKPU4DgjNmzHCfP1ivXj1p0aKFe+Xgr7/+Kg0bNpS6detKbm6uzJ07N6x+PHLQCN84Bpplqe0ONicNtvbp00ccxxF9pmODBg0Otiv1CCCAAAIIFCWgAUPN/n/D/Pvrv2PZJtv+CpYIIIAAAggggAAC0RcgQBi+sWUO1R9q9Ydbx2RS6QQcc3hOUBPDTTnsYJc+h7Bz586igcCpU6cGnjWodfo8Qn0+oZY1/fHHH/Lvf//bLSfoh+0bd6ZvOdAsw7bztXHA4q233nKtdMMTTzxxwHYqEEAAAQQQCEPAKXCMP2gYXG+ZfbJNtn3ZLEgIIIAAAggggAACkRQgQFg8Tcvspj+YavYn2xQc/wrLIgUss4ffMM+UQ+VMU18wDTcVum+Jkz6HUJ+RpwHBDh06uMfrUuv0qsJQzx/88ssvZfjw4aLPKCxJ0vZMCjWnWNUFDzfTtxK2XXBj/rJelanPcnz++eflsccec8v+bRFaxsoq24xXs+3LZkFCAAEEEPCQgGPGotmfHFPwX2moZX+yTMH2ZS2TEEAAAQQQQAABBMIUIEBYNJxldtFAi/5g2tNkUskFNBjjN1THtIPkUC379w+1rdC6o48+WubNmyc1a9aUJk2auPu2bdtW1q5dK+vXr5eCzx/UwKEGv4YMGSJ6BWJJkgYjTTrYvGJRH2q4YduFauykk05yb8m+6qqr5MQTT5SBAweKPpMwgikWTtpHT5PVxp/yTMH2r7BEAAEEEPCkgGNGZZusS39y/AWztAqU7QJ1QZspIoAAAggggAACCBQUIEBYUGTfD5h2ULVjyhpQ0CWp5AIaHJxost/QOUgTtqnfELRNAzhpJttBdSUqtmzZ0t3/hBNOCBxXsWJFNzCYmZnpBg79GxYsWCB33XWXXHfddaLPKkywZJvxRtSusPmXKVNGRo0a5b7o5Z577ilsVy9vc8zgbF/W75kmDRRaWiAhgAACCCSMgG1G6s8FB63/Oanb/MkyBc0kBBBAAAEEEEAAgQICGQXWU33VNgA9TNbgFKn0ArZpYqLJuiwq6Q/xmtTe1kJpU3p6unz77bcHNPP0008fUKcV559/vrz55pvSs2dP0WMTKEXcrqi568te1PGGG26Q/v37S48e+scmoZPtG71aOr4yCwQQQACBxBRwzLA1h0r693y2yT1NdkzWZJnsmExCAAEEEEAAAQRSVqBMys5838Qts9DsT44pBP/A6K9nGZ6A/hBuF+NQ3UcDg2kmaznmKSsry716UG8t/vjjj2Pefyk6tM2xUbd75ZVX5Jlnnsk3TL0VOy8vLxmCg/55qaUm2/3kAwEEEEAg2QQcMyH9OU9/3tCyP1mmkOfLWiYhgAACCCCAAAIpJ5CRcjPeN2HLLDR4pUmDK/7k+AssSy1gmxaCbQtrUPeNa9IrBvXW2aFDh8ptt93mPmOvWrVqcR1TMTu3i7kfuxVPQL+zemWJ48tmQUKgdALfDrn27D3btv9jx+ZNbUrX0v6ja2Q2fT93w4YV1ouv3bS/lhICBwq8+Y+Pzt6xbdc/crfuiNj3r3aDGu9v35q74nK7X7J8/2wjp9ky2THZn/TfA8tk/bfB8WWzICGAAAIIIIAAAsknkEoBQsucPifoFPp/2AuqopiKAk2bNpUnn3zSnbq+xOTzzz9PRQbmvE/AMQvNJAQiIjDxmiue3vbHH0PaXXKp1GjSNCJtaiM5333bPydniUwYePGuXq+9eVvEGqahpBJ4dcS4pzeu3TKkc5/2YoJ6EZvb/Fk5/efNWiwv3Tdm15UPnZtM3z+nAFJP37ptlo6vrIs8kx2TJ/qWWiYhgAACCCCAAAIJLZAKtxhb5gzp/wAPDzpTjilrJkVPoIdp2ole87SMQNQE9D8PrKi1TsMpJbB93bqIBwcVMLNbd9Gg466tW29NKVAmWyKBbZu2RTw4qANo2T5TNOi4Y/uuVPn+2QXg08y6Bgc1Oe7nvg/9edP25X01fCKAAAIIIIAAAgkikCoBQv2Fv2eCnBOGiQAC8RfQADcJgVIJfDagr93k+BPWR/LKweABabsm52VfefmpwfWUEVCBZ257025xVJP1RV05+P3kb+WtMW8E0FauWiG//Paz7Ny5M1AXqqDt1j6kZt4r9thU/f7ZxkVzcNKfN0Ml21RqtkwmIYAAAggggAACnhRItgChZZT1f2916U+2KTj+FZYxE7BMT07MeqMjBJJcoFrlCkk+w+hOr1yFSnEBLJORUTOaM6vRtGla7sYNnaPZB20nroB5vm6h379H/v2wXHzV+fLDtMnuJD/6dJwcf1In6TOgt/Q6s7v8sWZ1oZM3QcK0bVu28/3br+SYou3LZnFAGl6gxjbrVoE6VhFAAAEEEEAAgbgIZMSl1+h0aptm9aof/d9bx2QSAgggEI6AYw7S/2jwTGrcsmO7r36YK5ojkcqXy5Dlf2yQKXOWRKI58Xp7GlytXqtRg4hMlkZCCjz11nch68OpvOGxbLnxcSecQw96TFpa2kG3hbMh0u2FM4bSHvPnX2vl3889IW+/PEZOOK6r29yzL/xbzu9/kdx83S1y1/Db5LOvxsvlF19Z2q44/sArDdXE8sFo0FBzT9+6LiyTHZNJCCCAAAIIIIBAzASSLUAYMzg6QgABBGIlsGz+jB+vu/Za67Dm9SLS5dgJc+SwZvUlVdqbMmep/Dzz28IvhYqIbOo2MvSibhGbvAYbI9ne07eYN0rk5UVsfBocjHR7ERtcCRpauHih1K5VJxAcXLZ8qfw271d54uGnpeEhjaR/3/Pkv2+9QoCwBKYl3NUx+2sumCxToQHDbJM1aOiYTEIAAQQQQAABBKIuUCbqPdABAggggECpBTZtzS11G8ENpFp7O3O3RRYwGJMyAgkoULNGTSlXtmxg5D9MnyyVK1eRVlmt3bolS3OkWrXqge0UYibgmJ40MFjwslfL1GmkWwOHWiYhgAACCCCAAAIRFSBAGFFOGkMAAQQQQAABBLwvkNW8pWzasllm/DhNtudul3fee1NOsk6WMmXKuC8peevd16Vnt17en0hyj9AJmp6WNWg4IqhOi7bJGjjUpWUyCQEEEEAAAQQQCEsgmW4xDguAgxBAAAEEEEAAgVQT0EDgNZcPln4XnxWY+n23D3fL+pKSo9u2kzNO3b8tsBOFeAs4BQZgm3Wts0wOTnbQSnA5qJoiAggggAACCCCwX4AA4X4LSh4WqFmz5vwFCxa0zMrK8twozbikVq1aCzw3MN+AmjdvvtBxnBaWZXlyiGZs0rRp0wVLlizx5PgYFALRFvhmylRZvGK5XNmvn9vVstWr5a8NG80zIpuZF8CUi3b3tJ/CAjdff6t0Pb67LF22RNod2V6aN2vhakzNniX16/FenwT6ajhmrJqDk21WNGuyTHZM1mS7n/s+gstB1RQRQAABBBBAIBUFyqTipJlz4gns3Llzq3ko/BYvjnzhwoVStWrVH7w4Nh3T1q1bt3l1bDquiRMnyiGHHOJZPy/bMbbEFxjx7H+kz3XXy3czZrqTefeLL6VlnzOk80UXS7v+58qqtWsTf5LMwLMCemvxxk0bZNKU7+XBf9nyxLOPyrr16wgOevaMlXhgtjlCs2NywdSjQIVl1u0CdawigAACCCCAQAoJECBMoZOdyFPdvn37sGeffbaKF+fw+eefy7Jly17y4th0TLm5ubf07NnTq8MT27blhx9+8KyfZ+EYWMILrPlrnYx88SX5/Pn/yKt/e8idz79eNm+N7Xu2zP/0E8lq0kQ+mPBNws+TCXhTYPee3XLJVeeL/ff7pYZ5YUnrrDby+VefSp/+J8mmzZu8OWhGFQkB2zSiueAPBpap06TPMwxOtlmxgisoI4AAAggggEByChAgTM7zmnSzeu6555zGjRu/9thjj23w0uQeffTRdQ0bNnxJx+elcQWPZePGjV936NDhlY4dO64PrvdC2Yxr3dFHH63BQccL42EMCMRSYN6SHKlbq5ZYxxzjdpuzYqXMmT9fbrjoQmncoIFccuYZMubLL2M5JPpKIYEFC+fL9FnTZPRrY0WfPXjXLffKuLfHy85du2SC81UKSTBVn4BtlprTTC6Ysk1FwcChVXAn1hFAAAEEEEAgsQUIECb2+Uup0d9///2X79ixY/SwYcPkiy++EH32XzyS9qtZx7F3794PzBVwV8VjHCXpc+bMmVeYsY5LS0uTESNGiD73L15J+9asY1G/2bNne94vXlb0m9wCtarXkHJlMwKT/G7GDKlauZIc3ry5W7dw2TKpUbVqYDsFBCIpsGPnDqlcuYrUNFcP+lOFChXk5BNPcW8z9texTHkB2who0DA4cGiZ9eEma9BQg4ckBBBAAAEEEEgCgf2/mSTBZJhC8gs89NBDg+++++6Pfvnll/OmTp3aZd26dVmxnrW+kGTXrl3bzBsgbzLBQSfW/Yfb348//niF+eXvdXNL9JWvvfbacYsXL465nY5dX0hibhnX5yLeZIKDjtaREEhFgTbNMmXTli3yw+yf5KjWreTlcePk9O7dRd8u++Pvc+WlsWPljkGDUpGGOcdAoGWLVm4vD/3TlvP7XyR169STmT9Ol48++1DeeundGIyALhJYwDFj16zJcj/3fWhZs20yCQEEEEAAAQQSTIAAYYKdMIYrMnLkyE+Ng2ZSCQXM8wizzfP+4vq//QnytmLH0Fom65KEQFQENBB40yWXiDXoikD7Dw+72S3rS0o6HXG4DDi5d2AbBQQiKVCpYiU3EPjCq8/JmeedGmj6wfv+7r7ROFBBAYHCBZygzVoOXg/aRBEBBBBAAAEEvC5AgNDrZ4jxIYAAAggkrcB9114jvY47ThavWGECgkdIq8ym7lwXf/GZHFK3btLOm4l5Q6Ddke3lmUeflyf+8bSsXL1CGjZoJKv/WCWbzUtKqlat5o1BMgoEEEAAAQQQQACBmAgQIIwJM50ggECCCUxMsPEy3AQV2JabK39t3CjfTJ0q73/1tbRr01quO/88goMJej4Tadj6FuOvs/O/BOe3ub/KS/8dJcd0OE5OOK6LdGx/jFSsUDGRpsVYEUAAAQQQQAABBMIUIEAYJhyHIYBAUgs4ZnbDTdYlCYGoCJiX9EjfoTfJslWrpU/3blLPvNH402+/k1c//FCmvfOO1KrOFVxRgadRV8C89EueeObRAzSWrlgqCxcvlGdeeEruvuU+GXzlkAP2oQIBBBBAAAEEEEAg+QQIECbfOWVGCCAQGQHLNKPZMZmEQMQFFixdJt9OnyELPhsvh9av77a/e88e6X31NfLJREcuO+usiPdJgwj4BSpXqiyffzDBvxpYjnzsIenZrZds27ZVPvjk/UA9BQQQQAABBBBAAIHkFiiT3NNjdggggEBYAo45aoTJehVhLJJlOrFj0RF9RFTAMq3Z4bZYvWoVqVq5ktSuUSPQREZ6utQx63v35gXq4lywTP92nMdA96EFLFNth95UvFq9zXjp8iWyZFlOIC9eskjmL5wnLZpnuc8mLF5L7IUAAggggAACCCCQ6AIZiT4Bxo8AAghEScA27WabrEvN0U4ajOxs8g8m2yaTEkNAz1umyTkm2yYXO9WvXVuOPfJIOXHQlfLWvx6WZo0ayV2PPyEfOxPlsTtuL3Y7Ud7RMe2/YrLOU4Pmtskk7wiE/f3T4GDX3sfKKvNSkoLpi68/c6tmfvez1K5Vu+Bm1hFAAAEEEEAAAQSSUCAjCefElBBAAIFICWhAJNvXmB2pRkO045i6DSaf4ssECg1EAiTHjDHH5IEma8o0Ocdk2+RipQ+efELGfPGlbN2+3d2/ZrVq8utH46RxgwbFOj5GOw0y/eifAw1GaSZQaBA8kBwzhhyTw/r+rV69SjZt2Sw//u9XqVChgmlmX7rbvl1O7H6S9D7xFF5Q4kdhiQACCCCAAAIIpIAAAcIUOMlMEQEEwhZwzJFpJtsm55msgRFNji9rOVLpHNNQtq+xgoFCqVZ5/y/wkeowldopV6FStAD9wTPlLBioKZJ43pIl8tuiRVKtShU5rHlzGXByb/dKwiIPjO0Ojukux+RMkzUN92X982CbTIqfQNjfv4aHNJLP3v9Kdu7c4Wb/FG678U6pWbMWwUE/CEsEEEAAAQQQQCBFBNJSZJ5MM/YCGkzh+xV7d3qMroAG8KzodnFg61fY7+VWqlY7YgGu8uUyZMfO3Qd2FGaN19vT4Opvs3+QD54dFuYMwzvs3s7HOJdeeKGV2a17yAZ27Nwph/Y6yb3NeMIPU0SvJvwwO1tm/PKrfPXiKKlRtWrI44Irc777Vh56fpS88evvwdUxLd/wmP6xSJ309C09E2KyV515k3PB+RdYLdtnhhzv5s2bpG3n1iG3jXrqFTml16khtwVXzp+VI48/+4iMnxS1l5k4vv4m+pa2b8kCAQQQQAABBBBAIMICXEEYYVCaQwCBpBSwzKz0qilNI0x2tGCS435G5sM2zdxpsj8QqLccazpn5eI5w6+79lrrsOb19tWU8nPshDlyWLP65oq11Ghvypyl8vPMnT8YtuNLSRfqcNtUDjQ502RNOe6nyKCuhzayTFlzyPTzggXSoE4dGf/sM/LmJ+NlzJdfyssPPiDdBw6S72fOkjN6hA4sFmzs4sPbjDABQrtgfYTX80K0p38WbJPzhl7ULcTm8Kqeeus78XJ7T99iJpwXiiO8+aalpemB7kcYLdjmmJDfv/atj7XMNs0hU9Wq1eSnyfsDy+s3rJPvJ38njz39L+nYrmPIY0JV9jmh3wgTILRDbYtQnWXa0axJ4f3fO7eCDwQQQAABBBBAAIHICBAgjIwjrSCAQPIKZPumpr+UOlGc5nBf24HAYFB/wzdtzY1o16nW3s7cbZEF3H82/Octx1c1yCwdX9nyLUMu2jRrJqv//FM2b90mR7VuJf8ZPdrdr23LLFm7bl3IY+JUaZt+9XtZw9c/ARofhAcWYX//dOzVq1UPTEHLmU2ayZcTPpPvJn0r55zZP7AtzgXH9K9Zk+3LeWbZ02THZBICCCCAAAIIIIBABAQIEEYAkSYQQCBpBWwzs4km6zKayfY1rkEYfRah41tn4W0B2ze8HLMMDgz6qgtfVK5YUfr37i2nDR4sp/foIdPNrcX3PvmUeWnJF3Ld+ecVfnBst/qDUAQGY+teVG+2b4ccsyzx92/Xrl0yZty+oLSvHflr3V8y8X+OXHHZNf4qLy5t36D0e+n4yiwQQAABBBBAAAEESilAgLCUgByOAAJJK2CbmekvoGkxmGEP00dPk50Y9EUXkRMo1Xlb/scf8uq4D+VMq4fM/PVXd7lo+XJ59W8PSdusrMiNsnQt2eZwAoOlM4zW0aX6/u3avUs+HP9BYGw7zMtKZs2eIYe1Oly6du4aqPdowTbjyjZZl5pJCCCAAAIIIIAAAqUUIEBYSkAORwCBpBXQX741MBKLpMFBUuIJlOq8Va9SVd5/4jE5vXvxnjUYJx47Tv3SbdECpfr+VapYSUa/mv/lIhs2bpATz+gmP875UTq1P6boEcR3D/37WYOEji+bBQkBBBBAAAEEEEAgXAEChOHKcRwCCCSzgOWbnJ3Mk2Ru8RUoWzZDvp0+w80HG0m7Nq3lwj59DraZegQiKlCjeg1pe1hb+X3eb4kQIHTM5DWTEEAAAQQQQAABBCIgQIAwAog0gQACSSdgmRlNTLpZMSFPCeibcHft3l3omHbv3lPodjYiEK7Atu3b5MohA/MdvvqPlbIoZ5Hcfet9+eo9vKJXEVomOyaTEEAAAQQQQAABBEohQICwFHgcigACCCCAQLgCFcuXl8fuuF1+X7zYPIPwN9GA4dHmikEPPX8w3KlxXAIIlM0oK6f0OjXfSCtXriLtj+ogWc1b5qv3+Io+DoKEAAIIIIAAAgggUEoBAoSlBORwBBBAAAEEwhV49LX/um8uDj5+6MUXyT9vvSW4ijICERcoW7asXHTupfL95G/lyCOOkrp16snuPbslI50fDSOOTYMIIIAAAggggEACCPBTYBxO0m+fXWClZZR/ND29bLVduZuyYj2EsuWrz0/PqDhpx7Y1rx522jtOrPsvbX+DBw+2KlSo8KjJ1datWxdzv5o1a86vUqXKpBUrVrz63HPPJZqfVadOnSfM+Cvl5OTE5RKRzMzM+bVr1540Y8aMV813wat+sXxBiWEgpaLAqrVr3eDgh/9+SipVqCBPv/W23Df4Gjnm/Aulb68T5YR27VKRhTnHSECvWD3lnJ7uLcXa5afvfSXPv/IfqVenrtw57F7RAGICJMeMUV9UEpXEz2tRYaVRBBBAAAEEEPCoAAHCGJ+YRRNveDF365orm7Tp6/ZcqXrjGI9AZNvGZS23blzSOHfr6oGLJg59rXmPpy6P+SDC7NC27RdXrlx55aBBg9wWsrJiHh+UBQsWtJw3b17jZcuWDXzwwQdfu//++xPC79hjj31t6tSpl73zzjvb0tPTK1mWFeZZKN1hjuO0nDBhQmMTIBzYsWPH18wyIfxKN2uORuBAgUXLl0vdWrXklC4nyP9mzXJ3OLJlS/etxr8uXESA8EAyaiIo8Pu8X2Xjpk0yb2aOPPPCU/LuB+/Ifbf/n5x1/mlycq/T5NiOx0Wwt8Rrip/XEu+cMWIEEEAAAQQQKJ1AmdIdztElEdAfNtPKpJ97WNc7RAOD8QgO6ni137pNulbQcUianL0ge/BzJZlHvPbV4GBGRsa5jz/+uGhgMB7BQZ279tunT58KOg6Tzr7vvvs873fEEUeM2rt379l6xUivXr3iFhxUMA1MmsBqBR2L+rVp08bzfjpQEgKRFmjRuLGsXbdOfpj9U6DpeTlLZPy330rrzMxAHQUEoiFQr24Dt9ly5cpJz+695Nfff5Z6devLST1Pdt9iHI0+E6VNfl5LlDPFOBFAAAEEEEAgkgIECCOpWUhbepuKXjmYefSl1QrZLeabmrW7rMbO7euunfvNVX1i3nkJOtTbivXKwWHDhnnK75ZbbqmxZs2aa++++27P+png4Jm//PLL1dOmTateAvKY7Dp9+vQav//++7XNmzf3rF9MIOgkJQUa1KkjI2++SaxBV8j23B3yYXa2HNWvv1x0eh/p2qF9Spow6dgJ1K5VW040gcHhf79PNm/ZLFNnTJFvJn4tE7935PA2R8RuIB7riZ/XPHZCGA4CCCCAAAIIxEyAAGGMqMtXrH1x3SZdYtRbybppeuSFkrZn199KdlRs965fv/7Fp56a/22LsR3BwXsbMmSI5ObmetbPPG/wXHP15cEnEOct2SYosmnTJs/6xZmH7pNcYNhll8rP48ZK25ZZ8tY/H5Zpo9+Wlx98QNLS0pJ85kwv3gIbNm6QMeNGy2tvvSyXXn2BO5xB118qp5x0mhx1xNHxHl7c+ufntbjR0zECCCCAAAIIxFmAZxDG6ATs2bvDqlS9SYx6K3k3ZdLLVSn5UbE7YseOHVaLFi1i12EJeypfvrxn/cwVjl169NB3bng3Va1atcqff/7p3QEyMgSiKJDVZN+/Df1O6hXFXmgagfwCO3fukBuvvVluG3pn/g0pvsbPayn+BWD6CCCAAAIIpLAAVxDG6OTr24rj9czBoqao49qZuzH2b/soamBB2/VtxfF65mDQMEIWdVzxeJtyyMGEqFy8eHHzeL2QJMRwDqjSsZkxevr7d8CgqUAAAQQSXKBihYoy48fpsmLl8sBM9uzZIy/+d5Q4330TqEu1Aj+vpdoZZ74IIIAAAggg4BcgQOiXYIkAAggggAACCKSIQAUTIDRvtJcTeh8j7384RpYuXyIXDOovDz48XGrXqpMiCkwTAQQQQAABBBBAwC/ALcZ+CZYIIIAAAggggECKCJQtW1ZeH/W2vPfhu3LLPUPdWXc7oYdM/nq6NDykUYooME0EEEAAAQQQQAABvwBXEPolWCKAAAIeFqhWuYKHR+f9oZWrUAlA758mRhhjgT//WisTnK/cXptnNpclS3Nk5eqVMR4F3SGAAAIIIIAAAgh4QYArCL1wFhgDAgggUIhA45Yd2331w1zRHIlUvlyGLP9jg0yZsyQSzYnX29PgavVajRpEZLI0ElLgqbe+C1kfbqWX27vhsWy58XEn3KkdcJy29/QtPQ+oj3bF9tzt0qNPF8lqliXffPKdNDm0qTz53GPS/5KzZPSrY6XzMcdHewi0jwACCCCAAAIIIOAhAQKEHjoZSTYUJ8nmw3RSS8Ay0439b+wHMV42f8aP1117rXVY83oH2aNk1WMnzJHDmtWXVGlvypyl8vPMb1eXTCkye+ft3bvDtFQ+Mq2FbqVshQpxvzpy6EXdQg8ujFoNDqZae2EwFeuQvYV8//Ly8uS6K4bIdVffIBnp+34cvO3GO8XqeqIJ+hf/K1u2XLm4f/+KhcFOCCCAAAIIIIAAAoUKcItxoTxsDFPACvM4DkMAgYMIbNqae5At4VWnWns7c7dFFrAY7BWq1/hh3eJFO4uxa9i77N29e316ubLFj+aE3RMHJppApSoVf1i7ct1Bv3+VKlaSGwffHAgO+ufXqf0xcuQRR/lXC12atx6vL1u2TLy/f44ZpFXoQNmIAAIIIIAAAgggUKQAAcIiidghDAHLHDMxjOM4BAEvCFhmEI4XBsIYElug50uvfr555cqqG5ZG5lbughra7tLJk2r2fPn1YQW3sY7AILvf5xvXbq761+oNUcHQdhf+tLTmoBH9+f5FRZhGEUAAAQQQQACB2AoQIIytN73FQODnn3+W7t27y/LlywO9Pfzww25dbu7+i4iGDBkijz76aGAfCkULbN68WX777TfZvn170Tsn7h6WGToB7sQ9f54aeaW69V788Y3XZcn33+VFcmAaHNR2K9aq9Uwk26Wt5BKoWrPKiz98Okvm/5gT0e+fBge13UrVKvH9O8hXxtzeLYtyVsjKVWsPsgfVCCCAAAIIIICAtwR4BqG3zsdBRzPmg6/lvIF3yRfjnpaTT/z/9u4FOqr6TuD4LyaEEBNDeFZWMDxku4oSXr5QmXRbCL4fK7qwLWZVHutuKbo9LV2Ei9pqtwLaAk09hcJWqLbUyh7rsoJmYH2gCIIoByRIEIQDbgOICS9J9v+7ZrITMgmZmXvv3Jn5/s/5c+/87//+H587J7n8ch9X2vUqP94jFxXfJk/99CGZMvnvW9w3ARtmmj4zEtCv3WX//v3t5datW+WCCy4Qfc7Sm2++aZd9+OGHMmTIEDlx4oRs2bJFbrvttkQNM6n6rayslLFjx8r69esbx/2Nb3xDFi9eLD179mwsS5GVEWYeBAhT5GAmehrX/fKZ+//r72799NAnVQN2/WTNHU6NJ/vcvA9yu3efft38X61wqk3aST2Bb0+/+f75/7r007/sOzTgo427HPv+te+Q/UFB17zp4354sx++f7PMkdPzjqAfjqCeczwxZ7E8Pvs3cvSLWntI+Xm58rPHvicT//F2PwyRMSCAAAIIIIAAAhEFCBBGZPFf4Z23fVPGrPiWfPv+GbJtw3LJzztX7plkybVXD5J/nnCXnwZsmcHoyXo0KWAqa7ZMjjtlZ2fL5ZdfLhoMHDlypOzatUsOHTokN9xwg7z77rt2gHDHjh12P5dd1rbnLMU9KPcasBqaDi0d72n//v0yePBgKS0tlSeeeMK+EnPPnj0yefJkGTp0qOzcuVPy8vIc7zdBDaqjBgd1SULAEYHRy1+0HGmIRhCIQeCBJ8dZMeyWTLsEzWArTA6YHDS5tRQwGzVbJruSZvy4XJ5e8DtZtujHMupvrxK9knD5ilflH+57WI6Zuxi+909jXem3hUYDplyzZTIJAQQQQAABBBBoVeCcVrey0VcCC+b80B7Pd7//pDy1YJm8sW6zLPnVLMnM9M1htMwA9a/4uowmBU3l8SbXm2yZHHfSgNZ7771nt6PL4cOHy1VXXSXr1q2zy/Q22R49eki3bs68FTbuAcfegGV2VXPH7M4cSnl5uXTt2lWWLl0qetVgVlaW9O7dW5599