{ "cells": [ { "cell_type": "markdown", "id": "6842e799", "metadata": {}, "source": [ "# Архитектура GPT-2\n", "\n", "GPT-2 — это эволюция GPT-1, предложенная OpenAI в 2019 году. Модель сохраняет **архитектуру трансформера-декодера**, но вносит несколько ключевых улучшений, благодаря которым она стала более стабильной и способной генерировать длинные тексты.\n", "\n", "---\n", "\n", "## Основные улучшения GPT-2 по сравнению с GPT-1\n", "\n", "### 1. Масштаб модели\n", "\n", "- GPT-2 значительно **увеличила количество параметров**.\n", " \n", " |Модель|Параметры|Слои (Decoder)|Размер эмбеддингов|Heads|\n", " |---|---|---|---|---|\n", " |GPT-1|117M|12|768|12|\n", " |GPT-2|1.5B|48|1600|25|\n", " \n", "- Увеличение глубины и ширины слоёв позволяет модели **захватывать более сложные закономерности языка**.\n", " \n", "\n", "---\n", "\n", "### 2. Pre-norm и Post-norm\n", "\n", "![](https://ucarecdn.com/b7f2a1e5-620d-4efc-989f-2348a613ffb4/)\n", "\n", "- **GPT-1** использовала **post-norm**, когда слои нормализации применялись **после блоков внимания и FFN**.\n", " \n", "- **GPT-2** ввела **pre-norm**, то есть **слои нормализации располагаются перед блоками внимания и FFN**.\n", " \n", " - Это повышает **устойчивость обучения глубоких сетей**, особенно при увеличении числа слоёв.\n", " \n", " - Также добавлен **один слой нормализации после последнего блока декодера**, что стабилизирует выход модели.\n", " \n", "\n", "---\n", "\n", "### 3. GELU вместо ReLU\n", "\n", "![](https://ucarecdn.com/c8bbc3fb-6951-4f2b-aed9-944e0612ab3c/)\n", "\n", "- В GPT-1 использовалась **ReLU** в полносвязных сетях (FFN).\n", " \n", "- В GPT-2 применяют **GELU (Gaussian Error Linear Unit)**:\n", "\n", "\n", "![](https://ucarecdn.com/d9469f32-11eb-46ad-a6fb-e6f4735e847a/)\n", " \n", "$$ \n", "\\text{GELU}(x) = x \\cdot \\Phi(x) \n", "$$\n", "\n", "где $Phi(x)$ — функция нормального распределения.\n", "\n", "- GELU **плавно подавляет отрицательные значения**, создавая мягкий переход около нуля.\n", " \n", "- Эмпирически улучшает **скорость обучения и качество генерации** текста.\n", " \n", "\n", "---\n", "\n", "### 4. KV-cache (Key-Value Cache)\n", "\n", "- GPT-2 использует **оптимизацию вычислений при генерации текста**:\n", " \n", " - Ранее в GPT-1 каждый прогон модели пересчитывал **всё внимание** заново для всей последовательности.\n", " \n", " - KV-cache позволяет **сохранять Q, K, V для уже обработанных токенов** и обновлять только новые токены.\n", " \n", " - Это значительно ускоряет **генерацию длинных текстов**.\n", " \n", "\n", "---\n", "\n", "### 5. Tokenization и словарь\n", "\n", "- GPT-2 сохраняет **Byte Pair Encoding (BPE)**, но словарь **больше (50 000 токенов)**.\n", " \n", "- Это позволяет модели **обрабатывать редкие слова, спецсимволы и эмодзи**.\n", " \n", "\n", "---\n", "\n", "### 6. Маскированное внимание (Causal Self-Attention)\n", "\n", "- GPT-2 продолжает использовать **авторегрессионное предсказание**: каждый токен зависит только от предыдущих.\n", " \n", "- Отличие в **оптимизации для больших последовательностей** и увеличении числа голов внимания, что повышает способность захватывать сложные зависимости между токенами.\n", " \n", "\n", "---\n", "\n", "### 7. Feed-Forward Network (FFN)\n", "\n", "- Двухслойная FFN с **GELU** и шириной 4× размер эмбеддингов.\n", " \n", "- Позволяет **обрабатывать и смешивать информацию из разных голов внимания** более эффективно, чем ReLU в GPT-1.\n", " \n", "\n", "---\n", "\n", "### 8. Генерация текста\n", "\n", "- GPT-2 остаётся **авторегрессионной**, как GPT-1.\n", " \n", "- Улучшения:\n", " \n", " - KV-cache для ускорения генерации длинных последовательностей.