Commit Graph

9 Commits

Author SHA1 Message Date
Sergey Penkovsky
25caf69ced refactor(gpt1): migrate Decoder to GptDecoder, unify API, and update tests
- Renamed Decoder (and decoder.py) to GptDecoder (gpt_decoder.py) for clarity in GPT1
- Implemented support for cache and use_cache parameters in GptDecoder.forward (API unification)
- Adapted all usages in GPT model to use new decoder structure and handle tuple output
- Refactored core tests (test_gpt.py, test_gpt_decoder.py, test_basic.py) to correctly expect tuple or logits and ensure shape/device checks work as before
- Improved clarity and future extensibility for autoregressive generation and benchmarking
- No changes to architectural details or training loop; pure API and test modernization
2025-10-22 16:27:08 +03:00
Sergey Penkovsky
cfb4b6dfb1 feat(gemma): initial implementation of Gemma model and configs
- Add core Gemma model (architecture, attention, GeGLU, RoPE, RMSNorm, etc)
- Add configs for training and generation: gemma_train.json, gemma_generate.json
- Add Gemma notebook for exploratory analysis and demonstration
- Add __init__.py for Gemma submodule
- Update run_llm_experiment.py to support Gemma experiment configs

test(gemma): add comprehensive unit tests for Gemma

- Test forward pass (with/without cache)
- Test autoregressive generation (greedy, top-k, top-p)
- Test shape correctness and max sequence length errors
- Test multi-layer stack and token embeddings

docs: add documentation notebook for Gemma usage and analysis

Closes: #issue (if applicable)
2025-10-21 01:02:15 +03:00
Sergey Penkovsky
b1737bbce2 feat(mixtral): initial implementation of Mixtral MoE model, configs, and tests
- Add Mixtral architecture implementation with MoE support (llm/src/llm/models/mixtral/mixtral.py)
- Introduce generic Mixture-of-Experts (MoE) block (llm/src/llm/core/moe.py)
- Create dedicated configuration files for Mixtral training and generation experiments
- Register and test Mixtral support in experiment runner (run_llm_experiment.py)
- Add unit tests for Mixtral API including forward, caching, and generation modes
- Include Jupyter notebook mixstral.ipynb for architectural exploration and research
- Ensure correct handling of torch bool masks in sampling (top-k, top-p) during generation

BREAKING CHANGE: Adds new model code and test coverage, modifying experiment runner logic to register Mixtral.
2025-10-20 08:12:11 +03:00
Sergey Penkovsky
2e72dbaf07 test(llama): add unit tests for generation, cache, and edge cases
- Covers inference with and without cache and with sampling (top-k, top-p)
- Includes test for max sequence length (should raise ValueError)
- Verifies output shape and absence of dtype errors for the mask logic
- Minimal config and random data ensure tests are fast and robust

Motivation: Regression and integration protection for Llama decoding and sampling logic.
2025-10-15 14:37:35 +03:00
Sergey Penkovsky
dc440a3938 test(gpt2): add unit tests for generation, cache behavior, and error conditions
- Covers forward pass with and without KV-cache
- Verifies correct sequence generation for greedy, top-k, and top-p sampling
- Adds ValueError test for exceeding max sequence length
- Uses small random toy config and minimal setup for fast test feedback

Motivation: Prevent regressions in decoding, sampling, and KV-cache logic in GPT2 implementation.
2025-10-15 14:36:32 +03:00
Sergey Penkovsky
38682e8c9d test(mistral): add unit tests for model generation and cache 2025-10-15 13:20:50 +03:00
Sergey Penkovsky
d10044e4a7 refactor(core): refactor RoPE and MultiHeadAttention, add math-rich docs, expand tests, remove unused head_attention
- refactor: улучшена и унифицирована реализация RoPE, теперь поддерживаются строгие проверки размерности входа; внесены улучшения и структурные изменения в MultiHeadAttention (более понятная логика, строгая спецификация входов/выходов)
- docs: полностью переписаны docstrings для RoPE и MultiHeadAttention — включены математические формулы, ссылки на научные статьи, подробные пояснения по алгоритму, формату входных данных, ограничениям, примеры использования
- test: добавлены отдельные unit-тесты для RoPE (корректность формы, ошибки на неверную размерность, сохранение нормы, backward/градиенты, работу с параметрами start_pos и батчами)
- chore: удалён неиспользуемый модуль core/head_attention.py
- fix: теперь выбрасывается AssertionError при неправильной размерности входа RoPE; это позволило полностью покрыть тест-кейсы на ошибки

Этот коммит синхронизирует логику реализации базового внимания с современной практикой LLM, укрепляет документацию для инженеров и исследователей, а также расширяет надежность автотестирования библиотеки.
2025-10-15 11:04:07 +03:00
Sergey Penkovsky
712278e33c Рефакторинг: единообразие оформления кода (пробелы, кавычки, пустые строки), без изменения логики по всему проекту. 2025-10-06 22:57:19 +03:00
Sergey Penkovsky
fb74dc7c17 test: add comprehensive test suite for LLM components
- Add pytest configuration and fixtures
- Add tests for core modules: decoder, feed_forward, multi_head_attention
- Add tests for positional and token embeddings
- Add tests for GPT model
- Add tests for tokenizers (base and BPE)
- Add basic integration tests
2025-10-05 08:11:18 +03:00