lk5ePCgLFu27MxdkvVzwAxcLS2TSQgggAACySMQuorwbCMOmgpTTHbld+ahw5/LY/++UOY8/qDcWHqttGuXJe3bZ8u4MaPl4R/cJzMeK7fvajjbIB3cHjRtjTfZlfk6OE6aQgABBBBAAAEfCPgmsuQDC98PoXOnAllcbsmzz78s35/+tCxaMEN6X9jDD+MOmEFUmDzC5BKTY0llDTvNNMu4T2QHDhwoVVVV8sUXX8jbb78tw4YNEy3Tq92qq6tFn1N4xRVXxDJOP+6j/zHSNN7kuO3slsL+0duKR40aZf6j0y6sVKRLly52wFCDrSmQLDOHCpNj/f6mAAFTQAABBJJWwGoYeWjZ2kRCzxaZaSo5+jtz+47ddr965eCZSR8Po7ccf/a/h87c5PZnR8+v3B4s7SOAAAIIIIBA4gQIECbOPqaer7mq2NxenGvvW/rNq2Nqw4GdAqaNUNagiuY1JmtwJWhyLClodqoK2zGuE/fQcwg3b95sXzVYXFwsBQUFouV6RaEGDbUsRZLVMI+ihuV4s6w32Wr4HNfiwIEDtl2kRgoLC0VfXJJkKWDGG8qWWdfvr6YMk4O6QkIAAQQQSDoBPQcZYbLVkANmGSkFTWH4q51nms+O/M78S/URu7+OHfPtZfg/55zz1Sl3Te3/vywtfLuL60HTdlVY+47NN6xNVhGMG79LAAAXbklEQVRAAAEEEEAgBQQIECbZQfyRNc8Ea/Kkf79eMuUHTzo9ej1BbkuuMPVCOdAwiJlt3Le19osa2gpfhNoNLzvrul7tprcU622wGsTSW2I16VWDy5cvl9raWvuKQi07ffq0zJ07V2655RZ5+umnZcKECVocS2ptbm5vCx9vUcOHmOzCG9J1fQnJq6++emax/Vmf5dirV6+I22IodNso1L66hLIOc5bJlq6QEEAAAQSSWiAUJNSf8RUm17eQO0aYpe5Tv35L7G8d7vG1rnazb6//oFnzr7+1yS77q/O/qtOsQnQFLc2rpfKiCM3b8zXlgQjbKEIAAQQQQACBNBQgQJhEB33tGxtl3jO/l2d+Pl0Wzp8h+mbjF18KOjmDDNNYW7OehM9qyDoGXW/rvi3V03bOTKF2zyw/62d9DqG+qESDghkZ2qXYL9vQMg16derUyS7buHGj6G2y8+fPt6+U27Ztm10ewz8tzcuL8kjDjdkuvDF94YveZqwvK9FUU1MjDz30kLzyyivy/vvvy0033RRePZ51L5y0j5KwbJn1oMkkBBBAAIHkF6homELo53xLv1cizXSWKcwYdmnsAbyL+vW0233lta+edxzeyeqKtyVw7RDJzm76uI7wOlGstzSvlsojNW3P12wIRtpIGQIIIIAAAgiknwABwiQ55rXHjkvZ5Fky9s5SGf2tq0VvNb73O7fIxCk/EX0odgJS0PRpNWQ9IdWkf7kO6EoMyTL7hN/yEzpx1fKYkj5zUJO+aTeULrnkEnv1yiuvDBXJhg0bZPTo0XLBBRfYVxE2bkieFcsM1VG78KlPnDjR/jh+/HjZvn27nDhxQlavXm0/l/COO+6QQYMGhVdnHQEEEEAAgUQIaHBwjcklJgcbslk0S5Yp+TKsNO7zjVBbeefmijVtgvzs6f+wnxf9+dEaqT70ufzkyUWyygQIrWlf/T4N1fdoaZl+XDtH8GgOdIMAAggggAACHghkedAHXTggMOvxZ+wHW8994sHG1n76yHfl9y+skh/Nmi+/nDutsTxBK1ZDv3rLSrBhPZqF7qdJT9QtXYk3ff3rX5e1a9c2aSYnJ6dZmV4ZN2DAALtednZ2k/pJ8sFxu/B5d+7c2b5S8O677xY1DaWLL77YvopQ3wwdHnANbWeJAAIIIICARwKW6UeDg7o8W3L1d+a/ff9eu/9v3z+jcRzdunaS/35xnoy4ZnBjmYcrrs7Xw3nQFQIIIIAAAgi4LECA0GVgp5rXYKDm8KRvNf58X9MAWPj2BKxbps8Kk3Wpua3JMhUdCwy2tdNQPQ1u6ctMrrnmGtm06atnBIW2JcHSMmN03e7SSy+1b9fWF5bs3bvXvkW7W7dusnTpUunQoUMSMDFEBBBAAIEUFtAgWEYb5meZOq7+zszKypSZ5irCaQ+VyUeVn8h5550rvS74WhuG5koV1+fryqhpFAEEEEAAAQQSIkCAMCHsKd2pnnhrkDDYkM3irMk6aw0XK+jLTFauXCllZWX2C0tc7MqNpi03Gm2pze7du4vmUBo3blxolSUCCCCAAAKJELBMp3ru0ZZktaWSE3X0WYMDLu7rRFPxtGHFszP7IoAAAggggEB6CRAgTK/j7cVsg6YTzUmTOnbsaL+9+NChQ/bVcCNHjkyasTNQBBBAAAEEEEAAAQQQQAABBBBAIF4BXlISryD7RxLQv+QHIm3wc1lhYaFkZmb6eYiMDQEEEEAAAQSaCowwH4NNi/iEAAIIIIAAAgggEK0AAcJoxajfVgE9YU+61K5dO/nzn/+cdONmwAgggAACCCCAAAIIIIAAAggggECsAgQIY5Vjv5QVyM/PT9m5MbHkFTjv3BxHB59u7TmKR2MIIOAngYAZTNBPA2IsCCCAAAIIIIBAMgrwDMJkPGr+H3PQDFFfVEJCAAEHBPIKunRctW67aHYitc/Okr0HDqdNe04HQ504BqnWxs+X/Y+jU0q39hzFozEEEEAAAQQQQAABBGIQIEAYAxq7IIAAAl4KLP/5vwxyur/vza0oempqSZVT7fq9vevvsYqdmivtNBWY92BJRtMSPiGAAAIIIIAAAggggECyCXCLcbIdMcaLAAIIOCDgZHBQh+P39l5ebG1ygI0mEEAAAQQQQAABBBBAAIGUFCBAmJKHlUkhgAACCCCAAAIIIIAAAggggAACCCDQNgEChG1zohYCCCCAAAIIIIAAAggggAACCCCAAAIpKUCA0KPD2q59wY7aI3s86i26bnRc7XLOq4xuL29rFxYW7qis9OcQdVydOnXy5+DMYerTp8/OYDDo7QGLojcd24UXXuhbvyimQlUEEEAAgSQX4HwtyQ8gw0cAAQQQQACBmAUIEMZMF92O9XUna0TqvohuL29q1x75RNpl56/zprfYejl58mRNfX29L/127twp+fn+9aupqamNTd2bvdasWSPnn3++r79/3kjQCwIIIIBAogU4X0v0EaB/BBBAAAEEEEiUAAFCj+RPf3li6u4tz+d51F1U3Xz2yRty7Oj+hVHt5HHlY8eOTV2wYIEv/VauXCl79uzxrd/x48cfLCkp8fiItb07y7Jk3bp1vvVr+0yoiQACCCCQ7AKcryX7EWT8CCCAAAIIIBCrQEasO7Jf9AIfr/nuYsmQW3oXf6dj9Hu7s0fVpiXV5sq8P/UZMe8+h3uoN+05+v169NFHF5s2b3nwwQd94zd79uzqurq6P5kgl9N+jh6OwYMHLzIN3rphw4ZCRxuOszEzLttv8+bNvvaLc5rsjgACCCDgnoDj5xtpdr7m3pGhZQQQQAABBBBIKgFHAzhJNfMEDbayYlL5yWPVE7v2Gi65Bb1M7un5SELPQty95XeSc263hS4EB3VOjp+wa6PTp08vP3jw4MTS0lLp27ev9OvXT4s9TaFnIc6fP1969Oix0O/BwRBOcXHxok2bNpXpFXsjRoyQQCAQ2uTpMvQ8RL2qceDAgQsJDnrKT2cIIIBAqgm4cr6RRudrqfZ9YD4IIIAAAgggEKMAAcIY4eLZbftr913fLjN3TN3pY8NPHj/ieYRLX0hSd/rL2rovj0/5m9HPBeOZSyv7unLCrv1Nmzbt+tzc3DHm2XrDq6urPffTF5KcOnWq1vQ/pby8PNiKge825eTklJhA4b0HDhy4YteuXZ7bKYi+kMTcMl5rAr1TzMeglpEQQAABBBCIUcC18400OV+LkZ3dEEAAAQQQQAABBBBom4CesJMQQAABBBBAAAE3BTjfcFOXthFAAAEEEEAgbQR4SUnaHGomigACCCCAAAIIIIAAAggggAACCCCAQHMBAoTNTShBAAEEEEAAAQQQQAABBBBAAAEEEEAgbQQIEKbNoWaiCCCAAAIIIIAAAggggAACCCCAAAIINBcgQNjchBIEEEAAAQQQQAABBBBAAAEEEEAAAQTSRoAAYdocaiaKAAIIIIAAAggggAACCCCAAAIIIIBAcwEChM1NKEEAAQQQQAABBBBAAAEEEEAAAQQQQCBtBAgQps2hZqIIIIAAAggggAACCCCAAAIIIIAAAgg0FyBA2NyEEgQQQAABBBBAAAEEEEAAAQQQQAABBNJGgABh2hxqJooAAggggAACCCCAAAIIIIAAAggggEBzAQKEzU0oQQABBBBAAAEEEEAAAQQQQAABBBBAIG0ECBCmzaFmoggggAACCCCAAAIIIIAAAggggAACCDQXIEDY3IQSBBBAAAEEEEAAAQQQQAABBBBAAAEE0kaAAGHaHGomigACCCCAAAIIIIAAAggggAACCCCAQHMBAoTNTShBAAEEEEAAAQQQQAABBBBAAAEEEEAgbQQIEKbNoWaiCCCAAAIIIIAAAggggAACCCCAAAIINBcgQNjchBIEEEAAAQQQQAABBBBAAAEEEEAAAQTSRoAAYdocaiaKAAIIIIAAAggggAACCCCAAAIIIIBAcwEChM1NKEEAAQQQQAABBBBAAAEEEEAAAQQQQCBtBLLSZqZMNGUEJk2aFMjJyZlt8nnV1dX9vJ5YYWHhjry8vDc//fTTxeXl5UGv+4+zv0CXLl2eMuPPraqquijOtqLevaioaEd+fn5wy5YtE6LemR0QQAABBBBAAAEEEEAAAQQQQMAVgQxXWqVRBETqDYLj3y/Lsn69b9++ex944AHbuF8/z+ODUllZKR999NHxVatW5fTs2XPJww8/fE8yHPDLL798yTvvvPOd1atX12ZmZuYGAgHPhx0MBqWioqL+kUceyRgwYMCvP/jgg/s9HwQdIoAAAgikkoAr5xupBMRcEEAAAQQQQACBtgg4HsBpS6fUSQsBx0/YNTiYlZV159SpU8/zi+CcOXMOnzhx4vnHHntskl/GFGkcl1xyyTMdOnQYs379+oJI2xNRNmzYsCPG7vdcTZgIffpEAAEEUkbA8fONlJFhIggggAACCCCAQBQCBAijwKJqVAKOnrDrbcV1dXUVc+fOjWoQXlQ2AUvp3LnzDY8//vjLXvQXbR8mOHjThx9++J/19XpI/JP0asKSkhIdkP4T1BUSAggggAACUQo4er4RZd9URwABBBBAAAEEUkaAl5SkzKFM7Yl07959XGlpqS8nqbc7Hz9+/Me+HJwZlHne4J3m6kvfDU9vcZ4xY8bpgoKCn/lucAwIAQQQQAABBBBAAAEEEEAAgTQSIECYRgc7madqbkUN9O3b17dTaN++fZ5fB3fw4MHhI0aM8OXwzBWEmR07dvTNLeO+RGJQCCCAAAIIIIAAAggggAACCLgsQIDQZWCad0ZA31aciBeStGX0Oq5EvE25LWPTOrt27eqTiBeStGV8Oq7du3f3b0td6iCAAAIIIIAAAggggAACCCCAgDsCBAjdcaVVBBBAAAEEEEAAAQQQQAABBBBAAAEEkkKAAGFSHCYGiQACCCCAAAIIIIAAAggggAACCCCAgDsCBAjdcaVVBBBAAAEEEEAAAQQQQAABBBBAAAEEkkKAAGFSHCYGiQACCCCAAAIIIIAAAggggAACCCCAgDsCBAjdcaVVBBBAAAEEEEAAAfcFgu53QQ8IIIAAAggggEDqCxAgTP1jnKgZBk3HgUR1Tr8IIIAAAgggkPICgZSfIRNEAAEEEEAAAQQ8EiBA6BE03SCAAAIIIIAAAgg4KhAwra1xtEUaQwABBBBAAAEE0lSAAGGaHvhUnvapU6fkuuuuk5dffrlxmitXrrTLNm/e3Fi2aNEiufvuuxs/s4IAAggggAACCCCAAAIIIIAAAgikowABwnQ86t7MeZbpZqY3XTXtpV27djJ06FDZsmVL44Z3333XXt+4cWNjmQYLtR6pdYHJkyfLkCFDmlW69dZbpbS0tFk5BQgggAACCHgkoOcZlkd90Q0CCCCAAAIIIJDSAgQIU/rwJnRyQdN7oCGbRaspYLZardaIcqMGtN577z17r7q6Onn99dfl9ttvl7feessu06sMdfugQYOibNl31S0zIs2upTFjxogGVnfu3NnYx5EjR2TFihUyduzYxjJWEEAAAQQQ8FDAMn3pHyNJCCCAAAIIIIAAAg4IECB0AJEmWhRo61WEQdPCeJPrTbZMjjsVFxfLvn375PDhw3Zgq7a21g5mbdu2TT7//HP5+OOP7T4uu+yyuPtKcAOW6V+voHDM7sz5XHvttdKtWzc7IBjaprdsa7r55ptDRSwRQAABBBDwSsAyHenvPl2SEEAAAQQQQAABBBwQIEDoACJNtChgNWwJLVusaDaUNWx0JNjVv39/uzkNCG7YsMF+/qAGufr27WtfObh161bp0aOHdO3atbUxJcu20BUU482AHQ8UZmVlyT333CPPPfdco8cf//hH0SsLO3bs2FjGCgIIIIAAAi4LBEz7FSaPMLnEZBICCCCAAAIIIICAQwIECB2CpJkWBfQEXk/krYYcMMtIKWgKq8I2zDTr9SZbYWVtXtXnEF555ZWigcB33nmn8VmDWqbPI9TnE+p6iiSrYR5FDcvxZhmzXUMbTRZ33XWXrF+/XqqqqqSmpkb+8Ic/cHtxEyE+IIAAAgi4IBAwbYZyhVnXvMZkPbcImkxCAAEEEEAAAQQQcEiAAKFDkDTTqkD4X/lnmpoavIqUiyK0EqofYVPrRfocwjfffNMOCA4ePNiurEst06sKQ88f1LcZv/TSS/Z2fTbhhAkT5OjRo603fsZWbc+kSHPyqix8REUNH2K2C29M19VNr8rU5w6uWrVK8vPzZdSoUWdWi+ezV070k9jvKf748x3gOxDNd2Cm+cWiOWDyLJP1fMIymYQAAggggAACCCDgsECWw+3RHAItCVgtbQgr1/80nJn0PwSWyZG2nVm3yeeBAwfK/PnzpbCwUHr16mVvGzBggHz22Wf2euj5gxdddJE8//zzcuONN4q+2Tg7O9sOgDVp7CwfNBhpgoQZZ6nm5uZIPjHbRRro+PHj7duM1WvcuHGSk5MTqVqsZYm0i3XM7IcAAggggAACCCCAAAIIIIBASghwBWFKHMaUmIRlZnE4bCYa3NKgkRVWFtWqBrI0XX311Y37dejQQTQwWFRUZAcOdcOwYcPk/ffft19e8sYbb8jIkSMb6yfJimXG6ahdpHnrMwfXrVsnv/3tb0VvOSYhgAACCCCAAAIIIIAAAggggEBqCHAFYWocx1SYhd5CpEkDg5auxJsyMzNl7dq1zZqZN29ekzK9Ek5vl9VnFb722muyePHiJtuT4IPjdpHm3K9fPzuYunv3btE3G5MQQAABBBBAAAEEEEAAAQQQQCA1BAgQpsZxTPZZWGYCjgUGY8EIBALyi1/8QvSqQ70lOYmSZcbqmZ0GUUkIIIAAAggggAACCCCAAAIIIJBaAgQIU+t4JutsrEQPfOjQobJv3z4pKytL9FCi7T/hdtEOmPoIIIAAAggggAACCCCAAAIIIOAvAQKE/joejCZBAu3bt494O3KChkO3CCCAAAIIIIAAAggggAACCCCAgGcCvKTEM2o6QgABBBBAAAEEEEAAAQQQQAABBBBAwH8CBAj9d0wYEQIIIIAAAggggAACCCCAAAIIIIAAAp4JECD0jJqOEEAAAQQQQAABBBBAAAEEEEAAAQQQ8J8AAUL/HRNGhAACCCCAAAIIIIAAAggggAACCCCAgGcCBAg9o6YjBBBAAAEEEEAAAQQQQAABBBBAAAEE/CdAgNB/x4QRIYAAAggggAACCCCAAAIIIIAAAggg4JkAAULPqOkIAQQQQAABBBBAAAEEEEAAAQQQQAAB/wkQIPTfMWFECCCAAAIIIIAAAggggAACCCCAAAIIeCZAgNAzajqKR6CwsHBHZWVlPE24tq+Oq1OnTv4cnJl1nz59dgaDQdfmH0/DOq5evXptj6cN9kUAAQQQQAABBBBAAAEEEEAAgfgECBDG58feHgmcPHmypr6+/guPuouqm507d0p+fv66qHbysHJNTU2th91F1dWqVatqTfD3jah2ojICCCCAAAIIIIAAAggggAACCDgqkOFoazSGgEsCkyZNCtTV1VXMnTvXpR5ib3bq1KlyzjnnlJSXlwdjb8W9PQsKCr555MiRVSbA6l4nMbackWH/COLnUIx+7IYAAggggAACCCCAAAIIIICAEwJcQeiEIm24LqDBt549ey6ZM2fOYdc7i6KD2bNnV/fo0WOhX4ODOhUTHFw9ePDg3wwZMuRQFFNztareWqzjKS4u/o2rHdE4AggggAACCCCAAAIIIIAAAgicVSDzrDWogIBPBCoqKl4cPnx47xdeeGFow5Vn+uw/z0enzxysrq6WRx99VPLy8pZZlnWf54OIssP9+/ev6N69+19Pnjx5UMiuqKgoylbir66BwSVLlkhZWZnaLd66deuE+FulBQQQQAABBBBAAAEEEEAAAQQQiEeAW/vi0WPfhAhMmzbt+tzc3DHm2XrDTaCun9eD0BeSnDp1qtb0P8XPVw5GcsnJySkxV+3de+DAgSt27drluV3v3r0rjx49+oUZx7S9e/eujDRGyhBAAAEEEEAAAQQQQAABBBBAwFuB/wNmf0I1BBRSvAAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "5b04dff2", "metadata": {}, "source": [ "## 2. Внимание (Attention)\n", "\n", + "![image.png](attachment:image.png)\n", "\n", - "![](https://ucarecdn.com/538faeda-c12d-4137-9f67-e87720d83e13/)\n", "\n", "Механизм внимания — ключевая идея трансформеров. \n", "Он позволяет модели **взвешивать важность других токенов** при обработке текущего, то есть решать, на какие слова нужно обратить внимание при генерации следующего.\n", @@ -360,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "8fe8d3bb", "metadata": {}, "outputs": [], @@ -425,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "d55276a9", "metadata": {}, "outputs": [], @@ -461,13 +471,19 @@ ] }, { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQgAAAELCAYAAACVu2vTAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFCKADAAQAAAABAAABCwAAAAD9grPAAABAAElEQVR4AezdB1hTVxsH8JchDkRwK6LiVtx7gYJ771ar1tmKe+860Grd1U+rdY+6cG+tG0fdq7VqVVScuPcG5TvvwRsDBAiQkJvkf57nkps7z/2dm5C8OcOGkBJFoFOnTmGJciKcxOACc+fOtTH4QWM/IO6X2I2wBQQgAAEImKdAovxfnbJzQL2QTx9+trdPkuLth1d5zZMqaq5TJHG6ktQhxbEX7x7fGlb39+FRt1DnEpSHOsvFWnKF+09dJY3yUFd5IDcQUAQS5QOacjJrfuQA4dSpU62ZwCyvvU+fPmSqAGHYy1NmaYZMQwACEIAABKITsElVilcZ9fPnoiNTOjx7/WB4ErukaQpn80zFJ0zvlIUfLCI9enWXHr+6QyGfPt67ev+sq2NS55n9akzqrtaLQ3motWSsI1+4/9RVzigPdZUHcgOByAJG/YAW+WTW/BwBQvMsfQQIzbPckGsIQAACEFCngLEDhBN39rmY3D5lFg4MWlJQMLrSvHTvuAwU3nl69cWAmr96RLedqZajPEwlj/OyAO4/dd0HKA91lQdyAwFdAva6FmIZBCAAAQhAAAIQgAAEzElg8s5+V7Olze9a0K18CnPKd0LyWsC1LO/uamtjl3Lyrv5X+teYrJqm1CgPdZVHQu4zc9wX95+67j+Uh7rKwxxf08hz4gjYJs5pcBYIQAACEIAABCAAAQgYR4BrplhbcFBbspBbhVTZ0+bPPmln34vay001j/JQV3mY6j4w1Xlx/6nr/kN5qKs8TPW6xHnNQwA1CM2jnJBLCEAAAhCAAAQgAAEdAr/uHvh7JuccTtZUc1AHA3lkKedw/3mQ64Ij49t0rDD4D13bJMYylEe4slrKIzHKXE3nwP2nrvsP5aGu8tB+rXbu3Nk7U6ZMrd69e+f57Nmz/Nrr1DDv4uJy2cHBIWDMmDGd1ZAfffPwe/+V3qlSO7b6+CHE892bD6pzTeaY7LJdEtuAtsMb6XRFgFDfksZ2EIAABCAAAQhAAAKqE3j9/nlnh7QOqsuXKTJUOJuX85kbe0eJc5ssQIjy+FryaiiPr7mxjjncf1/LWQ33H8pDXeWh5MbPz2/evXv3fkiWLFlo48aN7XPnzq2sUs1jYGBgPjHlEWM5+GbIkGGOOQQKl4/dPO/F09c/2CWxCy1aLo992kwuqvFUMvLk/vN8T4Kf55nVb4Wvo0uKOZEDhWhirEjhEQIQgAAEIAABCEDArATGbe8xPnfG4ne+9MVnVnk3RmZ5YBaHJEnT/hYworExjh/bMVEeEYVMXR4Rc2P5z3D/RSxjU99/KA91lYeSm/Hjx6+0s7P7plu3btSjRw9VBgc5rxy0rFWrlu3UqVPJw8Oj3oQJE1Yp16DGR/8J21eSre035eoUp/J1S6gyOMhuHLTMW9zdtm4HH8rglrbeqkk7IrgiQKjGuwt5ggAEIAABCEAAAhCIVSBlMucMDvYObrFuaEUbFHLzdHr97vlIU1wyyiOquinLI2puLHsJ7r+o5WvK+w/loa7y4NxwzcHs2bP79O3b11mNtQajioUvadiwYZaQkJDaw4YNmx3dNqZczjUHXTKk8vFsUNJZjbUGo7PxKJM7S2hoaO0lP2/UuCJAGJ0WlkMAAhCAAAQgAAEIqFrgQ+i7iumcEB+MXEj2tg4mGckZ5RG5JMKfm6o8dOfGcpfi/tNdtqa6/1Ae6ioPzg03K27QoEFG3TlT99L69es7PXz40Jf7TlRbTrlZcYEyuczStUCZ3E5vnr/15b4T2RUBQrXdXcgPBCAAAQhAAAIQgIBeAm8/vMrLzeiQvgqwx9uPL/N8XZJ4cyiPqNamLI+oubHsJbj/opavKe8/lIe6ymPIkCEzqlev/i5qrsxjCdd4FFNYunTpWqgpx4v9NszIU8zdbF25xmPazC5hKZyTS1cECNV0dyEvEIAABCAAAQhAAAIQgAAEIAABCEDAgAKfP3+uljdv3uQGPGSiH6pmzZo2Hz9+9E70E8dwwjDhmtY1tVm75imew+ZTyGfpigBhDIWNVRCAAAQgAAEIQAACEIAABCAAAQhAwJwFnj17lt+c+h3UZc35f/78eT5d60y17N2bD/nNqd9BXU6c//dv3ktXBAh1CWEZBCAAAQhAAAIQgAAEIAABCEAAAhCAAASsRAABQispaFwmBCAAAQhAAAIQgAAEIAABCEAAAhCAAAR0CSBAqEsFyyAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYCUCCBBaSUHjMiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgoEvAXtdCLDO+wLNXH+j0lcfGPxHOoLcAl8k33jn13