- refactor: улучшена и унифицирована реализация RoPE, теперь поддерживаются строгие проверки размерности входа; внесены улучшения и структурные изменения в MultiHeadAttention (более понятная логика, строгая спецификация входов/выходов)
- docs: полностью переписаны docstrings для RoPE и MultiHeadAttention — включены математические формулы, ссылки на научные статьи, подробные пояснения по алгоритму, формату входных данных, ограничениям, примеры использования
- test: добавлены отдельные unit-тесты для RoPE (корректность формы, ошибки на неверную размерность, сохранение нормы, backward/градиенты, работу с параметрами start_pos и батчами)
- chore: удалён неиспользуемый модуль core/head_attention.py
- fix: теперь выбрасывается AssertionError при неправильной размерности входа RoPE; это позволило полностью покрыть тест-кейсы на ошибки
Этот коммит синхронизирует логику реализации базового внимания с современной практикой LLM, укрепляет документацию для инженеров и исследователей, а также расширяет надежность автотестирования библиотеки.