\n", " \n", " - Поддержка **top-k и top-p (nucleus) sampling** для управления разнообразием текста.\n", " \n", " - Более длинные контексты (до 1024 токенов и более).\n", " \n", "\n", "---\n", "\n", "### 🔹 Сравнение GPT-1 и GPT-2\n", "\n", "|Компонент|GPT-1|GPT-2|\n", "|---|---|---|\n", "|Слои Decoder|12|48|\n", "|Эмбеддинги|768|1600|\n", "|Heads|12|25|\n", "|Словарь|~40k|50k|\n", "|Max Seq Len|512|1024|\n", "|LayerNorm|Post-LN|Pre-LN + финальный LN|\n", "|Активация FFN|ReLU|GELU|\n", "|Генерация|Полный расчет заново|KV-cache + top-k/top-p|\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "a4fba924", "metadata": {}, "outputs": [], "source": [ "import dill\n", "from torch import nn\n", "import torch" ] }, { "cell_type": "markdown", "id": "6ed35205", "metadata": {}, "source": [ "## BPE Tokenizator" ] }, { "cell_type": "code", "execution_count": 3, "id": "1a6f2914", "metadata": {}, "outputs": [], "source": [ "class BPE:\n", " def __init__(self, vocab_size: int):\n", " self.vocab_size = vocab_size\n", " self.id2token = {}\n", " self.token2id = {}\n", "\n", " def fit(self, text: str):\n", " # 1. Получаем уникальные токены (символы)\n", " unique_tokens = sorted(set(text))\n", " tokens = unique_tokens.copy()\n", "\n", " # 2. Разбиваем текст на токены-символы\n", " sequence = list(text)\n", "\n", " # 3. Объединяем токены до достижения нужного размера словаря\n", " while len(tokens) < self.vocab_size:\n", " #print(f'len={len(tokens)} < {self.vocab_size}')\n", " # Считаем частоты пар\n", " pair_freq = {}\n", " for i in range(len(sequence) - 1):\n", " pair = (sequence[i], sequence[i + 1])\n", " #print(f'pair = {pair}')\n", " if pair not in pair_freq:\n", " pair_freq[pair] = 0\n", " pair_freq[pair] += 1\n", "\n", "\n", " #print(f'pair_freq = {pair_freq}') \n", " if not pair_freq:\n", " break # нет пар — выходим\n", "\n", " #for x in pair_freq.items():\n", " # self.debug(x, sequence)\n", "\n", " # Находим самую частую пару (в случае равенства — та, что встретилась первой)\n", " most_frequent_pair = max(pair_freq.items(), key=lambda x: (x[1], -self._pair_first_index(sequence, x[0])))[0]\n", " #print(most_frequent_pair)\n", " # Создаем новый токен\n", " new_token = most_frequent_pair[0] + most_frequent_pair[1]\n", " #print(f\"new token={new_token}\")\n", " tokens.append(new_token)\n", " #print(f\"tokens={tokens}\")\n", "\n", " i = 0\n", " new_sequence = []\n", "\n", " while i < len(sequence):\n", " if i < len(sequence) - 1 and (sequence[i], sequence[i + 1]) == most_frequent_pair:\n", " new_sequence.append(new_token)\n", " i += 2 # пропускаем два символа — заменённую пару\n", " else:\n", " new_sequence.append(sequence[i])\n", " i += 1\n", " sequence = new_sequence\n", " #break\n", " \n", " # 4. Создаем словари\n", " self.vocab = tokens.copy()\n", " self.token2id = dict(zip(tokens, range(self.vocab_size)))\n", " self.id2token = dict(zip(range(self.vocab_size), tokens))\n", "\n", " def _pair_first_index(self, sequence, pair):\n", " for i in range(len(sequence) - 1):\n", " if (sequence[i], sequence[i + 1]) == pair:\n", " return i\n", " return float('inf') # если пара не найдена (в теории не должно случиться)\n", "\n", "\n", " def encode(self, text: str):\n", " # 1. Разбиваем текст на токены-символы\n", " sequence = list(text)\n", " # 2. Инициализация пустого списка токенов\n", " tokens = []\n", " # 3. Установить i = 0\n", " i = 0\n", " while i < len(text):\n", " # 3.1 Найти все токены в словаре, начинающиеся с text[i]\n", " start_char = text[i]\n", " result = [token for token in self.vocab if token.startswith(start_char)]\n", " # 3.2 Выбрать самый длинный подходящий