h4bQgACEIAABCAAAQhAAAIQgAAEIAABSxBAgNBEpZjaKSkdv/SECuTMaKIc4LTaAqkck9Gpy3cRINRGwTwEIAABCEAAAhCAAAQgAAEIQAACViGAAKEJi/nlm/dUtnA2E+YAp9YW2H3ssvZTzEMAAhCAAAQgAAEIQAACEIAABCAAAasQQB+EVlHMuEgIQAACEIAABCAAAQhAAAIQgAAEIAABCOgWQIBQtwuWQgACEIAABCAAAQhAAAIQgAAEIAABCEDAKgQQILSKYsZFQgACEIAABCAAAQhAAAIQgAAEIAABCEBAtwAChLpdsBQCEIAABCAAAQhAAAIQgAAEIAABCEAAAlYhgAChVRQzLhICEIAABCAAAQhAAAIQgAAEIAABCEAAAroFECDU7YKlEIAABCAAAQhAAAIQgAAEIAABCEAAAhCwCgEECK2imHGREIAABCAAAQhAAAIQgAAEIAABCEAAAhDQLYAAoW4XLIUABCAAAQhAAAIQgAAEIAABCEAAAhCAgFUIIEBoFcWMi4QABCAAAQhAAAIQgAAEIAABCEAAAhCAgG4BBAh1u2ApBCAAAQhAAAIQgAAEIAABCEAAAhCAAASsQgABQqsoZlwkBCAAAQhAAAIQgAAEIAABCEAAAhCAAAR0CyBAqNsFSyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgYBUCCBBaRTHjIiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgoFsAAULdLliqIoHQkBAV5QZZgQAEIAABCEAAAhCAAAQgAAEIQAACliWAAKEFlWfVsnkpbyZ7ndO508d1XumUsT/RxNGDda5L6MIWDSrpzMvoob30PvT94DvkkTU5ffjwXu99sCEEIAABCEAAAhCAAAQgAAEIQAACEICA/gL2+m+KLdUusGrrIfr86ZPMpmexbDR2yhyqXLW2fJ46bTqd2Q8LC6PPYZ91rjPEQt+eg6l5644RDpXSKVWE53gCAQhAAAIQgAAEIAABCEAAAhCAAAQgYDoB1CA0nb3Bz5wufUbKkMlVTnzw1GnSaZ4f3LeT6lQqQsVzp6au7ZoQ18yLnC5fPE/f1q1IhwN2y1XrVy2h+lWKE9dMnD5pFH0KDZU1+ZrWKkdrViyUx+N1a5YviHwozfM0adKSW7YcESaX1Gk1x1kyb7o8B9c25PP26dyKyhdylY/v37/THGfO9AlyeY2KHrRr2wbNcsxAAAIQgAAEIAABCEAAAhCAAAQgAAEIJEwAAcKE+ZnF3oFXLlKXto3J07s6LV69k0JFoK+3b0vi2oNKunHtMnGQjmsc8nYH9/1Jg3t1pG9bdaSfJ/1Oa1csot//N44+f/5M58+donkzJ9PQ0VOoXEVv+qmfb7RNgP8R227d4B9hev7sieY4q5bOp659fqIk9kmoQ4va5JjSiX6ePJu2bVxF+3ZuUbJHB/bukMtLlCpP3Tt+Q3dvB2nWYQYCEIAABCAAAQhAAAIQgAAEIAABCEAg/gJoYhx/O7PZc9PaFVSsZFkZ0ONMD/abSLU8C1HwvdvyGoKuXaGWDX2oSfO21K3vMLlsxeLZ9E3LDvR9x+7yec+BI2nub5OoY9d+8vnoibNkcLB4qfDahBywy5k7v1yn/efY4f3Ex9dO+TyKiBqF7nLR8LHTqLxXFfrw/j0dP3KAhvhNkkHCKjXqUdD1q1SiTAW5Xb+hY6lCparEy3duW09HDu2T+dM+LuYhAAEIQAACEIAABCAAAQhAAAIQgAAE4i6AAGHczcxuj9tB16i4qHmnJFe37HL26ZPH8nHfrq3yUbtW3nUR1OPl3JRYSVy7T0mZXd3krLLs44ePyqoIj526D6D2nftEWMZP3r17K5e5umWTj0mTJaPceT1kcJAXJE2ajD596U+Rn3MgkpOtra0MdnItRCQIQAACEIAABCAAAQhAAAIQgAAEIACBhAtE28S4TJkyjTNlyvSvu7t7oDgNt0U1iylnzpyBGTNm/MfNzW1awnks4wh5CxSie3dvaS7m1o1rcj5v/oLysVqtBrR1/zkZEFSChS4uqalT94H0942Xcjp09iYtXb9Xcww7OzvNfEJm9D3OixfPNKf578I/VKR4Gc1zzEAAAhCAAAQgAAEIQAAC0Qp4i+9153PlysVfAozyna5s2bJLnZycxkWbA6yAAAQgAAHVC0QJEHp4eMwWuQ4TgZvlK1euLLho0aJc3FeduUwLFizI5e/vX7hFixYt+TqKFCkyT/WlYOQMVq5WRw4Acvr4X/JMW9avlE11HRySyufZcuQmDiK29+1NfoO6y9p9FSpVo107NtKjB8H09s1rGjWkBy2YNSXOOb0ffJd48BPtSbumor4HXDp/Jn38+IHW+S+mJ48fylqE+u6L7SAAAQhAAAIQgAAEIGCNAsWKFePmQPvF97r88+fPz2ms73S1a9du/erVq8Hiu+Qca3TGNUMAAhCwBIEITYxdXV0viF9+su3fv5+8vb2Tm+MFinzLbIvH9JMmTaI+ffrUSZs27WpxTd+a4/UYIs8ehYqRtwgSftewsmzCmyxZcpqzdJPm0LY24XHirn1/otViROL5YgCSDqJZ8JmTR6hauXxyu8LFStGMBas1+0SesbGxibxIPl80ZxrxpJ1q1mtCE2cs1l6kc177mP+cPUGFsjnK7UaOmy6bIOvcCQshAAEIQAACEIAABCAAARbwO3fuXPsv3+0ifO8zNM/IkSOpcuXK5OPj0ylv3rybrly5st3Q58DxIAABCEDAuAKafxQcHGzVqlXGiRMnpjTuKRP36FOnTnUdPHhwdVEjct2ePXuaJu7ZTXe2K/dDNSfnQNvU2cvlACBv3ryibNlzkZ19eNH3H/aLZjtn59R0NvBrU94la3bRvTs3Zc0995x5SQnYaR+bd478XDmg/+aDyqzOR+39atdvRjwp6X/z/JVZzfF5UBXOYwpHi7pFNdeJGQhAAAIQgAAEIAABCBhKwMvLK78I2H0WFSeitBoz1Dm0j8MVNTgYKb5TThLLESDUxsE8BCAAATMQkFEiblYsqoWnFcHBtGaQ5zhncfz48S6iX4zquXPnnhkYGNgtzgewkB0yZHKN05VwQDBLVvc47WPMjTO7ZjXm4XFsCEAAAhCAAAQgAAEIWIzAoUOHmh88GPMP9sa42GTcXAkJAhCAAATMTkAGCC9evOh74cIFs8t8XDI8YcIEJ/ELWlexj9UGCOPihW0hAAEIQAACEIAABCAAAQjERYBrEV6/fj1HXPbBthCAAAQgoA4B2wwZMkwaOHDg13al6siXwXPB/6wqVKjwsUaNGi0MfnAcEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACZipgK5JoXVw7tZnmP07ZHjt2rMP58+eHx2knbAwBCEAAAhCAAAQgAAEIQAACEIAABCAAAQsWsBV9RCSz4OuLcmnJkydPGmUhFkAAAhCAAAQgAAEIQAACEIAABCAAAQhAwEoFbIOCgnJx81trSF/6xMhlDdeKa4QABCxD4MXbMMu4EFxF/AU+fYr/vtgTAhCAAAQgAAEIQAACEICAHgJykBI9tsMmEIAABOIlMH/Pe/o7KCRe+1r7To7JHah+SVuqmD+JtVNY9/WHigBhje5Enz9bt0NMV++Ygmjr1Ji2wDoIQAACEIAABCAAAQhAIAYBBAhjwMEqCEAg4QLOjrZU18uDcmVNm/CDWdkR9p+4LK74pZVdNS5Xp4CtLd1avFnnKmtfaPv2Dbn1a2/tDLh+CEAAAhCAAAQgAAEIJEjANkF7Y2cIQAACegi8fvtBj62wCQQgAIG4C3CAEAkCEIAABCAAAQhAAAIQSJgAAoQJ88PeEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwawEECM26+JB5CEAAAhCAAAQgAAEIQAACEIAABCAAAQgkTAABwoT5YW8IQAACEIAABCAAAQhAAAIQgAAEIAABCJi1AAKEZl18yDwEIAABCEAAAhCAAAQgAAEIQAACEIAABBImgABhwvywNwQgAAEIQAACEIAABCAAAQhAAAIQgAAEzFoAAUKzLj5kHgIQgAAEIAABCEAAAhCAAAQgAAEIQAACCRNAgDBhftgbAhCAAATMXCAkNNTMrwDZhwAEIAABCEAAAhCAAAQgkDAB+4Ttjr0TKjB9xaGEHgL7QwACKhD4/PkzhYnJzh5vq1wcad2r0dOnz1VQMrFn4c2Dw5QE5RY7VAK2CP0USvZ2eG3oIrRJVUrXYpMvS+3iTE9v7TV5PpABCEAAAhCAAAQgAIHEEcCn9cRx1nmWCb5ldC7HQghAQLdAv67f05b1K+mPtbupnKePZqMzJ49Si/peVLt+M/rfPH/Ncn1nXr18QSXzpqWTlx+Rs3NqfXeLsN2qpfPo8IHdNHPh2gjLrfVJ8mRJ6cmTJ5QmTRpVEzg4OKg6f4mRuaatG9CpsyejnGrJ7OXk7VUlyvK4Lrh89T+q0ciHbl4IjuuuVrN9WFiYqq71+fPn5FEgn6ryhMxAAAIQgAAEIAABCBhXAAFC4/ri6BCAgAEFuJYep51b10cIEO7ZsUku/xwWvl4+ic8flX1Jj88lqGmfp0+fqj5AqCYvU+blx3adqe137SNkIV269BGe44n1CDx79sx6LhZXCgEIQAACEIAABCAgBdAHIW4ECEDArASKlSxLG9cuo09f+o3joOGG1X8QL1fS82dPaPiALlS+kCu1aFCJ1ixfoKyi3ds30vdNqlLx3KlpYI929PrVS806nuHjjfMbQFxbMTQkhB49vE+9O30nj9W+eS26eP6c3J63mzF5NNWo6EG8/O8zJyIcB08gYE4CqV1SU1a3bBGm5MmSy0tYs3EV1WpclbxqlqNff5tE3FyY06PHD6lbP18q4VWYWv/Ygi5c+lcu5z/bd22lut/UoAbNa9OGLes0yzEDAQhAAAIQgAAEIAABCKhTAAFCdZYLcgUBCEQjULpcJUomAhcnjx+WW/z792l6//6dqFH4tSnkjMk/09XLF+i3BWvouza+9JMIYjy8f4+ePX1M3To0o5btu8imwJcu/B0heMjN/CaMGkg7Nq2h/sN+kf0Jdm7TiF68eEZTZi2lQkVKUqPqpejli+e0Y/MaWjh7qjh+JyovmmGuX7UkmhxjMQTUL8DBvU3bN2imYyePyEwHHNpH/X/qTS2atRSB84m0WjTxnzl3OvFrpWO3tvRCNM+fPnEmFfYoQnWaVaeXIuB+994d6tLnRypdoiy1bdmBVm+Ie7N/9YshhxCAAAQgAAEIQAACELAsATQxtqzyxNVAwOIFbGxsqEHTlrRr2wYqV9Fb1ghs1Kw1JUmSRHPt1Ws3pDY/dKfMWbJS8hSOcvn1wMuULUcuOf/k0QOqXKUWzVm6iT6I4KKSpo4fQZvXraBNe05RZtes9O8/Z+j8uVO0/2QgZcnqLgOBa1cuoqMiaHJg7w76tvUP1N63t9wdNQgVRTyao0DA4f10SQTVlVShrCeVK12Blvovoebi9dauVUe5qm/3AfT7gt+oSqVq9Pe/5+ivXSfITbzOKpbzolUiePjXsUP06vUrKpDXg/yG/Cz3ef3mFY0Y+5NyaDxCAAIQgAAEIAABCEAAAioUQIBQhYWCLEEAAjELVK/TiH5sVZ+GjppMm9Yup/H/W0CnT/yl2cnG1pa6d/yGLl88T5kyu2mWu2bJRoNHTqTRQ3vJybtaHRo6eopm/colc+Q81xDkdPvmdfnoUzq3fFT+PH3yiHaLfg/HTZuvLKISpcrTmVNHNc8xAwFzEuj2Yw/q9mPPKFm+HhRIewJ20SoROFeSo2NKunXnpnxasUbEwbaePH0iBjw5QWVKlVM2pyKFimnmMQMBCEAAAhCAAAQgAAEIqFMATYzVWS7IFQQgEINA8ZLhwYdFc6fRq1cvqHR5L83Wnz59ogGi6SM3ReZRiQ+cuUGOKZ3keu6bsGqtBvTvrTf0x7o9sv9B7kdQSetFbaj6Tb6j4f07Ex/HyclZrjpy/i79feOlnNbvPE416zWhfB6F6UHwXWVXunH9qmYeMxCwFAEe1btLx+703+nrcjq+7yytWrROvDZSyUs8ffAfzbotq/+k2tXrknu2HBQsmvQr6eatIGUWjxCAAAQgAAEIQAACEICASgUQIFRpwSBbEIBA9AJ29vbEzYon/TyEatdvJpoXO2g2Dg0N0QQNOcDHA5i8EU0eeVCRu3duiT4ES8vAHjdPLufpQ69EH2pKyprNnQYMH0cXzp+l1cvmU8EixeWqTWuWkb045/G/AqhJzbL05PEjqlm3CW1cvZRu3ggU/R1epL1/blYOg0cIWIyApwi+79y7nR6KZvlv376h4WOG0NzFv1OhAoXlNa7fvJbs7ezp6PG/qP63teiJ6OezSuVq9JfoI/SoqNX79NlTWrtptcV44EIgAAEIWIPAqlWr6NChQ9ZwqbhGCEAAAhDQEkATYy0MzEIAAuoWsBVNh7kPQk416jam5SJQwY9KsrWxpaRJk1HnnoOolxhVlWsOlihdniqJ/gZ5cJKzgc+okk9Nqlo2L6VNl4GcnF1o/LSvIxyLg8smyf1+GksTfx4sawpOm7OCevu2pAmjB8nT9Bs6hvLk8yAXMerrmuULqXr5/HI5N1fm/CFBwJIEOrXrQqfPnqJKtcrLyyoqmgvPFk3r06ROQ79Nnk3dRW3bsV9q4Q7sPYTy5s4ng/GVKlSmFu2byX1qiNcfEgQgAAEImI/AjBkzyNPTk7y8vrbQMJ/cI6cQgAAEIBBfAQQI4yuH/SAAgUQX4JGElcQjB1+5H6o8pR79R2jmfXsOphZidOGQkBBKlz6jHHH1yeOHcv3/5vnTQNF/WsjHj+SeM49mH+1j+fYYRDxxqtPwW/IRzSZvi2aSGTO7Eje55JQ+Y2basu8M3bp5jTJkdNU0Y5Yr8QcCZiSwbln0tV9TiabEKxasliMTfxSvmRzuOTVB+vpiMKCq3tXptqiZm0m8HpxThTfJ50A5BxHv3L0tAvZJKb0IxiNBAAIQgID5CBw+fNh8MoucQgACEICAwQQQIDQYJQ4EAQioScDZJY0mO1zrkAOFSsrill2Z1euRR0LOm79glG25qXOOXPmiLMcCCFiSAL9+eKRiXSlF8hSUL094LdrI66PbJ/J2eA4BCEAAAhCAAAQgAAEImF4A7eFMXwbIAQQgAAEIQAACEIAABCAAAQhAAAIQgAAETCaAAKHJ6HFiCEAAAhCAAAQgAAEIQAACEIAABCAAAQiYXgABQtOXAXIAAQhYkcCn0K/9JqrhskNC1JUfNZggD4kvEPpJnfchXh+Jfy9Ywxk/hX6yhss0m2tEeZhNUVlkRnH/qatYUR7qKg9zzs2z58/oxcsXcb6E+OwT55PEsAMChDHgYBUEIJA4AteuXqK8meypRYNKUU7Y8bs6ct3li+ejrNNeMPt/42hA97Zy0e7tG+lW0DU5P0OMsDqoZwftTXXO88jGq5bOi7Duwvmz8tzPnj6OsDwhT0rlT0//XfgnIYdI8L7nLwRSx+7jKEOumpQycyX5yM95eWKkjBkzUq5cuej9+/ea0/33339y8IuXL19qlmEm4QJsnL1gZp3T69evEn4CAx2hSPkCdOnyBQMdLWGHMfXrg3OP10jCyjC2vRtUakgFMxXSTHUr1qOZk2dRaCL9YFI+fwW6fOFybNm0mvUoD6spalVeKO4/dRULysO05dGwYUPatWtXlEycOnWKeB1S7AKHjx6k1j+2oGIVPahI+fzUtHUD2ntgd6w7cmCQty1frRTxwICr16+kd+/fxbqfoTdAgNDQojgeBGIX8Bab+MW+mXlsMWrcXOIpISksLEzufubEEXoQfFdzKA7MHdof9Z+UZgOtGT7G58+f5ZLpk0cRB/c4Nf72e/LtOVDOx/ZHyUfk7aJbHnk7Uz4POHxar3LwX7eHSlVuQ3nyF6ezZ/+mDx8+yMc8BUrJ5f5rY/fW91wxeVy/fp0mT56s2cQcjDWZNfCMIV5D0WUpjMJfW7N+nUuHdx6PMDk6poxuN4tbru89a4jXhzaevufV3keZx2tESniLv35yzoB/Pn36RL2G9KJD/x6krX9tpXpN6pL/Yn8a0W+kAc9ikYfyFlflZ+grQ3nEW9Rb7OkX773Nb0dvkWU/Q2cb91+8Rb3Fnn7x3juaHVEe0cDEvthbbOIX+2axb6HrM3m+fPnol19+iX1ny9vCW1ySn76XxQG9Vj80J6/ylejSqWt0dO9pKl2iLHXo2ibW2oT/XblEp86epDMHz9Pbd29pwPC+9DIeNRD1zWt02yFAGJ0MluslcPLkSdq6date22IjjUCAmOOqbvzN3U9MZp/8RICwfZdRegWoYrrYYiXL0p6dmzWb7N+9jXiZks6cPEqd2zRSnhIHFHv88K3mOc9MmzCSuLbhuBH96cjBvXT08H7auXV9hG2WLviNTh0/HGGZPk/+EW/aLRt6U/lCrjSwRzt6/uyJZrc508dTnUpFqIb4tWjcyP7EH3A4XfnvArVpVl0unz5pFL0xUq0tb8+StHj5VrJJVSracuCaUW19R9DevXtp8JCf6MKFCzR//nzKkiULDR48WC5v29kv1pqEfK6NWwNiPJcGJpqZjh070vDhw+natfCanpE327x5MxUsWJBSpUpFjRo1ojt37shNFi1aRCNGjCDe39fXl+bMmUP9+vWjNm3aUNasWeX82rVriT/I8LRt27bIh1bd85FDOhG/hmIqu4RmOmOGTJTVLVuEiUcnDrx+lZq3a0oeZfJQg+a15QcTPteFS/9S594/0JyFs6hW46r0Y4/2tGvfnzIbm7ZvoEYt68ngMi8Y4jeAdu7ZIdfNnDedqjWoTD51K9LP4rXIrwOe+NirN/jLdTduXqfLV/+j7zp8I7f79bdJ9ObNa7m/sf4k5utD+xr0Oa/29trzeI1IjQDx1yj/L51SpaQ06dKIkejdqUu/LjTht/G0afUmunMr/Eeq82fPU5uGbcmrUCUa0mOIeL9/LjPEzc+4tiEv55ouKxauCF/+6TPNnjqHqhSvKtdNGDlR1JL+INdd/e8qdWjWkbim4m+TZor/A2/kcv4T3Xk2+G+gGRN/o+F9hpPfgFGa7U08EyDOj/KwgvIw8X0W3elx/+H9QN4b0b1v4v3ZOO/PjH737l1auXKl9OfP6AsWLKAxY8bIWoUDBw6k58/D/0c+ffqURo4cKZf37duXrl69KvfhP4cPH6bu3bvLdbzvo0eP5Lrt27fL402YMCFC5QHNjqadCRCn1/v/3oOH92VuixQqSimSpyDXTK7Uu2s/6tWlr/hMEF4bcPf+nfLzMH/25s/XwQ+Ciff7afQgua9vb/Edp1dHOd/WtxUF378nP0cvFC3d+DM51zI8eOQA9RjQhUp4FZaPSqusf8V3YP78zsvbd/2eTpw+Lo/zy5Sf5XZcmYY/l3ft24lmL5gp10X+gwBhZBE8j5NAUFAQ/f3333HaBxtLgfZfHEaKxzAx+X15bnYPHNzgtHj5FhnkSEigsFa9prRtwyqNwZ9b1hEvU9LrVy/o4vlzylPxq8rzCM95RcNmLSlr9pz0beuOVEC8OQffvU03rl3R7MMzfx3YQzdvRG1OG7BnO839baJmWrdysWa/x48eULPa5cUxi9H0+avEl8Wn1FUEVjhdEcGUxXOnU9+hY2jslDm0ed0K2rdzi1zXpW1jSpIkCfUZPJqOHNorlxnrz6LZfDuJmymaYNO031fTKL8R5OnpKbe7ePEiHTx4UM7zH14+atQomvb7Gs2y6GamTuhHLs5O0Z4ruv2U5fXq1aNvv/2WevXqpSzSPHK+uBlDjRo1aPfu3RQq+m1s0aIF8S+a9+7do59//ll+UOFl/PzXX3+lHDlyyMAhz3fr1k1eB19Pz549NcdV84yf8jpaEXOQN77XcEAEyjmwp0xXxWuCmy+0Fr9yJkuWjJbMXk6VPL2pjW9LeiJq7r55+4Z2iAC9/7rl1K5VB3JxSU18DE57A/bQ2b9P07+X/pHHWLFmGblnz0H8y+eCP+bRwN5DaPyoKbRBBOb3iBrAXIvx73/PiXtlONWv3ZDSpUlHP3RvR0ns7al/z8H017FD8b2sOO2XmK8P7YzFdl7tbbXn8RrRaCTK/8uS5UvKE94IvE5PHj2hFrW/o/yF8tPU+b/Si2cvqGe78PeqdSvWidfLEhozbQz92PNHGjv0FxlU3LByPS2cuVAs+0Hus3PzTpr3v/Da9d3b9iD7JPbUc3APOnbomObCYjrPw/uPaPavs+nB/YdUp1FtzT4qmEF5WGF5qOC+U7KA+88K7z+8Pyu3f6yPRnt9vH79ms6fPy8z8PjxY1qyZAm5ublRnz596PLly7Rx40b5OZ0rHLx69UpWAuAf6vnHTt43JCSEJk2aRFWrViUOBHIg0d/fP8LxOGDI61WY9HZ1y5KVsrllF105tZOfe/nH9Q8fP1Df7gOIf6znz9/8GbhSxcq0XHyf5D64u/fzJedULtTym9bErXt6i2Bit07h31/6dOsvl/HnaP683aNzb7K3T0LfiybMjikcxeftSbRZdK3FQUdOPQZ0ptTiM/vi2csoV47cNHTUQFkuLZq0lNut27xGfLZfQQHiM32TBs10UtvrXIqFEICAsQUCxAmCxOQuJk4c2eFplJj8xGRWiYMbHJTixIFCTkG3gsk9W2by8G4nn+vzx6dGXfFGN5Aeil9KkiZPThywGzp6ilymz/68TY5c+SiFoyPlyluAUotARFzSdfGmzcEoJb188UyZpa2i9lOmzG40bMxU2VdeuvQZqGbFgvRI/OJjZ29HMxeto6IlytD94DvkKmpq/XfxH9GMtyDdFrWl1u44IvOS3T03NapeSnNMQ89wbSX3bK7C/p48NJeJnET5cCB3y44DdPaX6TGe9vvvv6fixbnp75AYtws/V2Y6d/6VznPFuPOXlVOmTJG1/jZs2ED58+fX7LJs2TIqV64cTZ06VS7jpsgFChSg27dvy+cZMmQg/rXR1taWAgICqGLFijIgyCuHDRtGXbt2lQHFPHny0MKFC+WHEg7SqjkptQiDboaX3WIRKNSUXd92Cc768tVLxYePVJrjdPmhB90Vzfn5V8u9Ww7KDx+lxf27cOl8OiwCdpkzusptF/0ugn/ZclAK8SFk6sxJchn3rVLIozCdOXeabG1sKa14neXNnY+uiaD7vBkLqVjhEnRfHNfN1Y0uXblIVX2qy/1GiQD6N42aE9cgvHXnJm3y305pUqeRx68jatkaOyXm60P7WmI7r/a2kefxGpEiAeJvkJjcxcTJKP8vkyZNKg/+4f1H8UPVdsqYOSMNGTNYvt+nTZ+O6onaf48fPqZ1K9aLGvPtqHK18D5z3755S/fvBdOaZWvFB/bW9F377+RxuvbvSrNETcMG3zSgOzfvkP+OleL/QGrK5p6NmlX/Rm4T03l4A67hOHv57/K9Tu6gjj8BIhtBYnIXEyeUR7iDqf4GiBMHicldTJyMUh7hh1bF3wCRiyAxuYuJk1GuF+8H4bh6/A0Q2wSJyV1MnFAe4Q6m+hsgThwkJncxcTJKefCBixQpQu3ateNZunLlCt26dUs+cp/iq1evpkyZMlHJkiXl5/XTp0+L7xbFZSufSpUqydqG2bKJ70piWyWlTp2aJk6cqLb/d0r2AsRMkJjcxcQpWld7O3vasGILrdu0hjaIii6Lls2XO/zQphP9NGCkXFa8aEkaMWi0XD5MLKtSz4ueilZpBfJ5ULKkyYjXP38RXiOzWJHisqIJb8yfoyuW85IteI6dPELDB/rJz+/VvGtQ0M0b8nh9ug2gKpWqys8uBfMXonmLZ8sf83PmyEWD+gylkb8Mk9uNGSb6ok+fUc5H/hOnACF3Ks994uhKR48elV/oIq8bMmSIrMbIBY5kGQIcQGnatKm8GO6/7O3bt3TixAn5nL/Q58yZ0zIu9OtVhH2dNfqc8oYjmxsa/WxGPIESKPRLU5QKlnHT60zp0meicp4+tFfUvkshfkHh5sWZRJAhuqQdzItuG2U5N0/u1j78vn3y+CEdP3KAJo8ZKs+z93h4DcMOvr2phXgDVxL3Y9i4emn59FbQdRn8y5c5YqDp2dMn5CQCL3OmT6AW9b3IMaWT3N67Wh06KQIt7rnyagKV+URQJa7Js0z5uO4SZXslUMhBMg6u8QAInN69eyd/5du5M/xXpz179lDhwoXFP+6Xet9/XIvw+YvwICEfUzlXmjQu/DTGxL88cvCvc+fOtGXLFs223Oy4fPmv1509e3a5TmmKUK1atQgfIHLnzq3Z18XFRX5o4QUODg5yOVeljylA6JjRU7O/WmaUQKHiud/DgxLyzjp3+kIqVTz8XlaukYOGecT9qd0XYQERWOdfhjlAyMs5OMipfJkK4lfJ67ImID9v27ID7d63U/4qWc2nhvwgwkFEbmLcpFUDzTGrVK7Gm8tUvEgJ+Xji1DHK6Z5TBgd5QX5xzoSmt+/ek6NoXh+fpBgb4/URU36U88a0jSlfI8Gi5ho3ezdSMsT/Vfn/Muh8MFHEWzteWX72NPwHoTz5c9Pxw8dFf7gPqFDmiO/ZvM2NwBvUoVt7zTmatw3v5oKX+/b++v/DLVsWeYxTx06L/wPuMjjIO+X1yKfZ93bQ7WjPwxuVr1Q+wnudZkf9ZwzhrO/ZZHnou3Fs26E8YhOKdb1ByyPWs+neINHvP7wf6C6IL0sTvTxizE0cVuL9IA5Yujc1+PsBd0+kJEdRMYNbpXCrHk7cQkg7cfPj5KLiBwcSuR9Djh2kT59eBhGV7TiYyD/8xyEl5v0cXbaiuHJsJLloWuzboaucHonvnP5rV9DkGROonPgsffN2EJUUAUAlZRGVTzg9Ed8nY0tZvnwn5h8wtD+/8/NPn8O7tuLAYqXaFWRrIK7JqJ3at/6BJkz9RXzGz0yN64d/J9Zer8zHKUB45MgRGezjnfmmmDdvHtWpU0ceK1063TV1uEmYMnCAclILffQT18WTxSc7OztZbZgvlGvvcN9grVu3ltetBB4sDMHGSNej641tlDiXn5jCwl6eMtJp9T+sT11fWfOMa8DElHiQBf6yqySuxeaePbPc95FdxC9YyjbRPdau34y2b1otA211Gkb8B8P7hIR81OwafPeWZj62mVx589OUWUvlZlN++YlKlfWkylVr6/3PKJWzCxUuVoqWbdgnjxEqqspfFf0L5siVhyb9PISCRF9u+0VntFnEm3EvUe2bU1YRXAkStRI/iaC6nWhOybUL45oOnzhKFfNHDErGdAxdX+i5hifXUONRix88eEDLly+Xh1izZg0FBgYS/5DDiQNx3MeIi0sqengtPGgoV0TzJ3K582bFCuclbn7c+ocR0ewVcXGPHj1o7ty5snmwsoaDlOfOfW1KznnkVKhQIfrzz/B+8JRt+dFe2Gon7lsvLunNg8Oin5BkcdklwrbKQBT7t82JsDyuT6ItO65BWK8P6X+363fm3Dnz0D1RW5cDqPy+zv+vL4lmwkP7DxfLPkc4SPp0GahAXg+au+h38hQdL3NtQ24y/FG8Hpt9eZ3OXzJb1A68QUd2nyT+EMP9m2gnpVy4L8TrIuDOzSr4l1aubZjQxOWnz3tmtMZGeH1oX1NM59W1TntfU71GMmfKQPeubNfOikHmv1xv3F6k4V1xRD6//H/pXjizrv+lkbeN9fmfokkwJ7fsWSmV+OGjULFCtGTDYrksRIxuHCj6EeRAX/6C+UUt9/B+k3jlnm17KLObqC1fxEMG++QO4k/QtZtU0acicaAw6FqQ+D8gXmeitvmD4PvKJjGeR7NRwmbi6qzv2XSZy/IQB9C1Tt/jarZDeWgo9JnRZW7Q8tAnEzq2SfT7D+8HOkrh66JELw9xal335tcc6TmH9wM9ocI302Vu8PcDXcG8lCnDB7/btGmTDAhydoKCgmQgkCuT/fHHHzJ+xC18eBuumJCAZKz7Obos6eW6ces6mjBtHJ05dF4ehz8/c7Pg5av/oFu3b1H+PAXown//as4RdOuGnM+XJz+dPndSs1zXjJ2tna7FmmUcfBw+Zgj9KlqL1avVgK7fvCb7LFQ2WLF6mfwBn1sP/Sla6dWuXldZFeExTmFaDv64urrKiY/CQUHlOX9p09WhvPbZ/vnnH1krRBk6e/HixVS0aFHimoncmSXXBuIOFsuUKSM7quTj8TruRF9J3Gad27NzZ/TcuaWuUXaUbRP5caQ4X4CY/MRk0Ym/5JUqJUY8FRMHFPgXAOU5/4KApJeAn9gqvO5w+Ob8xs1vdH7hT83rrxIc5MCgt1dJ4j63OFgSW2BR11VWrVlf1u7bt2sr8bx2ypgpC3HtP66ZxyMcr1zyNSipvR0HHV6IPgK1k7NzaqogqlzzlF70AZG3QCE5zzUW9UkcUDx/7hT9K/pe49fAElFTqluHZrKJJQcHCxUtJYODXOvwoOgHgn8YKVm2ogx0rvxjjqit95ZWLk5YACm2fHLAjmv0KYkDgxw0UfqJrF/bm5YtXUxcA48nbrbLP/Yoz3lAkKV/LBb9xHkrh4j2MXJwkAOD+7fPobN/rYhTuXMtv9mzZ5NSi5FPyD888f8J7syY04oVK6h+/fqkNPmRCy3sT2xlZ4zLLVksPPDPfZFwsE7pY7Bo4eI6T8e1Abf+uZnKiJq9OUQ/n9wMIuDQPlm7kHfg4GCRgkVlcJA7Seb+TTj4GDnxaG5cO3H5qj+IR3tb6r8k8iZGeR6bsSFfH9oXENt5tbfVNY/XiPy/aPD/lw9FDckbInB35dJVOdDImMFjaMSEESJYbiveu0vSv+f+Fe/34kO8eL9fNm8p9ezQS77fV6tTlTav3kx3b9+lwMuB1Ktjb0rplJKq1q5KG1eJQU5u3pHdGmwXzZQ9fTypRNkS4v+AI636YxW9FzVd/Rd/7Wc3pvPouhdUssxP5APloZLCENkwSnmsWrWKDh06pJ6r/JoTo1wv3g++AsdxDuURRzAjb26Q8rh//74cRJBb9PDElQf0SXnz5pWb8Wd6/uH57Nmz1KlTJ3r27BkFB4uup9zdiVv9vHjxQg4iaEaVyPR2LSEqk3Bf3jygCPe7yNfIn5U5KFcgXwHyEd9DeYCRk2fCW19u2raBuImw0upJcVYCsC/iMIrxs+fhLSE8y3uFf1ddvlAe7nPYZ1lzcbT4jDPOb6IcMOWn0YM1zZiVcyqP9spMQh6VDuV79xbN80Sn8dyBPD9q/2Phziu5w/gBAwbIjud37NhB7du3p+nTp8svqTzPN1L//v2JR8blG2fGjBmyDfuPP/4oa6jxYBjcAT1HnDkazTccd2LPAUUVpFEiDxwkrKyVFz+teYudVWqFWOwFGufC+F7hxPeNH8+Ya+Ivv5w4MMiBqPgEBZV7iB8ziNGeSogq2B9E81cebEQZ8YnPkVs0RawoghStGvnIwFt5Edy7LAYI4cT7Km+mnj41acTAruQs+jcLXxf1txDlnHKDWP7wtp7e1al95z7y3Lx5WvGL0FQxsAPXDGwj+nPj0ZQ3iF+H0qRNT42/bUMzfx1DNes2ob5DfqbRQ3vJia+LmyDH5dyxZC3CaiVQq9QYjLBSPOnd5RsqVbkNeXp5awYqUcx4Ww7IjfQbTacO/BF512ifKzUG41PuykF9fHyoZcuWMhDIy7ifkrp165KXlxc5OTnJXyGVJsja5azsH/kxsm/k55G3V8Pz2Mouvnm0kb876N6bOzkeLPoj4Q6Mx04eLUcSnvTzr7JWny6ziuU8ZRPiksVLyQNW9vSmK4GXKZ245zlx0wUeOW2tqAGcNnVaWbNw+uypVLNqLbleyQs35R3YazCNGPuTnLjps2zmLF5nxkyxGRvj9cHXE9t59blmK3+NGPz/JX/enPu/eXJi/6Ili9IgMXqg0ly4gncFatu5LbVt1E4WD/cFOHn2JFkDsF7TerRl7VaqUbqmDPx17uNL2XNmp9oiCLheDFRSs2z4/c41EOs1qSu7N+g1pKcczIQHNCleprjcj19jMZ2H19vaGvc1IS8u7n9QHnE3M+YeBi8Pzix/B+Pvbfx/WGXJ4NeL94MElTDKI0F8Bt/ZIOXBIxTzpCSuCMSf02NK/D/L2dmZ/Pz85DRr1iy5OcdreCBB/jzPfY7z53tOjRs3li2aeETk8P93Ub+ryQ3V8UdvV276O1H0nz9wRD8aNT68NRU36eUB/CqIyiZcua2q+C7b7PuG8rMv/9i+cFb49y52cPjSZ3oqp1Sya6DqDb3p4J9HY1XgfYuKgTT5x/wyPuE/9Hds86PsJ3zQiP6yj8NypStQg9qNZB+G3D8ij2zMeY2c+JOHyGdY5OWxPudMcCE3atSIhg4dSvv37yeuOsqJO5zkmik3b94kvjk4gHj8+HFq3ry5DAjyNg0aNJB9YSm1A7kjea4dyJFmroW2b98+4g/EPAoO12q5dOmSHDmH27Tv3buXuINLPi7XXsucOTMfUq/E+RbJWJ+4IkOO+pIpP/HiCFM63Ncro9hIFQI8MpNo/mjo+8Xvy8Upj7qu1WyaGMfWDHnN0Y9kk8yNiuZz1XWd8VrGA4O4iOBfkiQO0e7/4vlTUavDWf7wEO1G8Vjx9MkjevzoIWUXnb0mFW/qSvooRqjiwVWyZHWX/+h4O2eXNPL8XNvxlfgFiAOeX96DlN1ifNx/4jIVzPRSrybGSqBWqS0Y3YH91++jtp2G0Si/4fR9m/ayBiH/Msg1Bzk4uGTOaGrRtFp0u8vlfC5uVhtTQNgtf10KOHBY/lIY48FiWMl9mfD/AK5JHrkZcQy7xWkV/2L3/M5+kzYxjrXsPnwMb2K8cGOcrk3fjV++eknB4t7NljU7JU+WXN/ddG7HfdA8EK9PHsWN73XuU8VFNM/nL2CR01NRy/fV65dytLe4vC4iH8de1Cp2Hd6daGv4oDaR1/PzWI2/7GSI14f2+fU5Lze5jc/nMD6PsV4jN27coIoVyqmhibHfF0/l8cvTrw+jt3QKa1raOKOVP33yTIxo/Jiy5cgWpQYz91HIgUPt/k25af7dW3coiUMS0X9upgjv99yH1uuXr0UTZrcIy/lKYjrP1yuN29y6k9NpRP3E//yC8tBdTqYqD5GbeH3P030V+i810vctvy85UB6jZAj3XxQSucBU9x/KQ13lkVjxCG4RyjUGubUpBwaVxJ91+HMLD2DCnwvfvHkjP9/HtYWQkb6fK9mM/Oj3ZYHyGHk9zeq3IqxuB58Iy7mFzK3bNymlaDGj9B2ovQF/Vubrz5Ytu/xhXnud9jzXIHRO5ay9KNZ57j6IP3unEH0hcp+IPIoyBxxjS9sW7qeuU1raGKQGYWwdyis1P7jWn5K4RiEv145Oa99A3ISYk7KML65JkybUtm1bOfw1L+dah+PGjVMOGZfHyIG8mPYNiGllLOuUaHMsm2G1lQn4WdL1JrTftfhYcBPh2BIH54yRuIYgT5GTg0NS0ddUDs1i7W14NOW4jqisOZCeM7EFBpXDtGhShQrm+4Om/b5G1NQrKgck4T4H69euLGsOFi6YW9k02kc+V2K8uXEXFtaQ9C07Y1nwhwZ9Pjjoc34OuHIfg0pKmyatMhvlkUcw5ikxkr7Ghnh9aF+PvufV3icu81bwGvGLi4eht02TNrV4v0+t87A8ynHkxM2TOZioK/EIxjzpSjGdR9f2JlzmZ8Jzy7JAeUQoAZOWR4ScJM4Tk15vTK9TvB8kzg2gfRaUh7aGnPeLssREC5IlSyZrDUY+Pf9wEHlwk8jbqPC5X3zyxD+4c7+C0aWMenyX5X3jGhzkfVxFazwlcfA1rgFYgwQIY+pQnjvBb9iwoWx2zMNhc1CQ+5JKkyYNDRo0SNMxPbdN5/buStJV24AHwxg/fjxxTTzu1LJ79+6y03pughzHFJcaYd5xOHbkbbmPliAxBYgpMb5Pi9MgQQACEIhZgIOAC34bIjYaIkcp1WdAkpiPiLUQsBwBvD4spyxxJRCAAAQgAAEIQAAC+gsYpLF3bB3Kc2eUHETk6qBdu3aVQ1tzp/jcRJmrn75+/Zq6detGkydPjjHnGzdupHbt2sltmjZtKgcr4SqsRk4B4vj6TN5iuwNi4sSBwXNiaiwmbgQeICYkCEAAAqoSUJo/Ko+qyhwyAwETCyivC+XRxNnB6SEAAQhAAAIQgAAEIGBUAYMECLU7lOf+Ark/wWHDhmkyrnSCP3z4cDn4yMSJE6lfv37k5uYm+6fi0ZG5PTr3QRhd4iqpPPDJhQsXZO1DFxcXOSpMq1atotslsZdzDcHKYkJgMLHlcT4IQCBeAprBE74MNBOvg2AnCFioAF4fFlqwuCwIQAACEIAABCAAAZ0C8W5irN2hNgfvVq5cSVOmTInSoTw3CVZS6tSp6eXLl8pT2UyYBzLh/gV5WOwvHdpG6axb+1yBgYF0/fp14mNxB5cqSX4iHwFiGvXlUTwgQQACEFCvQORaUfzc2P2lqVcDOYNARAG8PiJ64BkEIAABCEAAAhCAgOULGKQGocLEnWXny5dP79EmOSDo7u4u91GCg8qxonvkThZ5hGQVBQc5qwFi8vnyKB6QIAABQws8ESOV5s1kT53bNIpw6Lt3btKOLWs1y3Zv30i3gq5pnsd1Rvt47969lee8eSMwrodR/fZK7Sglo5GfK8vxaN4CN28HUfaCmanf0F4RLsR/7XJq0Lx2hGW6nuzcs4P4GIZOAYf2Ua3GVQ19WIMdL/LrIfJzg50IB4IABCAAAQhAAAIQgIBKBAwaIFTJNZkiGwGmOCnOCQFrEvhz6zpyTOlE+3ZtpadPHmku/fLF8zR5zFDN8+mTR9GF82c1z+M6o328pEmT0fKN+ymD1mhQcT2eGrePXDtKyWN0y5X1eDRfgbWbVtPxU8c0FxCmmYt5ZurMyfSveI1ZU4rudRDdcmuywbVCAAIQgAAEIAABCFiuAAKEllu2uDIIWJTA2uULacCwcZQ2XQbiWoKc7ty6QWOH96XbN69Tjx++pWkTRhIH+MaN6E9HDu6lkJCPMnhYtWxealy9NG3buEru9+HDe2paqxytWbGQ6lQqQrx+zfIFUY4XGhpCU8eJvlOfP6VPnz7RrKljqVJxdypfyJXGjexP79+/k8f7qW8nWr5oFn3fpKpcN1rU1uLt1Zq4NpSLsxMVK5w3QhZRSyoCh0U9ad60JQ0e2U+8JkJ0Xtca8drgGn1eNcvRr79NotBPoTR5xgS6dOUi/SxeV1v/3CxrHN69d0fuP2ainzhefzn/8eNHatSyHt2+c4sCr1+l5u2akkeZPHL7U2dPym0uXPqXOvf+geYsnBWl5uDLVy+pY7e2NGv+DJ15S+yFeH0ktjjOBwEIQAACEIAABCCgBgEECNVQCsgDBCAQo8C1q5dkrcBa9ZtSk+ZtacOapXL7tOkz0retOsigYedeQ6hhs5aUNXtO+rZ1RypQqCj9b4KfbH48YPg4avtjT+rTuRUdP3JADnB0/twpmidqRw0dPYXKVfSmn/r5klMq5wjH4yDfqeOH6f27d7Ru5SK5vW/PgTR9/irasXktzf5feB+r1wL/o1FDelKzlh3It+cgWrZwptwvxosy0UquBcWBwQ0rJ9PZv1bIXIS9NrCNMAAANlZJREFUPEV+QzrJedSSMlHBGPm0PTr1onfiPl60bH6UM3Fz3/4/9aYW4vUzzm8irV6/kmbOnU5N6jWjbG7Z6btvWlOFsp708NEDOi1eN9wv8ArRRHmlmDjgeP7i33Ql8DKlS5ueWv/QnJIlS0ZLZi+nSp7e1Ma3JT15+pjevH1DO3ZvI/91y6mdeM0q6a1oxt++S2sZkPyhja+y2GSPeH2YjB4nhgAEIAABCEAAAhAwsQAChCYuAJweAhCIXWDrhlVUpUY9SiMCENXrNKIzJ47QXdEvWvLkKShP/kKUwjElFSxcnHLkyifmHSlX3gLk7JKG5v42kXoOGEm16jWlRt9+T41EoGPXtg2aE46eOIs8vavLICEv5H4OtY+n2VDMrBKBFQ4ytmrflUqX86Ie/YfTev8lmk34PA2btaJ2IhBTuFgpuqXSfgsre5WUgUFvz5KavPMMD1DCgUIkyxRIkcKRRg/7hcZOHk33gu9GuMil4j7mGobtWnUkz/KVqG/3AbRRNOnPmSMXOYr9cufMQ2lSp6Gq4rXCAcIgUXM3mWh+nzZNOrrw37908vQJqlm1Fh0/fYyCHwTTrClzqHSJMtS/xyB5nsPHDmnOt+j3ZSIQ2Uo+56Bhp54dZJBx9rT55ODgoNnOVDN4fZhKHueFAAQgAAEIQAACEDC1gL2pM4DzQwACEIhJgGvx+f8xVzbn5abAIaI5I6c/t6yjjl37Rbvr44f35boB3dsST0qq0+AbZZYyu7rJee7bkNPHD+HHlk8i/bkuakh16f21r0O3bDnofnB4c0ve1NUtm2YPFxFM+fjxg+a5mmYiBwYj5w0jGUcWsZznNarUoiqVq9Fo0WS4siePqxWergcF0p6AXbRqXXiNUl7qKILukZNXhco0beYUUQO1uNjfm2xtbOmMCBgePXmEGtVtQtz8OE+uvBH2LSCC9Y8fP6bMGV3lcnfxulHSLTHAEE8caPwUGqosNukjXh8m5cfJIQABCEAAAhCAAARMKIAAoQnxcWoIQCB2AW7iyzX7Fvrv0IyQvkU0gVwnaj3FFCDk5sKcZv+xkcp7VZHz9+/dJltbOznPf+zsvs5rFkYzU6hICXqgFRC8ce0KefnU0GxtZ4e3Uw0GZlQrMHLwaKpcuwK9FbX3lOTsnJq6dOxOvbr2lYtevHhBj8RrLnIqW6q87JNw9/6dxMFCfv3wKMfcRHnCqClytON79+/J/jd5HTdFvnTlEg0VtW0/ffoc+XAyMLhzw16q/20tmvb7rzRM1MJFggAEIAABCEAAAhCAAARMI4AmxqZxx1khAAE9BTaLfs5q1msimwKXE7WeeGrZvgsFisETroiBD2xtbentm9eaGkj2IlD34tlTSi6aRhYrWZZ4f651yE2S2zarSccO74/xzJGPp2xcrXZDWr/qDzkgCg9+snWDvwgQ1lRW4xECZiHANfi4CfGBvwI0+fUs70U7926XfQxy4HD4mCE0d/Hvcr2dvR09f/Fczqd2SU1FCxWjbTu3UImiJWUzYq55yLUGM2XMRCWLhTdb9xc1EXmQkwNfXmtFRY1DXSmDGHAovZi46fO8xbNl8FHXdlgGAQhAAAKJK7Bq1So6dOhr9xCJe3acDQIQgAAETCWAAKGp5HFeCEAgVoF3YgADHmm4bqPmEbb1EEGKTJndaOe29cTznGpXLiIfPUXQbsTArnJwkp8nzaYzJ49SqXzp5GjFhYuXoqYt2sntdP2xsbGJcjzejpfXafitbDbMzZwLZk1BPBJy/Sbf6ToMlkFA1QKdRIA9c8bMmjx2atdFBPhcqVKt8lTCqzA9EM3zh/QdJtdXruhDQ0cNlEFBXuBTqapsKsxBQQ42cvNg7puQk719EhrcZ6jcvkj5AtRWDArkJ2osctCeX0PRJW76zDUSh40eHN0mWA4BCEAAAokoMGPGDNq2bVsinhGnggAEIAABNQigTZwaSgF5gAAEdArwICRX7kftm4yDDQfPBmn2OXzuluyjkBf0GzqGfhBNJVM6OcsmkPtPBtJN0ccaD2TCQUVO9kmSRDmu9nmU40U+/8bdp+iOGKAhiRhMIbNrVk3Qw3/zQXlc5c+ClduVWat+TJMmjVVfvxouPntWd7p5IThCVpInS07H9p3RLEvllIpWLFgt+xD8KGrb5nDPqbm3B/YeQhxQdPrST2efbv2JJyWdOXRemZWPbb5rT43EoEDBoqlxtqzZic/FiQctuXjiqpznP96i2T9PSlo2z1+ZxaMKBFKnTq2CXCALEICAqQQOHz5sqlPjvBCAAAQgYEIBBAhNiL9kxCYTnh2n1iXQdnRDXYuxTOUCdvb2pAw0wlnlEYyVxOty5s6vPNXrMfLxlJ24X7XsOXIrT/EYg8C79x8obdq0MWyhjlV2dqhIzyXBQXe3LFl1FoqLs4vO5dEt5IAjT0j6C8RUw1L/oxh2y9Qu4f24GvaoOBoEIAABCEAAAhCAgFoFECA0ccnU7fB1JEkTZ8XqT79tYcx901k9EAAgEAeBJ0F74rC1aTcNUckIuqZVwNlNJRD28pSpTo3zQgACEIAABCAAAQhAQCOAqhMaCsxAAAIQgIA1CiQRtUyRIAABCEAAAhCAAAQgAAEIWLMAAoTWXPq4dghAAAIQgAAEIAABCEAAAhCAAAQgAAGrF0CA0OpvAQBAAAIQgAAEIAABCEAAAhCAAAQgAAEIWLMAAoTWXPq4dghAAAIQgAAEIAABCEAAAhCAAAQgAAGrF0CA0OpvAQBAAAIQgAAEIAABCEAAAhCAAAQgAAEIWLMAAoTWXPq4dghAAAIQgAAEIAABCEAAAhCAAAQgAAGrF0CA0OpvAQBAAAIQgAAEIAABCEAAAhCAAAQgAAEIWLMAAoTWXPq4dggkkkDKFEkT6Uw4DQQgYG0Cn1M4Wtsl43ohAAEIQAACEIAABCBgcAF7gx8RB4QABCCgJfDizWc6eOGi1hLM6ivgmNyBCmbC7zj6elnydqNu36aRbepZ8iUm6NpGBQfTyAQdATtDAAIQgAAEIAABCEDAugUQILTu8sfVQ8DoAj9USybOwRNSfARevA2Lz27Yx5IE7O2o8nwR/vIsaUlXZdhrGTeXfOr60v5tcwx7XBwNAhCAAAQgAAEIQAACViKAqilWUtC4TAhAwDwFnFPYmGfGkWvDCdjZkTeCgzF6jhzSSa4POHw6xu2wEgIQgAAEIAABCEAAAhDQLYAAoW4XLIUABCAAAQiYVICDXaNEzTgk/QS49iACqfpZYSsIQAACEIAABCAAAQhEFkCAMLIInkMAAhCAAARUIIDgoAoKAVmAAAQgAAEIQAACEICAlQggQGglBW1pl/np0yfiCQkCEICAJQpwcJBrwylNZy3xGo11Tah5aSxZHBcCEIAABCAAAQhAwJIFECA009L969ghyl4wc4SpY7e2dPTEX/G6onfv38ljBd26QR8/fqTV61cSL9NeHq8DR9pJV76V63jw8H6kraN/OmLsUJoxZ1r0G2ANBCAAATMW4MAggoPxK0AOrHKQ0BD9EXp7YWCY+JUC9oIABNQgkDNnzhsBAQFqyAryAAEIQAACZiCAAKEZFJKuLIaFhY9seurA33Tm0Hk6vPM4pUmTlrr160yhn0J17RLjsqQOSWn1kg2UMUMmevvuLQ0Y3pdevnxB2stjPICeK5V8c34jT+nSptfzKNgMAhCAgHoEZEDqEAbHUE+JkAyuJrSJtiECjGoyQV4gAAHrE3j9+vWrxL7qUaNGkZeX16rEPi/OBwEIQAACCRdAgDDhhiY9Qto06YinrG7ZqMP3P9CTp4/p6rUrsvntjNnTqFyVElTCqzD9PGEkvX//XuZ1554d1LxdU/Iok4f6DOlB/NkhNDSUJk8fT89fPCffXh3ldm19W9GDRw80y3nh7v07qVqDynLfH3u0p+AHwXLb5auX0pQZE6n34O7yfG07txJ5eSLX6frD+Y082YmROvk4Yyb6yXxx3nl++66t5FO3opz2HdijOdyVwMv0TZtGMi89B3ajFyKgiQQBCEDAFAJc08wQASVD1XwzhYGazslBWx60JCHpgAj68nGQIAABCJirgIuLyxAfHx9KrFqEfB4/Pz8KDAy8Z65myDcEIAABaxZAgNDMS19pBnz33h1avuoPGSzMmysfrd7gT78vnEldf+xBv0+dR9t2bqHf5v2Pnj57Sp16daA237Wjuf9bQJf+u0gr162gT58/0YnTx0UQ8R1169RTqvTp1p8cUzhqlnPg8Yfu7ahSxcq0fP4qWVOxez9f4lqB3Dx4+uyplCN7ThozfBydv/APLVu1JFrdTds3kPZ07OQRuS0fZ96SOZQ1Szbq1bWfnB/28xDq020AlSpRlkb+MkxzTL4mrwqVaezw8XT46EGaOO0XzTrMQAACEDA3Aa7x5lPHF0Epcys45BcCEICASgWuXLmy3cPDYy4HCblmn7ESBwZ54vPkyJFjRnBwcF9jnQvHhQAEIAAB4wnYG+/QOHJiCHiUzq05TYG8HjRh9GTimngr1yyTNQrbfNderu8tgm3TZk2hls1ay+ePnzwib68qtHDWH5qahcqBihQsKmeLFSlOSZIkURbThi3rqHjRkjRi0Gi5bNiAkVSlnhcF378nn5cpWZZ6dQn/PPDvxfN07cY1zb6RZ+Yu+j3CotIi+FeudAW5rFTx0tS3+wA5P+l/42Uws0GdRjL4yH0jhoaGyHWcl56d+8j5V6IW5PipY2nsiAnyOf5AAAIQSEwB7i9QDiySgFprfiJA6CeOg2RYAZ+6vrLJcVxrA3J5hL08ZdjM4GgQgAAEElng4sWLvk5OTk8PHjyY28bGppkxTp87d+4bojnzm8qVK48+cODAGmOcA8eEAAQgAAHjCyBAaHxjo57hwI4jJP7Zk72dPWVxddOcK/BGIHX37aV5zs15uTmwa+YsxIG9EWN/klOVytVEwE+/XxRv3g6ikiIop6QsmcPPpzQlzp7VXVlF4oMIvf/wTvM88sy2NbsiL9I8d8+WQzPvnCoVceCTkxKs/PTps3zuWd5LPvIfj/wF6c2b17JpNQdIkSAAAf0EMAiDfk6xbcXBJ34n5SbCcQ1EKcdGMEqRMOyjLBseFToOwVsO9iJYa9hywNEgAAHTCbx69WrIvn37jJYB0aRYHvv+ff0HHDRaZnBgCEAAAhCIt4CtGN3qGlcJt4bE18nXa0nXms0tO3FgTjs4yNdX2KMI3f/SPyA/vx50nSpX9KZnz59R9So16erZm+S/aK3sf3DqzCm8Sawpf54CdDf4rmY7HvGYU748+eWjrYECc3b2keLWIgCqKz0TzaWVdOPmdeIajAgOKiKGeeQv1twPF5JlChiizzzLlInfVXEtQm4ijKQuAWU0aH3vdxkcFAFCZT91XQ1yAwEIQAACEIAABCAAAeMI2L558+atcQ6tzqO+ffs2fKQOdWbPYLmqWbUWrd24mm7duUkhISG0WfT5V9mzCnFfhXWa1aD7D4OpfJmKcnr1+mWE89rahndNGXnQD59KVengkQN08swJuf2mbRuomncNcnBwiLC/Pk8uXblIkSdlEBV99udtNmxdTxyk5GvyX7ucOH9IhhWobKCBFwybKxzNUAIYhMFQkuHH4YA61zqzSVVKNjfW9+gckEIyrgAPWBJbzU4OIHJzZH7cvz1hA5wY92pwdAhAAAIQgAAEIAABCBhewL5o0aK/DB48eP6xY8ccDX94dR1xx44dzxwdHferK1fxyw03K44p1a/dkFav9yevmuXkZkULFaNG9RrLQUy8PX3kch79mJvwTh47TXMoPm4qp1TE/QBWb+hNB/88Ktfx8oIFClFV0SS52fcNydExJSVLmkz2YajZOdKMrU3UMXCUfNdqHDWY9+eGvZGOEP408qUqx8idIzdVrh3ebyE3Q27W8Fud+2MhBCAAgcQS4FpnPHHQjwOFSjNVDrbrClAhOJhYJRP1PNo1CrkcAkRtaS4v1ByMaoUlEIAABCAAAQhAAAKWL2C/a9cuf3GZK7n5rbe3t0Vf8cSJE1OLC+xhCRdZsZwX3bwQHO2lpE+Xgbat3UW3794ihyQOlDmTq+yrkHeY9etcWevuY8hHOfCHchDt461btpm4BqFzKucI55kx6XfZh6GoeUrZsmWXfR/y/sqgIsqxunTsrsxGeIwt30p/g8pO+7f9pcxS/rwFNHlRBiP58OEDPXr8UDaxVgKHmh0wk2ABDmgktF+1BGcCBzCaAAZhMBptlCATB6B8Ymiuz2WBlLgCSv+b/D4XHtglnUHcxM0VzgYBCEAAAhCAAAQgAAHTCMjO3ooUKTJ/0KBBzY8fP+5kmmwY/6y9e/e+7eHhsV2M5GX8k6nkDNwfn/aAH9rZitxnofY6ZZ6Dg7pSxgyZdC02ybKkSZOSW5asJjm3tZxUqQ0Vlw7+rcXGnK+TA1ZK7TZzvg415127JtrIaDLKtdh01SyMZnMsNoAANyNWgoIGOBwOAQEIQAACEIAABCAAAYsQkG1A//nnnx9viySaGj+3iKuKdBFDhw59I67xhAgOdo60Ck8hAIFYBJTgBZpCxgJlRqtlcFAECLUDWGaUfYvKqvL6sqiLUvnF8H2v3bxY5dlF9iAAAQhAAAIQgAAEIJAoAppO4oKDgwsuW7YsuE+fPvcS5cyJcBJuNl26dOkXon/FP/fv398sEU6JU0DAIgW4g39OXPMGgULzLWIOimAQBtOXH7+GEKAyXTlwUFZ5TzNdLnBmCEAAAhCAAAQgAAEIqEtAEyDkbN29e9dj69atG7kvN1Hr7hUH2Hgyp6TkuUKFCu98fHxIjFrsj+CgOZUg8qpWAa51w1+sua80DnAoQQ4EOtRaYiSDUFw+SmDQp05400p9RnRV71WZf87Q36B6yhDvX+opC+QEAhCAAAQgAAEIQMC0ArIPQu0sBAYGdhPPuy1dunTa4sWLqydPnjzp9evXc2lvo+b5nDlzXhNBwfflypWbIPK51Jr6HFRzuSBvliHAQUKelFqEB8SgCzL4FMPgC5Zx5eZ5FRiEQX3lxq8d7vsRTYvVUTbyvQzloY7CQC4gAAEIQAACEIAABEwqECVAqOTmzp07vZV5c3oUwUyZ3Y0bN5pTtpFXCJiVAAcJlRTd4AvKejxCAAJfBbRfO1+XYs5UAlweXLM27OUpU2UB54UABCAAAQhAAAIQgIAqBCI0MVZFjpAJCEAAAhCAAAQgkAgCstsEESREU+NEwMYpIAABCEAAAhCAAARULRBtDUJV5xqZgwAEIAABCJiRgBKAQtNi9RUaanWqr0yQIwhAAAIQgAAEIACBxBdAgDDxzXFGCEAAAhCwIgFlQB+MnGtFhY5LhQAEIAABCEAAAhCAgJkJoImxmRUYsgsBCEAAAuYlwKMWo5aa+stMDrhU11f9GUUOIQABCEAAAhCAAAQgYAQBBAiNgIpDQgACEIAABBQBHgADTYsVDfU+KmWkjNKu3pwiZxCAAAQgAAEIQAACEDC8AAKEhjfFESEAAQhAAAIQMEMBbgZe2aukGeYcWYYABCAAAQhAAAIQgEDCBBAgTJgf9oYABCAAAQjoFEBNNJ0sql+o1CRUfUaRQQhAAAIQgAAEIAABCBhQAAFCA2LiUBCAAAQgAAEWQHDQ/O8DZeRp878SXAEEIAABCEAAAhCAAARiF0CAMHYjbAEBCEAAAhDQW0AJLGFgEr3JVLkhB3kR6FVl0SBTEIAABCAAAQhAAAJGELA3wjFxSAhAAAIQgIDVCnATVTRTNf/i5wCvTx1f2SchytP8yxNXAAEIQAACEIAABCAQswAChDH7GHVtipTJ6OrZIKOeAwfXTyC5KAskCEAAAhCAgCLAQcH92+cg2KuA4BECEIAABCAAAQhAwKIFECA0UfG+fv6W8pZ2N9HZcdqoAmGUu3i2qIuxBAIQgICeAtwclUfARW0zPcHMYDOUpRkUErIIAQhAAAIQgAAEIGAQAQQIDcIY94OkdElBRX3yxX1H7AEBCEAAAqoT4H4H/USAMGzIKdXlDRlKuIDSryQChgm3xBEgAAEIQAACEIAABNQpgEFK1FkuyBUEIAABCJiRwIFDIkAo+qxDslwB7o8QCQIQgAAEIAABCEAAApYqgBqEllqyuC4IQAACEEg0AYxYnGjUJjkR1xzkALBPXV/av22OSfKAk0IAAhCAAAQgAAEIQMCYAggQGlMXx4YABCAAAQhAwCIEOAhcWTQlR4IABCAAAQhAAAIQgIAlCqCJsSWWKq4JAhCAAAQSRcAmVSlS+qdLlBPiJCYVQB+EJuXHySEAAQhAAAIQgAAEjCiAAKERcXFoCEAAAhCwXAEetZibnSJoZLllHN2VISgcnQyWQwACEIAABCCgRgEXF5dLgYGBasya3nni/KdOnfo/vXdIhA2TOSa99OT+80Q4k/FOwflP7phUuiJAaDxnHBkCEIAABCxUQBm1GH0PWmgBx3JZHBzmCQkCEIAABCAAAQiYg4CDg8PB7du3fzCHvEaXxytXrrxLnjz54ejWm2K5XRK7g1dOXzdr1yf3nr1zSJpEuiJAaIq7COeEAAQgAAGzFuBag2EvT5n1NSDz8RfggUo4SIyahPE3NNSeKZI4XXn06q6hDmcRx2GPFEmdrpjiYlAeUdVNWR5Rc2PZS3D/RS1fU95/KA91lcfjx4/9b9y4kdScaxHu3r07uZ+f349RZU235O2Ld/5PH7xIas61CK+eC0re6qcG0hUBQtPdSzgzBCAAAQhAAAJmKsBBQjQvN33hhYaFvDN9LtSVg8ev7lDyJClPmCJXKI+o6qYsj6i5sewluP+ilq8p7z+Uh7rKY/bs2QFZs2ZdtGXLlldRc6b+JevXr7/l6uo6X2057TL5uwDntE6LLp0INEvXC8ev3nJOk1LjigCh2u4w5AcCEIAABFQrgKalqi0aZMxKBWxsbQb8e+ewWX4oN1aRhYR+fPjy3VOTVKtEeUQtVVOWR9TcWPYS3H9Ry9eU9x/KQ13lwbkZPnx4B1tb282bNm0yyf+IqCKxL+Eaj9OmTXtz9+7dI2qrPajkvtXQ+h3sbG02XzwRaDauXOPxry2n37x89PqIUnuQrwcBQqVU8QgBCEAAAhCIRcAP/c7FImR9qxE0Nm2ZD6r5v90fQz48QTPj8HK4dO84XX1wNsOQOjMGm6JkUB4R1U1dHhFzY/nPcP9FLGNT338oD3WVh5KboUOHtr527dquPn360NatW1+qtckx52vGjBmhM2fOpJCQkJWDBw/+TrkGNT62GFSv9dPg57u2LdxP/526/lKtTY45X0e3nQk9tv0sffr0eWWLQXUiuNqrERd5ggAEIAABCKhNQA5MIkYtxsAkaisZ0+ansldJ8qnjS/yIJsemKQvnlGlGilqEv/kUaO5kmhyo56wfQz/eSe6Qcr0pc4Ty+KqvhvL4mhvrmMP997Wc1XD/oTzUVR5KbrgmoZjvkCFDhtmnT5+u9Pz58wLKOrU88mjForbjHjGtEzUHA9SSr5jywTUJxfoOS37eOPvutfuV3r/5oDpXHq3YRrja2Nis+/6nBlFcbWK6QKwznECnTp3Cpk6dargD4kiJIsC/rMydO9cUr5MwDICQKEWMk0AAAhBIsIAyojGCx7FT2qQqxRsZ/P/qpJ19L2ZLmz9LIbcKqWLPhWVuceHO0bc3n1y6NaDmryb/QoLyIFJTeVjmHR/9VeH+U9f9h/JQV3lE/8rBGgigiTHuAQhAAAIQgAAEIJAgAQ4MIjiYIMIE7yyCYh63n155cPHusY8JPpgZHoCDUbeeXr6rhuAg86E81FUeZnhLJyjLuP/Udf+hPNRVHgl6cWFnixdAH4QWX8S4QAhAAAIQSIgA1w7j5sVIEICAugX615icN+jxxWt/3z54k/vesobEfS/uu7DqJdcc5OtX0zWjPNRVHmq6NxIjL7j/1HX/oTzUVR6J8RrEOcxTAAFC8yw35BoCEIAABBJBQAkOom+5RMC2kFP41PW1kCsxz8vgmirBz25svXj3OP1z+9A9DhRa2gAmfD0yMHhx1ZszN/YGJXNI0Vlct8mbFeu6Y1AeulSwLLEEcP8llrR+50F56OeErSBgSgGD9wFjyotR87m5D0I15w95i17AVH0QRp8jrIEABCAAAQiYtUCifP6cuKP3pORJnTJ8CHlX/u3Hl3nMWkwr8ymSOl359Cn0vb2tw0/9ak7aqrVK1bMoD1UXj8VnDvefuooY5aGu8kBuIAABCEAAAhCAAAQgAAHjCOwXh/U2zqFxVAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwqgC6hTAqLw4OAQhAAAIQgAAEIAABCKhJAIOUqKk0kBcIQAACEFCDgJ/IxCg1ZAR5MHsBP3EFPCFBAAIQgAAEIAABCEAAAhCAAAQgAAEImImAt8gn9x+HBAFDCXBtVG9DHQzHgQAEIAABCEAAAhCAAAQgAAEIQAACEIAABMxLwFtk18+8sozcQgACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQsCIBP3Gt3lZ0vbhU0wjgHjONO84KAQhAAAIQgAAEIAABCEAAAhCAAARiFcCoxbESYYMECniL/dEfYQIRsTsEIAABCEAAAhCAgHEE7IxzWBwVAhCAAAQgYDYC3iKnN8UUICYkCBhLIEgc2EZMbcW0RExIEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgBUK+FnhNeOSIQABCEAAAhCAAAQgAAEIQAACEIDA/9u79+Cq6jsB4D/CQ2KQh0mLFNHIw60v1D5cZ2q7wd0WilS3jIvOlmqtLatiqW3BlrHU2+psRpi6MzpUamdra1dnnVXb7lYFp0raate1D9S1K5WHQXxUCqgISSCJ2XNSyBBJQm5yz73n3vs5M8fce87v9f18zx/M13PuIUCAAAECBAgQIECAAAECaRXwiHFaM2NdBAgQIJC0wNpogvjR4sakJzI+AQIECBAgQIAAAQIE0ixQkebFWRsBAgQIEEhIIBON+4tob4h2G4FCCNRFk8ZFahsBAgQIECBAgACBggsoEBY8BRZAgAABAgUSyBRoXtMSiAUa9jNk9v/1hwABAgQIECBAgEDBBDxiXDB6ExMgQIBAAQUaCji3qQkcEIgfca+N9oZotxEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAUgJ10cAdSQ1uXAKDFKgbZH/dCRAgQIAAAQIECBAgQIAAAQIEDiMQFwczh2njNIFCCcTXZ12hJjcvAQIECBAgQIAAAQIECBAgQKDUBeqiADOlHqT4ilqgLlq9O1yLOoUWT4AAAQIECBAgQIAAAQIECBAgQGBwAnWD6643AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIUmBolu01J0CAAAECxSSQ2b/YxmJatLWWvUBdJFAb7Y3RbiNAgAABAgQIECBAgAABAgQIEBigQCbq5zfdBoinW0EFMtHsawu6ApMTIECAAAECBAiUlUBFWUUrWAIECBAoN4FvllvA4i0Jgcz+KA78LYmgBEGAAAECBAgQIECAAAECBAgQIECAQHYCddk115oAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJlLhD/7mBdmRsIv7QEXM+llU/RECBAgAABAgQIECBAgAABAgkKZKKx491GoJQE4heWZEopILEQIECAAAECBAikS8BLStKVD6shQIAAgcELZAY/hBEIpErAy3ZSlQ6LIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAovkImWEP9Gm40AAQIECBAgQIAAAQIECBAgQIAAgTIU8NbiMky6kAkQIECAAAECBAgQyJ3AsNwNZSQCBAgQIJB3gbpoxvgFDg3RXrBt+fLl/7Bt27ZvjBgxomr79u0nJLGQadOm3bt169aNt9xyy9Ikxu9tzDszP5nd1t62omLY0MqmXc2JxDZu/Jh7mnc1v/LZGy/8cm/rGOzxpUuXzm5tbV0R5agyqRxNmTLlnmjsV1asWJFYHIN10J8AAQIECBAgQIBATwJDejroGAECBAgQINA/gajwdMuOHTu+sHDhws4OU6dO7V/HLFutWbMmrF69OowfP/72G2644Z+y7D6g5nfe+NPv7n59z4KzZ5/Z2b/6mLEDGudwnTasawzPr3shVB1VeeulmU8uOlz7bM8vW7bsu6+99tqCfOWourr61vr6+pzHkW3c2hMgQIAAAQIECBDor4ACYX+ltCNAgAABAu8QWLJkyc1vvvnml+LCU1KFwYOn3LhxY1i5cmWIClDnRQWoBw8+l+vP3/3qv9e3t739tbg4mFRh8OA17/jTG+GJB9eFo8ePnnfxtXP+4+Bzg/m8aNGi+paWlq/lO0fR9TDv2muvzVkcgzHQlwABAgQIECBAgMDhBCoO18B5AgQIECCQQoFMtKa6Qq+rpqbmPbNmzcpLcTCONS5CxoWuqOBVn3TsR40bdeyJZ56Ql+JgHEtchIyLkXt27f1GLmOL7rg8thA5ih85z2UcxiJAgAABAgQIECCQpIACYZK6xiZAgACBJAQy+wdtSGLwbMbctGnTRTNnzsymS07aVlZWHpWTgfoY5I0/75o/7czaPlokc2rY8IqqXI68ZcuW+YXIUfx7lLmMw1gECBAgQIAAAQIEkhRQIExS19gECBAgkJRAJqmB0z5ufBdhUi/ZKHTs8V2EexJ6EUo+YyvlHOXT0VwECBAgQIAAAQL5E1AgzJ+1mQgQIEAgNwKZ3AxjFAIECBAgQIAAAQIECBCIBRQIXQcECBAgQIAAAQIECBAgQIAAAQIEylhAgbCMky90AgQIECBAgAABAgQIECBAgAABAgqErgECBAgQIECAAAECBAgQIECAAAECZSygQFjGyRc6AQIECBAgQIAAAQIECBAgQIAAAQVC1wABAgQIECBAgAABAgQIECBAgACBMhZQICzj5AudAAECBAgQIECAAAECBAgQIECAgAKha4AAAQIECBAgQIAAAQIECBAgQIBAGQsoEJZx8oVOgAABAgQIECBAgAABAgQIECBAQIHQNUCAAAECBAgQIECAAAECBAgQIECgjAUUCMs4+UInQIAAAQIECBAgQIAAAQIECBAgoEDoGiBAgAABAgQIECBAgAABAgQIECBQxgIKhGWcfKETIECAAAECBAgQIECAAAECBAgQGIaAAAECBAgQSFZgz5494eMf/3ifk8Tnly5d2mcbJ5MTkKPkbI1MgAABAgQIECCQfgEFwvTnyAoJECBAoEQEvv71r4dRo0b1GE1NTU2Px9N+sK29LTT86tE+lzn+XceE006Z3mebtJwsxRylxdY6CBAgQIAAAQIE0iugQJje3FgZAQIECJSYwFlnnRXGjh1bUlG1NDeHyxde2mdMF5w3N9yyfGWfbdJyshRzlBZb6yBAgAABAgQIEEivgAJhenNjZQQIECBAIPUCo0YdFbb84dWudf7ngz8JP/7ZfeGO7/yo89gP7/5++N1Tv+s67wMBAgQIECBAgAABAukT8JKS9OXEiggQIECAAAECBAgQIECAAAECBAjkTUCBMG/UJiJAgACBchUYOnRomDFjRhg+fHjJE7S1tYWWlpauONva2kNFxZCu72n9UE45SmsOrIsAAQIECBAgQKBwAh4xLpy9mQkQIECgTATiwmBdXV148sknD4n4tNNOC9u2bQsdHR3hlFNOOeR8MR2IC4O/+u9fhF//z2NhT9OeMGL4iOjx4t+EySdMSX0Y5ZKj1CfCAgkQIECAAAECBAoioEBYEHaTEiBAgEA5Cezbty/ccccdPYa8ePHizsJhe3t7URYIm1uaw9VfuSLseH1HeHHrlrBj5/Zw+qlnhA/WnRFGR79P+Oprr4Z7f/TTHmNP08FSzlGanK2FAAECBAgQIEAgnQIKhOnMi1URIECAQAkJVFZWhjvvvLPXiKZPn97rubSfaI8eKd69Z3f42Lkzw6iqo8L7z/hAqD3+hPDj/7ovvPTy1vA359SFD77vrLSHEUo5R6nHt0ACBAgQIECAAIGCCygQFjwFFkCAAAECpS6wd+/ecNttt/UY5pw5c8LUqVN7PFcMB+O3GN/zg/vCxs0bwjPPPh3WP/9ciH/Pb/5FlxTD8rvWWMo56grSBwIECBAgQIAAAQK9CCgQ9gLjMAECBAgQyJXAkCFDwsiRI7uGix9nXbduXdi5c2eYO3du1/Fi/bDqX1eG+ptv7Lb8z12yICz76je7HUvzl1LPUZrtrY0AAQIECBAgQKDwAgqEhc+BFRAgQIBAiQuMGDEiXHHFFd2ibG1tDZdffnl46623uh0vti+vbftTZ3Hwh6vuioqgleH7//a98KWFi8OsT/5tmPXR84ri8eLYvJRzVGzXlPUSIECAAAECBAjkX6Ai/1OakQABAgQIFIVAXbTKTFIrjd+aO3r06LBhw4akpuhr3LroZKavBv09tyV6MUn10TWh7sPnhoqKv/yz4qQTTw5/V/ex8PzGP/Z3mIG2q4s6Zgba+XD98pijumgtmcOtx3kCBAgQIECAAAECSQkMS2pg4xIgQIAAgSIXaIjWH796+Ppoj5+VzUT7gLZ3viG3o6MjvPTSS+GZZ5455M7CAU2QfaeGqEtOYqs9rrbzzcW/e+o3XavY/MKm8POGh8PnP9P9rsmuBrn70BANlZM4CpyjOI610X59tA/qWov62wgQIECAAAECBAhkLeAOwqzJdCBAgACBMhK4bH+sceGmI9oz+79n9ScuCO7atatrjx8rnjRpUlixYkU49dRTsxorh41zEtu73zU+XLf4G2Hup84PLXtbwpqfPxRmzDknzD3/wvDXHzg7h8vtdaicxJGCHMWFwTeifVDXWq9KThAgQIAAAQIECBDoQ8AdhH3gOEWAAAECZS/QEAk0RntttMdbXLyJ97iYk4n2fm1HHHFEWLJkSdiyZUtYv359iItRJ554Ypg8eXK/+ifUqCEatzHaa6M93gYUW9xxwWVXho+eOzNUHVkVbvuX74UTaieH+DHjPG0N0TyN0V4b7fE2oDhSkKPM/rXHMcTbgOL4S1f/JUCAAAECBAgQIJCdgAJhdl5aEyBAgEDpCWSikOJiTDZbZ/Hm1Vdf7Xefu+++O6xatapb+3nz5oWrr76627EsvnRk0TabpgcKU/3q097eHv5v/R862+7evTtMmnhcaGttC//7h2e6+o8ZMyYcd+zxXd/78SEXsXXGUQI5OpCPGZFbQz/sNCFAgAABAgQIECCQtYACYdZkOhAgQIBAiQlkonjivbetp2LVN6PGmQkTJvR07pBxtm/f3lkcXL58efSm35Hh3nvvDZdddlnn/pGPfCRMnz79kD79ODCkH20O16Sn9XfGFnXs6dwh4zU17Qlz5s085PjBBy44b264ZfnKgw8d7nO2sfW01mLMUU9xNERYcSzxXxsBAgQIECBAgACBRAQUCBNhNSgBAgQIlIhAJooj/l24sfvjOVA82/+1f39eeeWVMG7cuHD22Wd3vpgk7jVlypTwoQ99KDQ2Ng60QNi/yXtvlYlODTq2A8Ov/dljobq65sDXbn/jtwEnuGWisQcdRwpyFMdx8NYQfVEYPFjEZwIECBAgQIAAgcQEvKQkMVoDEyBAgEAJCFwfxRAXB+NCzZBoz0R71tvEiRPD66+/Hp599tmuvi+++GJ4/PHHw3HHHdd1LM8fchLbgTWPGTM2jBk9psf9yMojDzRL4m9O4khBjuI44q0h2mfs3+PPNgIECBAgQIAAAQKJCygQJk5sAgIECBAoUoFMtO5BFQYPxF1dXR2uuuqqzn3v3r3hl7/8ZZg/f36YOXNmOP300w80y+ffTDRZTmLL56J7mCtncRQ4RwfHERcHG6LdRoAAAQIECBAgQCBvAh4xzhu1iQgQIECgyAQyuVzvxRdfHM4555xQWVkZvvWtb4VJkyZ1PmacyzmyGCunsWUxb66b5jSOAuYop3HkGtl4BAgQIECAAAECpS/gDsLSz7EICRAgQCAFAps3bw4PPPBAeO6550L8YpL4ZSUdHR0pWNngljByZGX45+uXh6ojqwY3UAp6l2qOUkBrCQQIECBAgAABAikXcAdhyhNkeQQIECBQ/AKtra2djxeffPLJ4a677go33XRT52PG69evD