токен\n", " find_token = self._find_max_matching_token(text[i:], result)\n", " if find_token is None:\n", " # Обработка неизвестного символа\n", " tokens.append(text[i]) # Добавляем сам символ как токен\n", " i += 1\n", " else:\n", " # 3.3 Добавить токен в результат\n", " tokens.append(find_token)\n", " # 3.4 Увеличить i на длину токена\n", " i += len(find_token)\n", "\n", " # 4. Заменить токены на их ID\n", " return self._tokens_to_ids(tokens)\n", "\n", " def _find_max_matching_token(self, text: str, tokens: list):\n", " \"\"\"Находит самый длинный токен из списка, с которого начинается текст\"\"\"\n", " matching = [token for token in tokens if text.startswith(token)]\n", " return max(matching, key=len) if matching else None\n", "\n", " def _tokens_to_ids(self, tokens):\n", " \"\"\"Конвертирует список токенов в их ID с обработкой неизвестных токенов\"\"\"\n", " ids = []\n", " for token in tokens:\n", " if token in self.token2id:\n", " ids.append(self.token2id[token])\n", " else:\n", " ids.append(0) # Специальное значение\n", " return ids\n", "\n", "\n", " def decode(self, ids: list) -> str:\n", " return ''.join(self._ids_to_tokens(ids))\n", "\n", " def _ids_to_tokens(self, ids: list) -> list:\n", " \"\"\"Конвертирует список Ids в их tokens\"\"\"\n", " tokens = []\n", " for id in ids:\n", " if id in self.id2token:\n", " tokens.append(self.id2token[id])\n", " else:\n", " tokens.append('') # Специальное значение\n", " return tokens\n", "\n", "\n", " def save(self, filename):\n", " with open(filename, 'wb') as f:\n", " dill.dump(self, f)\n", " print(f\"Объект сохранён в {filename}\")\n", "\n", "\n", " @classmethod\n", " def load(cls, filename):\n", " with open(filename, 'rb') as f:\n", " obj = dill.load(f)\n", " \n", " print(f\"Объект загружен из {filename}\")\n", " return obj" ] }, { "cell_type": "markdown", "id": "9036bbb5", "metadata": {}, "source": [ "## GPT2" ] }, { "cell_type": "code", "execution_count": 9, "id": "87b6504e", "metadata": {}, "outputs": [], "source": [ "import torch\n", "from torch import nn\n", "import torch.nn.functional as F\n", "from math import sqrt\n", "import torch\n", "from torch import nn\n", "from torch import Tensor\n", "\n", "class TokenEmbeddings(nn.Module):\n", " def __init__(self, vocab_size: int, emb_size: int):\n", " super().__init__()\n", " self._embedding = nn.Embedding(\n", " num_embeddings=vocab_size,\n", " embedding_dim=emb_size\n", " )\n", "\n", " def forward(self, x: Tensor) -> Tensor:\n", " return self._embedding(x)\n", "\n", " @property\n", " def num_embeddings(self) -> int:\n", " return self._embedding.num_embeddings\n", "\n", " @property\n", " def embedding_dim(self) -> int:\n", " return self._embedding.embedding_dim\n", "\n", "\n", "import torch\n", "from torch import nn, Tensor\n", "\n", "class PositionalEmbeddings(nn.Module):\n", " def __init__(self, max_seq_len: int, emb_size: int):\n", " super().__init__()\n", " self.max_seq_len = max_seq_len\n", " self.emb_size = emb_size\n", " self.embedding = nn.Embedding(\n", " num_embeddings=max_seq_len,\n", " embedding_dim=emb_size\n", " )\n", "\n", " def forward(self, seq_len: int, start_pos: int = 0) -> Tensor:\n", " if seq_len < 1 or seq_len > self.max_seq_len:\n", " raise IndexError(f\"Длина {seq_len} должна быть от 1 до {self.max_seq_len}\")\n", " if start_pos == 0:\n", " positions = torch.arange(seq_len, device=self.embedding.weight.device)\n", " else:\n", " positions = torch.arange(start=start_pos, end=start_pos + seq_len, device=self.embedding.weight.device)\n", " return self.embedding(positions)\n", " \n", " \n", "class HeadAttention(nn.Module):\n", "\n", " def __init__(self, emb_size: int, head_size: int, max_seq_len: int):\n", " super().