7feemsYNWpU0QYZv4DkU/M+HdraWsPGzRvCps0bQ1NzU7d4jp04KXzwfWd1O5a2L6Wco7RZWw8BAgQIECBAgED6BBQI05cTKyJAgACBEhPYtGlT9Ibf6nDzzTeH1atXh0cffTRcd9114corrwxPP/1059uMiznk3/z+yXDhpy/oDKGq6tBi5yfnzE19gbDUc1TM15e1EyBAgAABAgQIJC+gQJi8sRkIECBAoMwFamtrw44dO0JTU1OYNm1auP/++ztFJk+e3Pl242LmaWtvC5de8anwuUsWhM9/5spwzPhjijKcUs5RUSbEogkQIECAAAECBPIq4DcI88ptMgIECBAoR4H49wZnzJgRrrnmmvD444+H+NHiVatWhUceeSScdNJJRU0SP1K8Z8/usHTxsqItDsYJKOUcFfUFZvEECBAgQIAAAQJ5EVAgzAuzSQgQIECgnAW2bdvW+YKSmpqazuJg/Dbjl19+OSxbtizEdxEW89bW1lbMy+9aeynnqCtIHwgQIECAAAECBAj0IuAR415gHCZAgAABArkSiF9CUl9fX/S/NdiTx4lT/6rz8A/u+n747PzPhYqK4vx/j6Wco57y5hgBAgQIECBAgACBgwUUCA/W8JkAAQIECCQgMGzYsPDUU0917u8cftasWWHKlCnvPFw03+O3GH/n5tvDVV9eEG646fpw+qlnhIqhQ7utv+6c6PHqq77S7VjavpRyjtJmbT0ECBAgQIAAAQLpE1AgTF9OrIgAAQIESkygo6MjHPwobktLS1i7dm2oqqoKs2fPLvpoz5v5ifDEo78Pf3z+ubBh84bQ3NzULaYDdxl2O5iyL6Weo5RxWw4BAgQIECBAgEDKBBQIU5YQyyFAgACB0hM44ogjwhe/+MVugS1YsCBccMEFYe/evd2OF+uXCeMnhHiv+/C5RRlCOeSoKBNj0QQIECBAgAABAnkRKM4fCsoLjUkIECBAgEByAuPGjQsLFy4MTU3d77ZLbkYjZysgR9mKaU+AAAECBAgQIFCsAu4gLNbMWTcBAgQIFL3ARRddVPQxlHoAclTqGRYfAQIECBAgQIBALOAOQtcBAQIECBAgQIAAAQIECBAgQIAAgTIWUCAs4+QLnQABAgQIECBAgAABAgQIECBAgIACoWuAAAECBAgQIECAAAECBAgQIECAQBkLKBCWcfKFToAAAQIECBAgQIAAAQIECBAgQECB0DVAgAABAgQIECBAgAABAgQIECBAoIwFFAjLOPlCJ0CAAAECBAgQIECAAAECBAgQIKBA6BogQIAAAQIECBAgQIAAAQIECBAgUMYCCoRlnHyhEyBAgAABAgQIECBAgAABAgQIEFAgdA0QIECAAAECBAgQIECAAAECBAgQKGMBBcIyTr7QCRAgQIAAAQIECBAgQIAAAQIECCgQugYIECBAgAABAgQIECBAgAABAgQIlLGAAmEZJ1/oBAgQIECAAAECBAgQIECAAAECBBQIXQMECBAgQIAAAQIECBAgQIAAAQIEylhAgbCMky90AgQIEBicQE1NzQsbN24c3CAp7X3kUZWbd/zpjZSurv/Lqq6u3lyqOeq/gpYECBAgQIAAAQIE+hZQIOzbx1kCBAgQINCrwL59+5p7PZnQiYceeujtKVOm3JPQ8F3Dtre93RRCR1vXgTx82LCuMVRPGHtvLqdqbW2N4gh5jWPNmjVh2rRpOY0jlybGIkCAAAECBAgQIPBOAQXCd4r4ToAAAQIE+ikwfPjwJStXrgz5ukMtnufhhx+u2LRp0/p+LnHAzfa17PvCEw8+NSxfdxHG8zy/7oXwxp935fSWzN27d38hytGwfOZo9erVYevWrTmNY8CJ1JEAAQIECBAgQIBAPwSG9qONJgQIECBAgEAPAo899tiG2bNnv2ft2rXvHzJkSJg6dWoPrQZ/KC5u7dy5sy0qdFVMnDjxjm9/+9tfGvyofY/wwK/va/zHT1x6/KZnXjyzoyO8XTNh3JC+ewzsbFwYbN7dEp54cF0YNa7q9stvuPCagY3Uc6/f/va3jeeff/7xjzzySBRHx9vRnX2JxLE/RyEuGI8fP/72FStW5DSOnqNzlAABAgQIECBAgEBuBBL5R3JulmYUAgQIECBQHAKLFi2qj4pCx27ZsmV+EiuOf0cvflQ2vhtu1apVDUnM0duYKxfflTn63WPf+/prb17UW5vBHD9ydOULbfva3xoxfNjSSzJ//+Bgxuqr74IFCzLRo9nvje6+TCSO+Pcom5ub3xo5cuTS+vr6xOLoK0bnCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA1gL/D8zqW1OvD+VxAAAAAElFTkSuQmCC" + } + }, "cell_type": "markdown", "id": "3ffafb56", "metadata": {}, "source": [ "## 3. Feed Forward Network (FFN)\n", "\n", - "![](https://ucarecdn.com/6af52549-95fa-45be-9764-9c399f387aa6/)\n", + "![image.png](attachment:image.png)\n", + "\n", "\n", "После блока внимания каждый токен независимо проходит через двухслойную нейронную сеть — **Feed Forward Network**. \n", "Она добавляет модели способность нелинейно преобразовывать информацию.\n", @@ -482,7 +498,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "84f57562", "metadata": {}, "outputs": [], @@ -503,14 +519,19 @@ ] }, { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAChCAYAAAB6QAliAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFB6ADAAQAAAABAAAAoQAAAADKy9SHAABAAElEQVR4Ae3dB1gURxsH8JciVgTsIio2VOy9gYK990SjxpqIvfeKLfbop9HYS+y9a+xYYjcmMWpUVKzYu6KA8s07uOcBBxzluL27/zzPcnuzbfY3e8fdezOzVoSUJAKdO3cOS5ID4SCJLrBgwQKrRN9pLDsMK1UK10ssRlgMAQhAAAKmKWB1/nyS/F+dvndg/ZBPH8fZ2iZL9f7jGzfT1Ipa6lTJ7K8lt0t16lXQ0zsj6v06Muoa6sxBfaizXiylVLj+1FXTqA911QdKAwEWSJIPZ6Am4uDgjBkzQGFiAn379iWjBQcPzzcxLRQXAhCAAAQgEIuAtw8ZOji49MT0ji/ePhqZzCZ5uiI5PNJyiTLaZ4ulYKaz+Mmb+/T0zT0K+RT84PrDC86pkzvM6V9zag+1ngHqQ601YxnlwvWnrnpGfairPlAaCGgL2Go/wTwEIAABCEAAAhCAAARMVWDK3r6X3wa9zFYyV7W05hQQ1K4PPq8v5+aczMaOg4RNpu7tV3VgrZ/dtddTwzzqQw21YLllwPWnrrpHfairPlAaCEQWQHAwsgieQwACEIAABCAAAQiYnMC0vf2v50hfwLmQS4VUJlf4eBa4oHM53tLZ2somzbR9A64NqDlNNd2nUR/qqo94XmImuxmuP3Vdf6gPddWHyb6wUXCDClgbdO/YOQQgAAEIQAACEIAABAwswC1SLC0wqE1a2KVi2pzpC+QULQgva+cbax71oa76MNZ1YKzj4vpT1/WH+lBXfRjrdYnjql8ALQfVX0coIQQgAAEIQAACEIBANAI/7x/0axaHXPaW1GJQF4V7tvJ2D18GOC8+Maltp4pDftO1TlLkoT7CldVSH0lR52o6Bq4/dV1/qA911Yf2a7VLly5eWbJkaR0UFOTx4sWLAtrL1DDv6Oh41c7Ozm/8+PFd1FAefcvw64A1XmmdUrcO/hjiEfTuo+pcU6ROcdUmmbVfu5GNo7giOKhvLWM9CEAAAhCAAAQgAAHVCbz98LKLXXo71ZXLGAUqksPT4c9bB8eIYxstOIj6+FrzaqiPr6WxjDlcf1/rWQ3XH+pDXfWhlMbX13fhgwcPfkiRIkVokyZNbPPmzassUs2jv79/fjHlEzd29cmUKdN8UwgSrpqwfeGr529/sElmE1qsfD7b9FkcVeOpFOTZw5f5nwW+zDe3/2qf1I6p5msHCdGtWFHCIwQgAAEIQAACEICASQlM3N1zUt7MJe59GXvPpMpuiMLyjUrskiVP/4vfqCaG2H9s+0R9RBQydn1ELI35P8P1F7GOjX39oT7UVR9KaSZNmrTGxsbmm+7du1PPnj1VGRjksnLAsnbt2tYzZswgd3f3+pMnT16nnIMaH9dO3r2GrK2/KV+3BFWoV1KVgUF244ClWwlX63odvSmTS/r666bu0bgiOKjGKwtlggAEIAABCEAAAhCIVSBNCodMdrZ2LrGuaEErFHbxsBd3bB5tjFNGfURVN2Z9RC2Neefg+otav8a8/lAf6qoPLg23GMyZM6d3v379HNTYWjCqWHhOo0aNsoWEhNQZMWLEvOjWMWY+txh0zJTW26NhKQc1thaMzsa9bN5soaGhdZaP2ypdERyMTgr5EIAABCAAAQhAAAKqFvgYGlQpgz1ig5Erydbazih3bEZ9RK6J8OfGqg/dpTHfXFx/uuvWWNcf6kNd9cGl4a7EDRs2zKy7ZOrObdCggf3jx499eKxEtZWUuxIXLJvHJF0Lls1r/+7lex8eKxFjDqrtykJ5IAABCEAAAhCAAAT0Enj/8Y0bd51D+irAHu+DX+f7mpN0c6iPqNbGrI+opTHvHFx/UevXmNcf6kNd9TF06NDZJUuWDBKlShm1ZOrP4ZaOYgp7/fp1S1FaP7WUeJnvltnZ8mQ2WVdu6Zg+q2PYh6Dglmg5qJarCuWAAAQgAAEIQAACEIAABCAAAQhAAAKJLPD58+fqbm5uJhkYVChq1aplFRwc7KU8V8NjmHBN7+xk0q75SuSy+hTy2QvBQTVcUSgDBCAAAQhAAAIQgAAEIAABCEAAAhAwgMCLFy8KmNI4g7oIuPwvX77Mr2uZsfKC3n0sYErjDOpy4vJ/ePchP4KDunSQBwEIQAACEIAABCAAAQhAAAIQgAAEIAABCxBAcNACKhmnCAEIQAACEIAABCAAAQhAAAIQgAAEIAABXQIIDupSQR4EIAABCEAAAhCAAAQgAAEIQAACEIAABCxAAMFBC6hknCIEIAABCEAAAhCAAAQgAAEIQAACEIAABHQJ2OrKRJ7hBV68+Ujnrz01/IFwBL0FuE6+8cqt9/pYEQIQgAAEIAABCEAAAhCAAAQgAAEImLoAgoNGqkEn++R0+sozKpg7s5FKgMNqC6RNnYLOXb2P4KA2CuYhAAEIQAACEIAABCAAAQhAAAIQMHsBBAeNWMWv332gckVyGLEEOLS2wP5TV7WfYh4CEIAABCAAAQhAAAIQgAAEIAABCJi9AMYcNPsqxglCAAIQgAAEIAABCEAAAhCAAAQgAAEIQEC3AIKDul2QCwEIQAACEIAABCAAAQhAAAIQgAAEIAABsxdAcNDsqxgnCAEIQAACEIAABCAAAQhAAAIQgAAEIAAB3QIIDup2QS4EIAABCEAAAhCAAAQgAAEIQAACEIAABMxeAMFBs69inCAEIAABCEAAAhCAAAQgAAEIQAACEIAABHQLIDio2wW5EIAABCAAAQhAAAIQgAAEIAABCEAAAhAwewEEB82+inGCEIAABCAAAQhAAAIQgAAEIAABCEAAAhDQLYDgoG4X5EIAAhCAAAQgAAEIQAACEIAABCAAAQhAwOwFEBw0+yrGCUIAAhCAAAQgAAEIQAACEIAABCAAAQhAQLcAgoO6XZALAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGzF0Bw0OyrGCcIAQhAAAIQgAAEIAABCEAAAhCAAAQgAAHdAggO6nZBLgQgAAEIQAACEIAABCAAAQhAAAIQgAAEzF4AwUGzr2KcIAQgAAEIQAACEIAABCAAAQhAAAIQgAAEdAsgOKjbBbkqEggNCVFRaVAUCEAAAhCAAAQgAAEIQAACEIAABCBgPgIIDppPXVK1cm7klsVW5/TX+dM6z3T6hOE0ZewQncsSmtmyYWWdZRk7rLfeu34YeI/cs6ekjx8/6L0NVoQABCAAAQhAAAIQgAAEIAABCEAAAhDQT8BWv9WwlikIrNt5jD5/+iSL6lE8B02YPp+qVKsjnzulz6DzFMLCwuhz2GedyxIj06fXEGrRplOEXaWxTxvhOZ5AAAIQgAAEIAABCEAAAhCAAAQgAAEIGEcALQeN426Qo2bImJkyZXGWEx/AKV0GzfOjh/ZS3cpFqUReJ+rWvilxi7zI6erli/RtvUp03G+/XLR53XJqULWEbJE4a+oY+hQaKlvwNatdnjasXiL3x60VN6xaHHlXmufp0qUnlxy5IkyOTuk1+1m+cJY8Brcy5OP27dKaKhR2lo8fPgRp9jN/1mSZX7OSO+3btUWTjxkIQAACEIAABCAAAQhAAAIQgAAEIACB+AsgOBh/O5PZ0v/aZerargl5eNWgZev3UqgI8vXxaUXcalBJt25cJQ7QcUtDXu/ood9pSO9O9G3rTjRu6q+0cfVS+vV/E+nz58908a9ztHDONBo2djqVr+RFw/v7RNvt9x+x7s4tayNML1880+xn3YpF1K3vcEpmm4w6tqxDqdPY07hp82jX1nV0aO8OpXh05OAemV+ydAXq0ekbun83QLMMMxCAAAQgAAEIQAACEIAABCAAAQhAAALxE0C34vi5mdRW2zaupuKlyslgHhd8iO8Uqu1RmAIf3JXnEXDjGrVq5E1NW7Sj7v1GyLzVy+bRN6060vedesjnvQaNpgW/TKVO3frL52OnzJWBwRKlw1sRcrAud94Ccpn2n1PHDxPvXzvldy8qWhK6yqyRE2ZSBc+q9PHDBzp94ggN9Z0qA4RVa9angJvXqWTZinK9/sMmUMXK1Yjz9+7aTCeOHZLl094v5iEAAQhAAAIQgAAEIAABCEAAAhCAAATiJoDgYNy8THLtuwE3qIRocackZ5eccvb5s6fy8dC+nfJRuzXeTRHQ43zuPqwkbtWnpKzOLnJWyQv+GKwsivDYucdA6tClb4Q8fhIU9F7mObvkkI/JU6SgvG7uMjDIGcmTp6BPX8ZP5OcchORkbW0tA53c+hAJAhCAAAQgAAEIQAACEIAABCAAAQhAIGEC0XYrLlu2bJMsWbL86+rq6i8Owf1PTWLKnTu3f+bMmf9xcXGZmTAa89narWBhenD/juaE7ty6IefdChSSj9VrN6Sdh/+SwUAlUOjo6ESdewyiv2+9ltOxC7dpxeaDmn3Y2Nho5hMyo+9+Xr16oTnMf5f+oaIlymqeYwYCEIAABCAAAQhAAAIQiFbAS3yvu5gnTx7+EmCQ73TlypVbYW9vPzHaEmABBCAAAQioWiBKcNDd3X2eKHGYCNqsWrNmTaGlS5fm4bHpTGVavHhxnrVr1xZp2bJlKz6PokWLLlR1DSRB4apUrytv9nH+9B/yaDs2r5Hdc+3sksvnOXLlJQ4gdvDpQ76De8hWfRUrV6d9e7bSk0eB9P7dWxoztCctnjs9zqV9GHif+EYn2pN2C0V9d7hi0RwKDv5Im9Yuo2dPH8vWg/pui/UgAAEIQAACEIAABCBgiQLFixfnbkCHxfe6AosWLcptqO90derUafPmzZsh4rvkfEt0xjlDAAIQMHWBCN2KnZ2dL4lffHIcPnyYvLy8UpriyYlyy2KLx4xTp06lvn371k2fPv16cU7fmuL5JEaZ3QsXJy8RIPyuURXZbTdFipQ0f8U2za6trcJjxN36Daf14s7Di8TNRjqKrsB/nj1B1cvnl+sVKV6aZi9er9km8oyVlVXkLPl86fyZxJN2qlW/KU2ZvUw7S+e89j7/uXCGCudILdcbPXGW7HascyNkQgACEIAABCAAAQhAAAIs4PvXX391+PLdLsL3vsTmGT16NFWpUoW8vb07u7m5bbt27druxD4G9gcBCEAAAoYT0PyT4MBg69atM0+ZMiWN4Q6X9HueMWOG85AhQ2qIlpCbDhw40CzpS2CcI157GKo5MAfZZsxbJW/28e7dG8qRMw/Z2IZX/YARP2nWc3Bwogv+X7vvLt+wjx7cuy1b7LnmdiMlWKe9b9448nNlh2u3H1VmdT5qb1enQXPiSUn/W7hWmdXsn2+gwmVMldqsLlHNeWIGAhCAAAQgAAEIQAACiSXg6elZQATrPotGE1F6iyXWMbT3w400OBApvlNOFfkIDmrjYB4CEICAygVkhIi7Eoum4OlFYDC9yssbr+JNmjTJUYyDUSNv3rxz/P39u8drJ2awUaYsznE6Cw4GZsvuGqdtDLlyVufshtw99g0BCEAAAhCAAAQgAAGzETh27FiLo0dj/rHeECebgrspIUEAAhCAgEkJyODg5cuXfS5dumRSBY9rYSdPnmwvfjnrJraz2OBgXM2wPgQgAAEIQAACEIAABCAAAX0FuPXgzZs3c+m7PtaDAAQgAAF1CFhnypRp6qBBg772JVVHuRK9FPyPqmLFisE1a9Zsmeg7xw4hAAEIQAACEIAABCAAAQhAAAIQgAAEIGCCAtYiiR7FdZxMsOxxLvKECRPsLl68ODLOG2IDCEAAAhCAAAQgAAEIQAACEIAABCAAAQiYoYC1GBMihRmeV7SnlDJlyuTRLsQCCEAAAhCAAAQgAAEIQAACEIAABCAAAQhYkIB1QEBAHu5yawnpyxgYeSzhXHGOEICAeQi8eh9mHieCs4i3wOfP8d4UG0IAAhCAAAQgAAEIQAACEIhVQN6QJNa1sAIEIACBeAosOvCB/g4IiefWlr1Z6pR21KCUNVUqkMyyISz87D9/CqMF4/0pLAyB4uguBbvkNtRpCH77i84H+RCAAAQgAAEIQAACEIhJAMHBmHSwDAIQSLCAQ2prqufpTnmyp0/wvixtB4fPXBWn/NrSThvnq0PAyoqobgdvHUuQFRocSoc3nAAEBCAAAQhAAAIQgAAEIBBPAet4bofNIAABCOgt8Pb9R73XxYoQgAAE4iIQIoKDSBCAAAQgAAEIQAACEIBA/AUQHIy/HbaEAAQgAAEIQAACEIAABCAAAQhAAAIQgIBJCyA4aNLVh8JDAAIQgAAEIAABCEAAAhCAAAQgAAEIQCD+AggOxt8OW0IAAhCAAAQgAAEIQAACEIAABCAAAQhAwKQFEBw06epD4SEAAQhAAAIQgAAEIAABCEAAAhCAAAQgEH8BBAfjb4ctIQABCEAAAhCAAAQgAAEIQAACEIAABCBg0gIIDpp09aHwEIAABCAAAQhAAAIQgAAEIAABCEAAAhCIvwCCg/G3w5YQgAAEIGAGAiGhoWZwFjgFCEAAAhCAAAQgAAEIQAAC8ROwjd9m2CqxBGatPpZYu8J+IAABIwp8/vyZwsRkY4u3Va6G9K7V6fnzl0asEf0P/e7RcUqGetMfLB5rhn4KJVsbvDZ00VmlLa0r2+h5To4O9PzOQaOXAwWAAAQgAAEIQAACEDC8AD6pG9442iNM9ikb7TIsgAAEogr07/Y97di8hn7buJ/Ke3hrVvjz7Elq2cCT6jRoTv9buFaTr+/Mm9evqJRbejp79Qk5ODjpu1mE9datWEjHj+ynOUs2Rsi31CcpUySnZ8+eUbp06VRNYGdnp+ryJUXhmrVpSOcunI1yqOXzVpGXZ9Uo+XHNuHr9P6rZ2JtuXwqM66YWs35YWJiqzvXly5fkXjC/qsqEwkAAAhCAAAQgAAEIGE4AwUHD2WLPEIBAIgtw6zxOe3dujhAcPLBnm8z/HBa+XD6Jzx+VfUGPzymoaZvnz5+rPjioJi9jluXH9l2o3XcdIhQhQ4aMEZ7jieUIvHjxwnJOFmcKAQhAAAIQgAAEIEAYcxAXAQQgYFICxUuVo60bV9KnL+PEccBwy/rfiPOV9PLFMxo5sCtVKOxMLRtWpg2rFiuLaP/urfR902pUIq8TDerZnt6+ea1ZxjO8v4m+A4lbKYaGhNCTxw+pT+fv5L46tKhNly/+Jdfn9WZPG0s1K7kT5//955kI+8ETCJiSgJOjE2V3yRFhSpkipTyFDVvXUe0m1cizVnn6+ZepxF2EOT15+pi69/ehkp5FqM2PLenSlX9lPv/ZvW8n1fumJjVsUYe27NikyccMBCAAAQhAAAIQgAAEIKA+AQQH1VcnKBEEIBCDQJnylSmFCFqcPX1crvXv3+fpw4cg0ZLwa/fH2dPG0fWrl+iXxRvou7Y+NFwEMB4/fEAvnj+l7h2bU6sOXWX33yuX/o4QOOSufZPHDKI92zbQgBE/yfEDu7RtTK9evaDpc1dQ4aKlqHGN0vT61Uvas30DLZk3Q+y/M1UQXS83r1seQ6mxCALqFuDA3rbdWzTTqbMnZIH9jh2iAcP7UMvmrUTQfAqtF9365yyYRfxa6dS9Hb0SXfJnTZlDRdyLUt3mNei1CLbff3CPuvb9kcqULEftWnWk9Vvi3tVf3VooHQQgAAEIQAACEIAABMxLAN2Kzas+cTYQMHsBKysratisFe3btYXKV/KSLQEbN29DyZIl05x7jTqNqO0PPShrtuyUMlVqmX/T/yrlyJVHzj978oiqVK1N81dso48isKikGZNG0fZNq2nbgXOU1Tk7/fvPn3Txr3N0+Kw/ZcvuKoOAG9cspZMiYHLk4B76ts0P1MGnj9wcLQcVRTyaooDf8cN0RQTUlVSxnAeVL1ORVqxdTi3E6619605yUb8eA+nXxb9Q1crV6e9//6I/9p0hF/E6q1Tek9aJwOEfp47Rm7dvqKCbO/kOHSe3efvuDY2aMFzZNR4hAAEIQAACEIAABCAAAZUJIDiosgpBcSAAgdgFatRtTD+2bkDDxkyjbRtX0aT/LabzZ/7QbGhlbU09On1DVy9fpCxZXTT5ztly0JDRU2jssN5y8qpel4aNna5Zvmb5fDnPLQM53b19Uz56l8krH5U/z589of1inMOJMxcpWVSydAX689xJzXPMQMCUBLr/2JO6/9grSpFvBvjTAb99tE4EzZWUOnUaunPvtnxaqWbEG2s9e/5M3NzkDJUtXV5ZnYoWLq6ZxwwEIAABCEAAAhCAAAQgoD4BdCtWX52gRBCAQCwCJUqFBx6WLphJb968ojIVPDVbfPr0iQaK7o7c/ZjvPnzkz1uUOo29XM5jEVar3ZD+vfOOftt0QI43yOMGKmmzaAXVoOl3NHJAF+L92Ns7yEUnLt6nv2+9ltPmvaepVv2mlN+9CD0KvK9sSrduXtfMYwYC5iLAd+/u2qkH/Xf+ppxOH7pA65ZuEq+NtPIUzx/9R7Nsx/rfqU6NeuSaIxcFim78Srp9J0CZxSMEIAABCEAAAhCAAAQgoEIBBAdVWCkoEgQgELOAja0tcVfiqeOGUp0GzUWXYjvNBqGhIZqAIQf3+GYl70Q3R76ByP17d8SYgWVkUI+7JJf38KY3Ysw0JWXP4UoDR06kSxcv0PqVi6hQ0RJy0bYNK8lWHPP0H37UtFY5evb0CdWq15S2rl9Bt2/5i/ENL9PB37cru8EjBMxGwEME3vce3E2PRVf89+/f0cjxQ2nBsl+pcMEi8hw3b99Itja2dPL0H9Tg29r0TIzrWbVKdfpDjAl6UrTmff7iOW3ctt5sPHAiEIAABCxBYN26dXTs2DFLOFWcIwQgAAEIfBFAt2JcChCAgMkIWIvuwjzmIKea9ZrQKhGk4EclWVtZU/LkKahLr8HUW9w9lVsMlixTgSqL8QX5RiQX/F9QZe9aVK2cG6XPkInsHRxp0syvdzIWO5fdkPsPn0BTxg2RLQRnzl9NfXxa0eSxg+Vh+g8bT/nyu5OjuLvrhlVLqEaFAjKfuyhz+ZAgYE4Cndt3pfMXzlHl2hXkaRUTXYTnie706ZzS0S/T5lEP0cp2wpfWt4P6DCW3vPllIL5yxSrUskNzuU1N8fpDggAEIAAB0xGYPXs2eXh4kKfn154ZplN6lBQCEIAABOIjgOBgfNSwDQQgYBQBvmOwkvgOwdcehipPqeeAUZp5n15DqKW4i3BISAhlyJhZ3ln12dPHcvn/Fq6lQWK8tJDgYHLNnU+zjfa+fHoOJp441W30LXmLrpJ3RdfIzFmdibtZcsqYOSvtOPQn3bl9gzJldtZ0XZYL8QcCJiSwaWX0rV7Tiu7Dqxevl3cgDhavmVyuuTUB+gbixj/VvGrQXdEiN4t4PTikDe+Gz0FyDiDeu39XBOuTU0YRiEeCAAQgAAHTETh+/LjpFBYlhQAEIACBRBFAcDBRGLETCEBAbQIOjuk0ReLWhhwkVFI2l5zKrF6PfMdjtwKFoqzL3Ztz5ckfJR8ZEDAnAX798B2JdaVUKVNR/nzhrWcjL49um8jr4TkEIAABCEAAAhCAAAQgYFwB9IEzrj+ODgEIQAACEIAABCAAAQhAAAIQgAAEIAABowkgOGg0ehwYAhCAAAQgAAEIQAACEIAABCAAAQhAAALGFUBw0Lj+ODoEIGBhAp9Cv46TqIZTDwlRV3nUYIIyJL1A6Cd1Xod4fST9tWAJR/wU+skSTtNkzhH1YTJVZZYFxfWnrmpFfairPky5NC9evqBXr1/F+RTis02cDxLNBggORgODbAhAIOkEbly/Qm5ZbKllw8pRDtrpu7py2dXLF6Ms086Y97+JNLBHO5m1f/dWuhNwQ87PFndSHdyro/aqOuf5DsbrViyMsOzSxQvy2C+eP42Qn5AnpQtkpP8u/ZOQXSR424uX/KlTj4mUKU8tSpO1snzk55yfFClz5syUJ08e+vDhg+Zw//33n7zRxevXrzV5mEm4ABvnLJRV5/T27ZuEHyCR9lC0QkG6cvVSIu0tYbsx9uuDS4/XSMLqMLatG1ZuRIWyFNZM9SrVpznT5lJoEv1YUqFARbp66WpsxbSY5agPi6lqVZ4orj91VQvqw7j10ahRI9q3b1+UQpw7d454GVLsAsdPHqU2P7ak4pXcqWiFAtSsTUM6eGR/rBtyUJDXrVC9NPFNANdvXkNBH4Ji3S4xV0BwMDE1sS8I6CfgJVbz1W9V9a81ZuIC4ikhKSwsTG7+55kT9CjwvmZXHJQ7djjqPyjNClozvI/Pnz/LnFnTxhAH9jg1+fZ78uk1SM7H9kcpR+T1osuPvJ4xn/sdP69XPazddIBKV2lL+QqUoAsX/qaPHz/Kx3wFS8v8tRtj99b3WDF53Lx5k6ZNm6ZZxRSMNYVN5JnEeA1FV6QwCn9tzf15AR3fezrClDp1mug2M7t8fa/ZxHh9aOPpe1ztbZR5vEakhJf46yvnEvHPp0+fqPfQ3nTs36O084+dVL9pPVq7bC2N6j86EY9ilrvyEmflm9hnhvqIt6iX2NI33lub3oZeosi+iV1sXH/xFvUSW/rGe+toNkR9RAMTe7aXWMU39tViX0PXZ/L8+fPTTz/9FPvG5reGlzglX31Pi4N5rX9oQZ4VKtOVczfo5MHzVKZkOerYrW2srQj/u3aFzl04S38evUjvg97TwJH96HU8Wh7qW1Zd6yE4qEsFeXoLnD17lnbu3Kn3+lhRCviJv9zEjb+1+4rJ5JOvCA526DpGr+BUTCdbvFQ5OrB3u2aVw/t3Eecp6c+zJ6lL28bKU+JgYs8fvtU855mZk0cTtzKcOGoAnTh6kE4eP0x7d26OsM6Kxb/QudPHI+Tp8+Qf8YbdqpEXVSjsTIN6tqeXL55pNps/axLVrVyUaopfiSaOHkD84YbTtf8uUdvmNWT+rKlj6J2BWmt5eZSiZat2klXa0tHWA7eIauczig4ePEhDhg6nS5cu0aJFiyhbtmw0ZMgQmd+ui2+sLQj1OZYGJpqZTp060ciRI+nGjfAWnpFX2759OxUqVIjSpk1LjRs3pnv37slVli5dSqNGjSLe3sfHh+bPn0/9+/entm3bUvbs2eX8xo0biT/E8LRr167Iu1bd89FDOxO/hmKqu4QWOnOmLJTdJUeEie9C7H/zOrVo34zcy+ajhi3qyA8lfKxLV/6lLn1+oPlL5lLtJtXox54daN+h32Uxtu3eQo1b1ZeBZc4Y6juQ9h7YI5fNWTiLqjesQt71KtE48Vrk1wFPvO/1W9bKZbdu36Sr1/+j7zp+I9f7+Zep9O7dW7m9of7oc80m1utD+xz0Oa72+trzeI1IDT/x1yD/L+3TpqF0GdKJO867Utf+XWnyL5No2/ptdO9O+A9UFy9cpLaN2pFn4co0tOdQ8X7/UhaIu5xxK0PO5xYuq5esDs//9JnmzZhPVUtUk8smj54iWkd/lMuu/3edOjbvRNxC8Zepc8T/gXcyn/9Ed5wta7fQ7Cm/0Mi+I8l34BjN+kae8RPHR31YQH0Y+TqL7vC4/vB+IK+N6N438f5smPdnRr9//z6tWbNG+vNn9MWLF9P48eNla8JBgwbRy5fh/yOfP39Oo0ePlvn9+vWj69evy234z/Hjx6lHjx5yGW/75MkTuWz37t1yf5MnT47QcECzoXFn/MTh9f6/9+jxQ1naooWLUaqUqcg5izP16dafenftJz4ThLcC3H94r/w8zJ+9+fN14KNA4u2Gjx0st/XpI77j9O4k59v5tKbAhw/k5+gloocbfybn1oVHTxyhngO7UknPIvJR6Y31r/gOzJ/fOb9Dt+/pzPnTcj8/TR8n1+OGNPy5vFu/zjRv8Ry5TPsPgoPaGpiPs0BAQAD9/fffcd4OG1CHLwajxWOYmHy/PDe5Bw5scFq2aocMcCQkSFi7fjPatWWdxuD3HZuI85T09s0runzxL+Wp+DXlZYTnvKBR81aUPWdu+rZNJyoo3pgD79+lWzeuabbhmT+OHKDbt6J2ofU7sJsW/DJFM21as0yz3dMnj6h5nQpin8Vp1qJ14ovic+omgiqcrolAyrIFs6jfsPE0Yfp82r5pNR3au0Mu69quCSVLloz6DhlLJ44dlHmG+rN0Hl9O4mKKJtA089f1NMZ3FHl4eMj1Ll++TEePHpXz/Ifzx4wZQzN/3aDJi26Gj+WawznaY0W3nZJfv359+vbbb6l3795KluaRy8VdF2rWrEn79++nUDFOY8uWLYl/yXzw4AGNGzdOfkjhPH7+888/U65cuWTQkOe7d+8uz4PPp1evXpr9qnnGV3kdrY45wBvfczgiguQc1FOm6+I1wV0W2ohfN1OkSEHL562iyh5e1NanFT0TLXbfvX9He0Rwfu2mVdS+dUdydHQi3geng34H6MLf5+nfK//IfazesJJcc+Yi/sVz8W8LaVCfoTRpzHTaIoLyB0TLX269+Pe/f4lrZSQ1qNOIMqTLQD/0aE/JbG1pQK8h9MepY/E9rThtl5SvD+2CxXZc7XW15/Ea0Wgkyf/LUhVKyQPe8r9Jz548o5Z1vqMChQvQjEU/06sXr6hX+/D3qk2rN4nXy3IaP3M8/djrR5ow7CcZUNyyZjMtmbNE5P0gt9m7fS8t/F94q/oe7XqSbTJb6jWkJ506dkpzYjEd5/HDJzTv53n06OFjqtu4jmYbFcygPiywPlRw3SlFwPVngdcf3p+Vyz/WR4O9Pt6+fUsXL16UBXj69CktX76cXFxcqG/fvnT16lXaunWr/JzOjQ3evHkjGwDwj/T8QydvGxISQlOnTqVq1aoRBwE5iLh27doI++NgIS9XYdLb1SVbdsrhklMM39Refu7lH9Y/Bn+kfj0GEv9Qz5+/+TNw5UpVaJX4Psljbvfo70MOaR2p1TdtiHv19BGBxO6dw7+/9O0+QObx52j+vN2zSx+ytU1G34tuy6lTpRaft6fSdjGcFgccOfUc2IWcxGf2ZfNWUp5ceWnYmEGyXlo2bSXX27R9g/hsv5r8xGf6pg2bR6G2jZKDDAhAICkE/MRBAsTkKiZOHNXhaYyYfMVkUokDGxyQ4sRBQk4BdwJF8CgruXu1l8/1+eNds554kxtEj8UvJMlTpiQO1g0bO13m6bM9r5MrT35KlTo15XErSE4iCBGXdFO8YXMgSkmvX71QZmmnaPWUJasLjRg/Q46NlyFjJqpVqRA9Eb/02Nja0Jylm6hYybL0MPAeOYsWWv9d/kd03S1Ed0UrqY17Tsiy5HTNS41rlNbsM7FnuJUSB+wC7jyQu+Y6kZOoHw7i7thzhC78NCvGw37//fdUogR39x0a43p8LO0U+Vjay6Kbnz59umztt2XLFipQoIBmtZUrV1L58uVpxowZMo+7HxcsWJDu3r0rn2fKlIn4V0Zra2vy8/OjSpUqyWAgLxwxYgR169ZNBhPz5ctHS5YskR9IOECr5qS0Hgy4HV53y0SQUKm74QN+THDRV61fIT54pNXsp+sPPem+6MLPv1Ye3HFUfvAoI67fJSsW0XERrMua2Vmuu/RXEfjLkYtSiQ8gM+ZMlXk8lkph9yL051/nydrKmtKL15lb3vx0QwTcF85eQsWLlKSHYr8uzi505dplquZdQ243RgTPv2ncgrjl4J17t2nb2t2Uzimd3H9d0brW0CkpXx/a5xLbcbXXjTyP14gU8RN/A8TkKiZOBvl/mTx5crnzjx+CxY9Uuylz1sw0dPwQ+X6fPmMGqi9a/T19/JQ2rd4sWsq3pyrVw8fIff/uPT18EEgbVm4UH9bb0HcdvpP76TagG80VLQwbftOQ7t2+R2v3rBH/B5woh2sOal7jG7lOTMfhFbhl47xVv8r3OrmBOv74iWIEiMlVTJxQH+EOxvrrJw4cICZXMXEySH2E71oVf/1EKQLE5ComTgY5X7wfhOPq8ddPrBMgJlcxcUJ9hDsY66+fOHCAmFzFxMkg9cE7Llq0KLVv355n6dq1a3Tnzh35yGOIr1+/nrJkyUKlSpWSn9fPnz8vvluUkL17KleuLFsZ5sghviuJdZXk5OREU6ZMUdv/O6V4fmImQEyuYuIUrautjS1tWb2DNm3bQFtEI5elKxfJDX5o25mGDxwt80oUK0WjBo+V+SNEXtX6nvRc9EYrmN+dUiRPQbz85avwlpjFi5aQjUx4Zf4cXam8p+y5c+rsCRo5yFd+fq/uVZMCbt+S++vbfSBVrVxNfnYpVKAwLVw2T/6QnztXHhrcdxiN/mmEXG/8CDH2fMbMcl77T5yCgzyAPI+BoyudPHlSfpmLvGzo0KGy6SJXNpJ5CHDwpFmzZvJkeLyy9+/f05kzZ+Rz/jKfO3du8zjRr2cR9nXW4HPyzcZbvMn6ie6hppyUIKFvumJUqKyLXqeSIWMWKu/hTQdFq7tU4pcT7lKcRQQYokvagbzo1lHyuUty9w7h1+2zp4/p9IkjNG38MHmcg6fDWxZ29OlDLcWbt5J43MImNcrIp3cCbsrAX/6sEYNML54/I3sRdJk/azK1bOBJqdPYy/W9qtelsyLI4prHTROkzC8CKnFNHmUrxHWTKOsrgTsOkHFgjW92wCkoKEj+urd3b/ivTQcOHKAiRYqIf9qvZRfXKDvSkeHoYC/+gb3RLFGOlS6doyYvuhn+xZEDf126dKEdO3ZoVuOuxhUqfD3vnDlzymVK94Pq1atH+PCQN29ezbaOjo7yAwtn2NnZyXxuPh9TcDB1Zg/N9mqZUYKEime/lqOoDnnFu3gLZi2h0iXCr2VlJxwwzCeuT+2xBwuKoDr/IszBQc7nwCCnCmUril8jb8oWgPy8XauOtP/QXvlrZHXvmvJDCAcQuVtx09YNNfusWqU6ry5TiaIl5eOZc6cot2tuGRjkjALimAlN74M+6n3NRj6WYmyI10fkY2k/V46rnRd53pivkUDRYo27uhsoJcb/Vfn/MuBiIFHESzteRX7xPPzHoHwF8tLp46fF+LePqHDWiO/ZvM4t/1vUsXsHzTFatAsf2oLzffp8/f/hkiOb3Me5U+fF/wFXGRjkjdzc82u2vRtwN9rj8EoVKleI8F6n2VD/mcRw1vdosj70XTm29VAfsQnFujxR6yPWo+leIcmvP7wf6K6IL7lJXh8xliYOC/F+EAcs3asm+vsBD0mkpNSiUQb3RuHePJy4Z5B24i7HKUWjDw4i8riFHDvImDGjDCAq63EgkX/0j0NKyus5umJFceXYSErRndinYzc5PRHfOdduXE3TZk+m8uKz9O27AVRKBP+UlE00POH0THyfjC1l+/KdmH+80P78zs8/fQ4fzoqDipXrVJS9gLgFo3bq0OYHmjzjJ/EZPys1aRD+nVh7Oc/HKTh44sQJGejjDfmCWLhwIdWtW5efUoYMulvocDcw5SYBckXz/eMrTo0ns082NjayqTCfKLfa4bHA2rRpI89bCTqYGYKVgc5H15vaGHEs38NubmF0eL6BDqv/br3r+cgWZ5FbiUXeA99Qgb/oKolbr7nmzCq3fWIT8cuVsk50j3UaNKfd29bLIFvdRhH/ufA2ISHBmk0D79/RzMc2k8etAE2fu0KuNv2n4VS6nAdVqVZH739EaR0cqUjx0rRyyyG5j1DRPP66GE8wV558NHXcUAoQY7cdFgPPZhNvxL1FU29O2UVgJUC0RvwkAuo2ogsltyqMazp+5iRVKhAxIBnTPnR9meeWndwyje9O/OjRI1q1apXcxYYNG8jf35/4RxxOHITjMUUcHdPS4xvhAUO5IJo/3IVcCQIrq3h5lpLHavPDKCUrxseePXvSggULZJdgZUUOUP7119fu41xGToULF6bffw8f905Zlx9tha124rH04pLePTouxgVJEZdNIqyr3HTi8K6EvWajqztuObh4UrhBhAMn8Ene3PnogWily8FTfl/n/9dXRNfgYQNGirzPEfaeMUMmKujmTguW/koeYpBlbmXI3YSDxeux+ZfX6aLl80SrwFt0Yv9Z4g8wPJ6JdlLqhcc+vCmC7dyVgn9h5VaGCU2pUiansNfnYt1NdMaGeH1oFyam4+papr2tsV4jWbNkogfXdmsXJXHmvX3I6vz5uL1Iw4ffiHx8+f/StUhWXf9LI68b6/PfRTdgTi45s1Na8aNH4eKFafmWZTIvRNzF2F+MG8hBvgKFCojW7eHjJPHCA7sOUFYX0Uq+qLsM9MkNxJ+AG7epkncl4iBhwI0A8X9AvM5EK/NHgQ+VVWI8jmalhM3E1Vnfo+kyl/UhdqBrmb771ayH+tBQ6DOjyzxR60OfQuhYJ8mvP7wf6KiFr1lJXh/i0Lquza8l0nMO7wd6QoWvpss80d8PdAXy0qQJv9Hdtm3bZDCQixMQECCDgNyQ7LfffpPxI+7Zw+two4QEJENdz9EVSS/XrTs30eSZE+nPYxflfvjzM3cFXrX+N7pz9w4VyFeQLv33r+YYAXduyfn8+QrQ+b/OavJ1zdhY2+jK1uRx4HHk+KH0s+glVr92Q7p5+4Yco1BZYfX6lfLHe+419LvonVenRj1lkeYxTuFZDvw4OzvLiffAAUHlOX9h0zV4vOZIYuaff/6RrUGU22MvW7aMihUrRtwikQeu5FZAPJhi2bJl5aCUvD9exgPmK4n7qHP/dR54ngey1HU3HWXdJH4cLY7nJyZfMZl14i94pUuLO5uKiYMJHPlXnvMvB0h6CfiKtcLbC4evzm/a/CbnG/7UtP4qgUEOCnJwiMfY4kBJbEFFXWdZrVYD2arv0L6dxPPaKXOWbMSt/rhFHt/JeM3yrwFJ7fU44PBKjAmonRwcnKiiaGbNU0Yx5oNbwcJynlsq6pM4mHjxr3P0rxhrjV8Dy0ULqe4dm8tulRwYLFystAwMcmvDo2LcB/5RpFS5SjLIuea3+aKV3ntasyxhwaPYyslBWm7JpyQOCnLAhAMfnBrU8aKVK5YRt7zjibvq8g89ynO++ceK35bJ9ZR9RPfIx9IODHK9H949P871zq375s2bR0rrRT4e/+jE/yd44GJOq1evpgYNGpDSzUdmmtmf2OrOEKdbqnj4L5c89ggH6pQxBYsVKaHzcNwKcOfv26msaNGbS4zryV0f/I4dkq0KeQMODBYtVEwGBnlAZB7PhAOPkRPftY1bJa5a9xvxXd1WrF0eeRWDPI/NODFfH9onENtxtdfVNY/XiPy/mOj/Lx+LlpG3RNDu2pXr8qYi44eMp1GTR4lAubV47y5F//71r3i/Fx/gxfv9yoUrqFfH3vL9vnrdarR9/Xa6f/c++V/1p96d+lAa+zRUrU412rpO3NDk9j05lMFu0TXZw9uDSpYrKf4PpKZ1v62jD0EfxF2Rv46rG9NxdF0LKsnzFeVAfaikMkQxDFIf69ato2PHjqnnLL+WxCDni/eDr8BxnEN9xBHMwKsnSn08fPhQ3jCQe/LwxA0H9Elubm5yNf5Mzz86X7hwgTp37kwvXrygwEAx3JSrK3Fvn1evXskbBppQAzK9XUuKhiQ8djffPITHWeRz5M/KHJArmL8geYvvoXwzkbN/hve63LZrC3G3YKW3k+KsBF9fxeFuxS9ehveA8KjgGf5dddUSubvPYZ9li8Wx4jPORN8p8uYow8cO0XRdVo7Jj7baT+I7rwwe36eP6JInBojnweL5UfufCg9UyYPDDxw4UA4yv2fPHurQoQPNmjVLfkHleb6IBgwYQHwHXL5oZs+eLfus//jjj7JlGt/4ggeb50gzR6H5YuMB6zmYqII0RpSBA4RVtMriqzVvtrNKaxCzPUHDnBhfK5z4uvHlGVNN/MWXk9JiLD4BQeUa4sdM4q5OJUWz64+iyyvfWES5sxMfI6/oflhJBChaN/aWQbcKIrB3VdwMhBNvq7yRenjXolGDupGDGM8sfFnU30GUY8oVYvnD63p41aAOXfrKY/Pq6cUvQTPETRy4RWBbMX4b3zV5i/hVKF36jNTk27Y05+fxVKteU+o3dByNHdZbTnxe3O04LseOpWgRFitBWqWlYISF4kmfrt9Q6SptycPTS3NTEsWM1+Vg3GjfsXTuyG+RN43ynMeU5JSQeld26u3tTa1atZJBQM7jcUnq1atHnp6eZG9vL399VLoda9ezsn3kx8i+kZ9HXl8Nz2Oru/iW0Ur+5qB7ax7QeIgYf4QHK54wbay8Y/DUcT/L1ny6zCqV95DdhkuVKC13WMXDi675X6UM4prnxN0V+A5pG0XL3/RO6WWLwlnzZlCtarXlcqUs3H13UO8hNGrCcDlxd2fZtVm8zgyZYjNOzNeH9nnEdlztdaObt/DXSKL/v+TPmwv+t1BObF6sVDEaLO4SqHQRruhVkdp1aUftGreXVcJj/02bN1W2/KvfrD7t2LiTapapJYN+Xfr6UM7cOamOCABuFjclqVUu/Hrnlof1m9aTQxr0HtpL3riEb15SomwJuR2/xmI6Di+3tjbsa0KeXNz/oD7ibmbILRK9Priw/B2Mv7fx/2GVpUQ/X7wfJKiGUR8J4kv0jROlPvhOxDwpiRsB8ef0mBL/z3JwcCBfX185zZ07V67O8Rq+aSB/nucxxvnzPacmTZrInkx85+Pw/3dRv6vJFdXxR29X7u47RYyXP2hUfxozKbwXFXfj5Zv1VRQNTbhhWzXxXbb5943kZ1/+oX3J3PDvXexg92WM9LT2aeVwQDUaedHR30/GqsDbFhM3zeQf8st6h//I36ntj3Jc8MGjBsgxDcuXqUgN6zSWYxbyeIh8B2Muq3biTx2ijGHaeXrNcwG4ghs3bkzDhg2jw4cPEzcX5cSDS3KLlNu3bxNfGBw8PH36NLVo0UIGA3mdhg0byrGvlFaBPGg8twrkCDO3Pjt06BDxh2G+2w23Zrly5Yq8Qw73YT948CDxYJa8X261ljVrVt6lXonLLZKhPm1FhhzzpVC+4oURpgyur1dBsZIqBPgOTKLLY2JfL75fTk55jHKuYaVKmUy34ti6Hm84GUxWKVyoWH7nKOcZ3wy+CYijCPwlS2YX7S5evXwuWnM4yB8dol0pHgueP3tCT588ppxiYNfk4g1dScHiTlR8I5Vs2V3lPzlez8ExnTw+t3J8I3754WDnl/cgZbMYHw+fuUqFsrzWq1uxEqRVWglGt+O1mw9Ru84jaIzvSPq+bQfZcpB/EeQWgxwYXD5/LLVsVj26zWU+H4u70vKxogsGuxSoR35HjstfCGPcWQwLeewS/h/ALcgjdx2OYbM4LeJf6l7eO2zUbsWx1V1oSJjsVlynvVeczk3flV+/eU2B4trNkT0npUyRUt/NdK7HY848Eq9PvlsbX+s8hoqj6JLPX74ip+eide+bt6/lXd3i8rqIvJ+gtx/o+LYz1GlInsiLNM9jM1ZWTIzXh7IvftTnuNytOD6fw3j/hnqN3Lp1iypVLK+GbsW+fJ4i+cq/Ov6M3dE5rFkZw9yV/PmzF+LOxU8pR64cUVou85iEHDTkYLeSuDv+/Tv3KJldMjFebpYI7/c8Ztbb129Ft2WXCPm8bUzHUfYd18dNZ2fRqAZJ//kF9aG7poxVH6I08fqep/ss9M810Pct3y8lUB6jFAjXXxQSmWGs6w/1oa76SKp4BPcE5ZaC3MuUg4JK4s86/LmFb1bCnwvfvXsnP9/HtWeQgb6fK8WM/Oj7JUN5jLyc5vZfHVavo3eEfO4Zc+fubUojesooYwVqr8Cflfn8c+TIKX+U116mPc8tBx3SOmhnxTrPQwbxZ+9UYuxDHgOR75bMwcbY0q4lhxOn5WBsg8crLT64tZ+SuCUh52tHpbUvHu42zEnJ4xNr2rQptWvXTt7imvO5teHEiROVXcblMXIQL6Zt/WJaGMsyJcocy2pYbGECvuZ0vgkdZy0+FtwtOLbEgTlDJG4ZyFPkZGeXXIwtlUuTrb0O3zU5rndO1uxIz5nYgoLKblo2rUqF8v9GM3/dIFroFZM3H+ExBhvUqSJbDBYplFdZNdpHPlZSvLnxsBWWkPStO0NZ8AcGfT406HN8DrbymIJKSp8uvTIb5ZHvVMxTUiR9jRPj9aF9PvoeV3ubuMxbwGvENy4eib1uuvRO4v3eSedu+W7GkRN3SeZAoq7EdyrmSVeK6Ti61jdinq8Rjy3rAvURoQaMWh8RSpI0T4x6vjG9TvF+kDQXgPZRUB/aGnLeN0qOkTJSpEghWwtGPjz/aBD5RiaR11Hhc9/4lIl/bOdxBKNLmfX4LsvbxjUwyNs4i154SuLAa1yCr7bKhgl5jGnweB7wvlGjRrKrMd/ymgOCPHZUunTpaPDgwZpB6LkvOvdvV5KuVgZ844tJkyYRt8DjASx79OghB6jnbsdxTHFpCeYVh31HXpfHZAkQk5+YkuK7tDgMEgQgAIGYBTgAuPiXoWKlofJupPrcfCTmPWIpBMxHAK8P86lLnAkEIAABCEAAAhCAgH4CidK5O7bB43ngSQ4gchPQbt26ydtX8wD43C2Zm5y+ffuWunfvTtOmTYux1Fu3bqX27dvLdZo1ayZvTMLNVg2c/MT+9Zm8xHpHxMSJg4J/iamJmLjTt5+YkCAAAQioSkDp8qg8qqpwKAwEjCygvC6URyMXB4eHAAQgAAEIQAACEICAwQQSJTioPXg8jw/I4weOGDFCU2hlwPuRI0fKG41MmTKF+vfvTy4uLnI8Kr4LMvc/5zEHo0vcDJVvcnLp0iXZ6tDR0VHe/aV169bRbZLU+dwysIqYEBRMankcDwIQiJeA5kYJX24qE6+dYCMImKkAXh9mWrE4LQhAAAIQgAAEIACBKALx7lasPXg2B+7WrFlD06dPjzJ4PHcDVpKTkxO9fv1aeSq7BvNNS3g8Qb719ZfBa6MMzK19LH9/f7p58ybxvngwS5UkX1EOPzGN+fIoHpAgAAEIqFcgcmsofm7o8dHUq4GSQSCiAF4fET3wDAIQgAAEIAABCEDAvAUSpeWgQsQDY+fPn1/vu0pyMNDV1VVuowQGlX1F98gDKvKdkFUUGOSi+onJ+8ujeECCAAQSW+DZ08fklsWWurRtHGHX9+/dpj07Nmry9u/eSncCbmiex3VGe39BQe/lMW/f8o/rblS/vtIqSilo5OdKPh5NW+D23QDKWSgr9R/WO8KJrN24ihq2qBMhT9eTvQf2EO8jsZPfsUNUu0m1xN5tou0v8ush8vNEOxB2BAEIQAACEIAABCAAARUIJGpwUAXnY6wi+BnrwDguBCxF4Pedmyh1Gns6tG8nPX/2RHPaVy9fpGnjh2mez5o2hi5dvKB5HtcZ7f0lT56CVm09TJm07voU1/2pcf3IraKUMkaXryzHo+kKbNy2nk6fO6U5gTDNXMwzM+ZMo3/Fa8ySUnSvg+jyLckG5woBCEAAAhCAAAQgYJ4CCA6aZ73irCBgdgIbVy2hgSMmUvoMmYhbB3K6d+cWTRjZj+7evkk9f/iWZk4eTRzcmzhqAJ04epBCQoJl4LBaOTdqUqMM7dq6Tm738eMHala7PG1YvYTqVi5KvHzDqsVR9hcaGkIzJoqxUl8+p0+fPtHcGROocglXqlDYmSaOHkAfPgTJ/Q3v15lWLZ1L3zetJpeNFa20eH21Jm4F5ehgT8WLuEUoIlpHReAwqyctmrWiIaP7i9dEiM7z2iBeG9ySz7NWefr5l6kU+imUps2eTFeuXaZx4nW18/ftsqXh/Qf35Pbjp/iK/Q2Q88HBwdS4VX26e+8O+d+8Ti3aNyP3svnk+ucunJXrXLryL3Xp8wPNXzI3SovB129eU6fu7Wjuotk6y5bUmXh9JLU4jgcBCEAAAhCAAAQgYGwBBAeNXQM4PgQgEKvAjetXZGvA2g2aUdMW7WjLhhVym/QZM9O3rTvKgGGX3kOpUfNWlD1nbvq2TScqWLgY/W+yr+xyPHDkRGr3Yy/q26U1nT5xRN7M6OJf52ihaBU1bOx0Kl/Ji4b39yH7tA4R9scBvnOnj9OHoCDatGapXN+n1yCatWgd7dm+keb9L3xM1Rv+/9GYob2oeauO5NNrMK1cMkduF+uJGWEFbv3EQcEta6bRhT9WyxKEkPZl7AAAG4dJREFUvT5HvkM7y3m0jjJCpSTBIXt27k1B4jpeunJRlKNxF98Bw/tQS/H6meg7hdZvXkNzFsyipvWbUw6XnPTdN22oYjkPevzkEZ0XrxseB3i16Ja8RkwcbLx4+W+65n+VMqTPSG1+aEEpUqSg5fNWUWUPL2rr04qePX9K796/oz37d9HaTauovXjNKum96LrfoWsbGYz8oa2Pkm20R7w+jEaPA0MAAhCAAAQgAAEIGFEAwUEj4uPQEICAfgI7t6yjqjXrUzoRfKhRtzH9eeYE3RfjoKVMmYryFShMqVKnoUJFSlCuPPnFfGrK41aQHBzT0YJfplCvgaOpdv1m1Pjb76mxCHLs27VFc9CxU+aSh1cNGSDkTB7XUHt/mhXFzDoRVOEAY+sO3ahMeU/qOWAkbV67XLMKH6dR89bUXgRhihQvTXdUOk5hFc9SMijo5VFKU3ae4ZuRcJAQyTwFUqVKTWNH/EQTpo2lB4H3I5zkCnEdc8vC9q07kUeFytSvx0DaKrrx586Vh1KL7fLmzkfpnNJRNfFa4eBggGixm0J0uU+fLgNd+u9fOnv+DNWqVptOnz9FgY8Cae70+VSmZFka0HOwPM7xU8c0x1v660oRhGwtn3PAsHOvjjLAOG/mIrKzs9OsZ6wZvD6MJY/jQgACEIAABCAAAQgYU8DWmAfHsSEAAQjEJsCt99b+tkB24eXuvyGiCyOn33dsok7d+ke7+dPHD+WygT3aEU9KqtvwG2WWsjq7yHkey5BT8Mfwfcsnkf7cFC2juvb5OrahS45c9DAwvIslr+rskkOzhaMIpAQHf9Q8V9NM5KBg5LLhjsWRRcznec2qtalqleo0VnQTruLB99AKTzcD/OmA3z5atym8JSnnphYB98jJs2IVmjlnumh5WkJs70XWVtb0pwgWnjx7ghrXa0rc5ThfHrcI2xYUgfqnT59S1szOMt9VvG6UdEfcTIgnDjJ+Cg1Vso36iNeHUflxcAhAAAIQgAAEIAABIwkgOGgkeBwWAhDQT4C79XKLviVr92juhL5DdHvcJFo7xRQc5C7CnOb9tpUqeFaV8w8f3CVraxs5z39sbL7OazKjmSlctCQ90goG3rpxjTy9a2rWtrHB26kGAzOqFRg9ZCxVqVOR3otWe0pycHCirp16UO9u/WTWq1ev6Il4zUVO5UpXkGMQ7j+8lzhQyK8fvpsxd0uePGa6vKvxg4cP5HibvIy7H1+5doWGiVa2nz59jrw7GRTcu+UgNfi2Ns389WcaIVrfIkEAAhCAAAQgAAEIQAACSS+AbsVJb44jQgACcRDYLsY1q1W/qez+W160duKpVYeu5C9ulHBN3OTA2tqa3r97q2l5ZCuCdK9ePKeUojtk8VLliLfn1obcDbld81p06vjhGI8eeX/KytXrNKLN636TNz/hG53s3LJWBAdrKYvxCAGTEOCWe9xt+MgffpryelTwpL0Hd8sxBTloOHL8UFqw7Fe53MbWhl6+einnnRydqFjh4rRr7w4qWayU7DrMLQ65tWCWzFmoVPHwruprRQtEvqHJkS+vtWKipaGulEncXCijmLi788Jl82TgUdd6yIMABCAAgaQVWLduHR079nVIiKQ9Oo4GAQhAAALGEEBw0BjqOCYEIKCXQJC4WQHfUbhe4xYR1ncXAYosWV1o767NxPOc6lQpKh89RMBu1KBu8kYk46bOoz/PnqTS+TPIuxIXKVGamrVsL9fT9cfKyirK/ng9zq/b6FvZVZi7NhfKnor4jscNmn6nazfIg4CqBTqL4HrWzFk1ZezcvqsI7jlT5doVqKRnEXokuuQP7TdCLq9SyZuGjRkkA4Kc4V25muwezAFBDjRyl2Aei5CTrW0yGtJ3mFy/aIWC1E7cAMhXtFTkgD2/hqJL3N2ZWyKOGDskulWQDwEIQAACSSgwe/Zs2rVrVxIeEYeCAAQgAAFjC6AfnLFrAMeHAASiFeAbjlx7GHUsMg40HL0QoNnu+F935JiEnNF/2Hj6QXSPTGPvILs9Hj7rT7fFmGp80xIOKHKyTZYsyn61j6PsL/Lxt+4/R/fEzRiSiRsnZHXOrgl4rN1+VO5X+bN4zW5l1qIf06VLZ9Hnr4aTz5ndlW5fCoxQlJQpUtKpQ39q8tLap6XVi9fLMQODRSvbXK65Ndf2oD5DiYOJ9l/G5ezbfQDxpKQ/j11UZuVj2+86UGNxA6BA0b04R/acxMfixDcouXzmupznP16iqz9PSlq5cK0yi0cVCDg5OamgFCgCBCBgLIHjx48b69A4LgQgAAEIGEkAwUEjwfNhl4/aZsSj49C6BNqNbaQrG3kqF7CxtSXlpiJcVL5TsZJ4We68BZSnej1G3p+yEY+jljNXXuUpHmMQCPrwkdKnTx/DGupYZGODBvRcExxwd8mWXWelODo46syPLpODjTwh6S8QU8tK/feSuGs6OYaP25q4e8XeIAABCEAAAhCAAATUKIDgoJFrpV7Hr3eMNHJRLP7wu5bEPBadxQMBAAJxEHgWcCAOaxt31RCV3CnXuAo4urEEwl6fM9ahcVwIQAACEIAABCAAAQhIATSZwIUAAQhAAAIWLZBMtC5FggAEIAABCEAAAhCAAAQgYKkCCA5aas3jvCEAAQhAAAIQgAAEIAABCEAAAhCAAAQsXgDBQYu/BAAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYKkCCA5aas3jvCEAAQhAAAIQgAAEIAABCEAAAhCAAAQsXgDBQYu/BAAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYKkCCA5aas3jvCEAAQhAAAIQgAAEIAABCEAAAhCAAAQsXgDBQYu/BAAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYKkCCA5aas3jvCGQhAJpUiVPwqPhUBCAgCUJJLOztaTTxblCAAIQgAAEIAABCEAg0QXwiTrRSbFDCEBAW+DVu8909NJl7SzM6ymQOqUdFcqC33D05DLr1T5/DqNdSw6b9Tkm5ORsbPE6SYgftoUABCAAAQhAAAIQsGwBBActu/5x9hAwuMAP1VOIY/CEFB+BV+/D4rMZtjEjAWsbK+o62s2MzginAgEIQAACEIAABCAAAQioSQA/taupNlAWCEAAApEEHFJZRcrBU0sTsMZ/akurcpwvBCAAAQhAAAIQgAAEklQAXzmSlBsHgwAEIAABCEAAAhCAAAQgAAEIQAACEICAegQQHFRPXaAkEIAABCAAAQhAAAIQgAAEIAABCEAAAhBIUgEEB5OUGwdLLIFPnz4RT0gQgAAEIAABCEAAAhCAAAQgAAEIQAAC8RdAcDD+dkbd8o9TxyhnoawRpk7d29HJM3/Eq1xBH4LkvgLu3KLg4GBav3kNcZ52frx2HGkjXeVWzuPR44eR1o7+6agJw2j2/JnRr4AlEIAABCAAgQQKeHmWSuAesDkEIAAB4wnkzp37lp+fn/EKgCNDAAIQgIDJCOBuxSZTVRELGhYWfgfTc0f+JmsxWv379+9plgiWde/fhc74XSBbm7hVbXK75LR++RbKnCkLvQ96TwNH9qMqHt6UMUMmTX7EEsTvmVLu43tPR9lBhvQZo+QhAwIQgIDaBbw8SpH3sfNqLybKF0cBv+Oo0ziSYXUIQEBlAm/fvn2T1EUaM2YMeXp6rjt27FhSHxrHgwAEIACBBAig5WAC8NSwafp0GYin7C45qOP3P9Cz50/p+o1rssvt7HkzqXzVklTSswiNmzyaPnz4IIu898AeatG+GbmXzUd9h/Yk/twQGhpK02ZNopevXpJP705yvXY+renRk0eafM7cf3gvVW9YRW77Y88OFPgoUK67av0Kmj57CvUZ0kMer12X1qIsz+QyXX+4vJEnGxsb4v2Mn+Iry8Vl5/nd+3aSd71Kcjp05IBmd9f8r9I3bRvLsvQa1J1evX6lWYYZCEAAAkkpwC3MEExKSnHDH+uICPhy4BcJAhCAgKkKODo6DvX29qakaj3Ix/H19SV/f/8HpmqGckMAAhCwVAEEB0285pWuv/cf3KNV636TgUK3PPlp/Za19OuSOdTtx57064yFtGvvDvpl4f/o+Yvn1Ll3R2r7XXta8L/FdOW/y7Rm02r69PkTnTl/WgQQg6h7515SpW/3AZQ6VWpNPgcdf+jRnipXqkKrFq2j0E+h1KO/D3FrQO4SPGveDMqVMzeNHzmRLl76h1auWx6t7rbdW0h7OnX2hFyX97Nw+XzKni0H9e7WX86PGDeU+nYfSKVLlqPRP43Q7JPPybNiFZowchIdP3mUpsz8SbMMMxCAAAQgAAEIQAACELBkgWvXru12d3dfwAFCbtFnqMRBQZ74OLly5ZodGBjYz1DHwn4hAAEIQMAwAnHre2qYMmCvCRBwL5NXs3VBN3eaPHYacQu8NRtWypaEbb/rIJf3EYG2mXOnU6vmbeTzp8+ekJdnVVoy9zdNi0JlR0ULFZOzxYuWoGTJkinZtGXHJipRrBSNGjxW5o0YOJqq1vekwIcP5POypcpR767hnwX+vXyRbty6odk28syCpb9GyCojAn/ly1SUeaVLlKF+PQbK+an/myQDmQ3rNpaBRx4LMTQ0RC7jsvTq0lfOvxGtHyfNmEATRk2Wz/EHAhCAQFIKjB7amcZMXEBeu+Yn5WFxLAMK+Ir6DHt9zoBHwK4hAAEIGF7g8uXLPvb29s+PHj2a18rKqrkhjpg3b95bogvzuypVqow9cuTIBkMcA/uEAAQgAAHDCiA4aFhfg+/9yJ4TJP7RyzEGszm7aI7nf8ufevj01jznLrzcBdg5azbioN6oCcPlVLVKdRHs0++XxNt3A6iUCMgpKVvW8OMp3YdzZndVFpH4EEIfPgZpnkee2bVhX+QszXPXHLk08w5p0xIHPTkpgcpPnz7L5x4VPOUj/3EvUIjevXsru1NzcBQJAhDQTwA3XNDPKba1uPspv5Ny12J0RY1NS/3LOdDrKwK+SBCAAATMQeDNmzdDDx06ZLBTEd2I5b4fPtT/5oIGKwx2DAEIQAAC8RKwFnexusHNwC0h8Xny+ZrTueZwyUkclNMODPL5FXEvSg+/jAfIz28G3KQqlbzoxcsXVKNqLbp+4TatXbpRjjc4Y850XiXWVCBfQbofeF+zHt/ZmFP+fAXko3UiBeVsbCPFrEXwU1d6IbpIK+nW7ZvELRcRGFREEueRgxw87haSeQpgjLzErVduPehd1ydxd4q9JbmADAyK4CDXJxIEIAABCEAAAhCAAAQsQcD63bt37y3hRJVzFHf1Db8rh5Jhpo+1qtWmjVvX0517tykkJIS2izH+qnhUJR6bsG7zmvTwcSBVKFtJTm/evo6gwHc/5hT5Bh/elavR0RNH6OyfZ+Tybbu2UHWvmmRnZyefx+XPlWuXKfKk3DBF3/1s2bmZOEDJ57R24yri8iElrkAV3GQhcUFVtjfccCFxK4SD6dzazCptadnFOHH3jr0ZWoCD5d71fGTrz8O70T3c0N7YPwQgAAEIQAACEICAegRsixUr9tOQIUMWnTp1KrV6imWYkuzZs+dF6tSpDxtm70m7V+5KHFNqUKcRrd+8ljxrlZerFStcnBrXbyJvWOLl4S3z+S7H3G132oSZml3xftPapyUe969GIy86+vtJuYzzCxUsTNVEN+Tm3zei1KnTUIrkKeSYhZqNI81YW0W9341S7tpNogbyft9yMNIewp9GPlVlH3lz5aUqdcLHKeSux80bfatze2RCAAIQSCoBbm2mjD/IQUKlayoH2tHdOKlqQb/jaLec5daCfqKVNNcXWgzq54e1IAABCEAAAhCAAATMR8B23759a8XprOEut15eXuZzZjrOZMqUKU4iu6eORSaXVam8J92+FBhtuTNmyES7Nu6ju/fvkF0yO8qaxVmOTcgbzP15gWxtFxwSLG/yoexEe3+bVm6XLQcd0jpEOM7sqb/KMQtFi1PKkSOnHOuQt1duIKLsq2unHspshMfYyq2ML6hsdHjXH8osFXArqCmLcuORjx8/0pOnj2W3aiVoqNkAMwkW4GAGxlFLMKNqd4AbLhiuaiIHmDj45I0u+oYDj8eelfE2+X0uPKhLCODGwxGbQAACEIAABCAAAQiYvoAc3K1o0aKLBg8e3OL06dP2pn9Kus+gT58+d93d3XeLO3bpXsEMc3n8Pe2be2ifYuQxCrWXKfMcGNSVMmfKoivbKHnJkycnl2zZjXJsSzmo0goKd2E1rxrHDRcMX5/aAcLRhj8cjgABCEAAAhCAAAQgAAEIQCBeArLf5z///PPjXZFE9+KX8dqLyjcaNmzYO3GOZ0RgsIvKi4riQUB1AkpXSA4mIZmHgAwM4oYL5lGZOAsIQAACEIAABCAAAQhAAAIJFNAMChcYGFho5cqVgX379n2QwH2qZnPuKl2mTJlXYjzF3w8fPtxcNQVDQSBgYgKHd4UPzs+D9SNIaGKVp1Vc3HBBCwOzEIAABCAAAQhAAAIQgAAEICAFZLdixeL+/fvuO3funDNz5sxuQ4cOfVOzZk3ZzdiUxiLkgCAn0Vow6OTJkylFV+K1586dQ4tBqYI/EIi/gOwiKVqb8Th1SuKbLHBSWhcq+XhUhwBuuKCOekApIAABCEAAAhCAAAQgAAEIqFkgQnCQC+rv799dPHRfsWLFzGXLltVImTJl8ps3b+ZR80loly137tw33r9//6F8+fKTRf4KSxpjUNsB8xAwhED4oP2dNa0Hj4gbLMjWaLjRgiG4E7xP3HAhwYTYAQQgAAEIQAACEIAABCAAAbMXiBIcVM743r17fZR5U3oUgUxZ3K1bt5pSsVFWCJiUAG60YFLVhcJCAAIQgAAEIAABCEAAAhCAAASiFdCMORjtGlgAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEImKUAgoNmWa04KQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIxC6A4GDsRlgDAhCAAAQgAAEIQAACEIAABCAAAQhAAAJmKYDgoFlWK04KAhCAAAQgAAEIQAACEIAABCAAAQhAAAKxCyA4GLsR1oAABCAAAQhAAAIQgAAEIAABCEAAAhCAgFkKIDholtWKk4IABCAAAQhAAAIQgAAEIAABCEAAAhCAQOwCCA7GboQ1IAABCEAAAhCAAAQgAAEIQAACEIAABCBglgIIDpplteKkIAABCEAAAhCAAAQgAAEIQAACEIAABCAQuwCCg7EbYQ0IQAACEIAABCAAAQhAAAIQgAAEIAABCJilAIKDZlmtOCkIQAACEIAABCAAAQhAAAIQgAAEIAABCMQuYBv7KljDUAKp0qSg6xcCDLV77DcOAilFXSBBAAIQgAAEIAABCEAAAhCAAAQgAAFLE0Bw0Eg1/vble3Ir42qko+OwUQXCKG+JHFGzkQMBCEAAAhCAAAQgAAEIQAACEIAABMxYAMFBI1VuGsdUVMw7v5GOjsNCAAIQgAAEIAABCEAAAhCAAAQgAAEIQIAIYw7iKoAABCAAAQhAAAIQgAAEIAABCEAAAhCAgIUKIDhooRWP04YABCAAAQhAAAIQgAAEIAABCEAAAhCAAIKDuAYgAAEIQAACEIAABCAAAQhAAAIQgAAEIGChAggOWmjF47QhAAEIQAACEIAABCAAAQhAAAIQgAAEIIDgIK4BCEAAAhCAAAQgAAEIQAACEIAABCBgpgKOjo5X/P39TfrsuPxOTk7/qekkUqROfuXZw5dqKlKcy8LlT5k6+X8IDsaZDhtAAAIQgAAEIAABCEAAAhCAAAQgAAHTELCzszu6e/fuj6ZRWt2lvHbtWlDKlCmP615qnFybZDZHr52/adKuzx68CLJLnuw4goPGuYZwVAhAAAIQgAAEIACBBAqkSmZ/7cmb+wnci3ltzh6pkttfM8ZZoT6iqhuzPqKWxrxzcP1FrV9jXn+oD3XVx9OnT9feunUruSm3Hty/f39KX1/fH6PKGi/n/augtc8fvUpuyq0Hr/8VkLL18IY/IjhovOsIR4YABCAAAQhAAAIQSIBAaFhIUAI2N8tNn765RymTpTljjJNDfURVN2Z9RC2Neefg+otav8a8/lAf6qqPefPm+WXPnn3pjh073kQtmfpzNm/efMfZ2XmR2kraddp3fg7p7ZdeOeNvkq6XTl+/45AujXRFcFBtVxfKAwEIQAACEIAABCCgl4CVtdXAf+8dN8kP5HqdYDxWCgkNfvw66LlRmlOiPqJWmDHrI2ppzDsH11/U+jXm9Yf6UFd9cGlGjhzZ0draevu2bduM8j8iqkjsOdzScebMme/u379/Qm2tBpXStx7WoKONtdX2y2f8TcaVWzr+seP8u9dP3p7gVoN8LggOKjWKRwhAAAIQgAAEIAABkxIYXOt/+4NDPj5D1+Lwarvy4DRdf3Qh09C6s4cYoyJRHxHVjV0fEUtj/s9w/UWsY2Nff6gPddWHUpphw4a1uXHjxr6+ffvSzp07X6u1mzGXa/bs2aFz5syhkJCQNUOGDPlOOQc1PrYcXL/N88CX+3YtOUz/nbv5Wq3djLlcJ3f9GXpq9wX69OnzmpaD62pcbdUIizJBAAIQgAAEIAABCEBAHwGHNOlGi9aDv3gXbGGvz/rmvE5waPC9lHZpNhvzHFEfX/XVUB9fS2MZc7j+vtazGq4/1Ie66kMpDbcgFPMdM2XKNO/8+fOVX758WVBZppZHviuxaOV4QEybRItBP7WUK6ZycAtCsbzj8nFb592/8bDyh3cfVefKdyW2Eq5WVlabvh/eMIKrVUwnh2WJJ9C5c+ewGTNmJN4OsackEeBfVBYsWJDkr5OwUqXC6PD8JDlHHAQCEIAABCCQZALePmR1/nyi/1+durff5RzpC2Qr7FIxbZKdi8oOdOneyfe3n125M7DWz0b/MoL6IFJTfajsUjV4cXD9qev6Q32oqz4M/gLEAUxWAN2KTbbqUHAIQAACEIAABCAAARYQATH3u8+vPbp8/1SwJYpwIOrO86v31RAYRH2EBwLUVB+W9prA+wHeD9R0zavt/VlNNiiLugTQrVhd9YHSQAACEIAABCAAAQjEQ2BAzWlu3EIl5HNwKjub5DkLOpeLx15MaxMea/HineOvP4S+e6CWwKAiiPowfgtOpS4s8RHXn7quP9SHuurDEt8TcM6xCyA4GLsR1oAABCAAAQhAAAIQMAEBbjE0fd/AX959fNU95FPwg2Q2ds4Z7F0oo302Eyi9fkVUbr5y8e7xdyGhH5/Yp3Qa1rPauDX6bZ20a6E+ktYbR4sogOsvooexn6E+jF0DOD4EYhZI9DFfYj6c5S7lMQct9+xN+8yNNuagabOh9BCAAAQgAAGdAoYYc1DXgabs6TM1ZXL7TB9Dgiq8D36dT9c6ppiXKrn9tU+fQj/YWtsN719r6k5TOQfUh6nUlHmWE9efuuoV9aGu+kBpIMAC/we8FVLWhdTGbgAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "8d9ce9d8", "metadata": {}, "source": [ "## 4. Блок Декодера\n", "\n", + "![image.png](attachment:image.png)\n", "\n", - "![](https://ucarecdn.com/c7cc9bf3-cc75-4fac-97a9-ce122c74738e/)\n", "\n", "\n", "Каждый слой GPT-1 — это **декодер**, состоящий из следующих элементов:\n", @@ -534,7 +555,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "300acc96", "metadata": {}, "outputs": [], @@ -608,7 +629,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "0eb26ef3", "metadata": {}, "outputs": [], @@ -751,7 +772,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "632eec77", "metadata": {}, "outputs": [], @@ -796,7 +817,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "8003ea24", "metadata": {}, "outputs": [], @@ -845,7 +866,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "dd700a5c", "metadata": {}, "outputs": [ @@ -1051,7 +1072,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "4afd7733", "metadata": {}, "outputs": [], @@ -1090,7 +1111,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "71bb6b24", "metadata": {}, "outputs": [ @@ -1136,7 +1157,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "ccb9621a", "metadata": {}, "outputs": [], @@ -1151,7 +1172,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "f1b82472", "metadata": {}, "outputs": [