__init__()\n", " self._emb_size = emb_size\n", " self._head_size = head_size\n", " self._max_seq_len = max_seq_len\n", "\n", " self._k = nn.Linear(emb_size, head_size)\n", " self._q = nn.Linear(emb_size, head_size)\n", " self._v = nn.Linear(emb_size, head_size)\n", "\n", " mask = torch.tril(torch.ones(max_seq_len, max_seq_len))\n", " self.register_buffer('_tril_mask', mask.bool() if hasattr(torch, 'bool') else mask.byte())\n", "\n", " def forward(self, x: torch.Tensor, use_cache: bool = True, cache: tuple = None) -> tuple:\n", " seq_len = x.shape[1]\n", " if seq_len > self._max_seq_len:\n", " raise ValueError(f\"Длина последовательности {seq_len} превышает максимум {self._max_seq_len}\")\n", "\n", " k = self._k(x) # [B, T, hs]\n", " q = self._q(x) # [B, T, hs]\n", " v = self._v(x) # [B, T, hs]\n", "\n", " if cache is not None:\n", " k_cache, v_cache = cache\n", " k = torch.cat([k_cache, k], dim=1) # [B, cache_len + T, hs]\n", " v = torch.cat([v_cache, v], dim=1) # [B, cache_len + T, hs]\n", " \n", " scores = q @ k.transpose(-2, -1) / sqrt(self._head_size)\n", " \n", " if cache is None:\n", " scores = scores.masked_fill(~self._tril_mask[:seq_len, :seq_len], float('-inf'))\n", " \n", " weights = F.softmax(scores, dim=-1)\n", " x_out = weights @ v # [B, T, hs]\n", "\n", " if use_cache is True:\n", " return (x_out, (k, v))\n", " else:\n", " return (x_out, None)\n", " \n", "from torch import nn\n", "import torch\n", "import math\n", "\n", "class MultiHeadAttention(nn.Module):\n", " def __init__(self, num_heads: int, emb_size: int, head_size: int, max_seq_len: int, dropout: float = 0.1):\n", "\n", " super().__init__()\n", " self._heads = nn.ModuleList([\n", " HeadAttention(\n", " emb_size=emb_size, \n", " head_size=head_size, \n", " max_seq_len=max_seq_len\n", " ) for _ in range(num_heads)\n", " ])\n", " self._layer = nn.Linear(head_size * num_heads, emb_size)\n", " self._dropout = nn.Dropout(dropout)\n", "\n", " def forward(self, x: torch.Tensor, mask: torch.Tensor = None, use_cache: bool = True, cache: list = None):\n", "\n", " attention_results = []\n", " for i, head in enumerate(self._heads):\n", " head_cache = cache[i] if cache is not None else None\n", " result = head(x, use_cache=use_cache, cache=head_cache)\n", " attention_results.append(result)\n", " \n", " outputs, caches = zip(*attention_results)\n", " attention_outputs = list(outputs)\n", " kv_caches = list(caches)\n", " \n", " concatenated_attention = torch.cat(attention_outputs, dim=-1)\n", "\n", " projected_output = self._layer(concatenated_attention)\n", " \n", " final_output = self._dropout(projected_output)\n", " \n", " if use_cache is True:\n", " return (final_output, kv_caches)\n", " else:\n", " return (final_output, None)\n", "\n", "\n", "class GELU(nn.Module):\n", " def __init__(self):\n", " super().__init__()\n", " self.sqrt_2_over_pi = torch.sqrt(torch.tensor(2.0) / math.pi)\n", " \n", " def forward(self, x: torch.Tensor) -> torch.Tensor:\n", " return 0.5 * x * (1 + torch.tanh(\n", " self.sqrt_2_over_pi * (x + 0.044715 * torch.pow(x, 3))\n", " ))\n", "\n", "class FeedForward(nn.Module):\n", "\n", " def __init__(self, emb_size: int, dropout: float = 0.1):\n", " super().__init__()\n", " self._layer1 = nn.Linear(emb_size, emb_size * 4)\n", " self._gelu = GELU()\n", " self._layer2 = nn.Linear(emb_size * 4, emb_size)\n", " self._dropout = nn.Dropout(dropout)\n", "\n", " def forward(self, x: torch.Tensor):\n", " input_dtype = x.dtype\n", " \n", " if input_dtype != self._layer1.weight.dtype:\n", " self._layer1 = self._layer1.to(dtype=input_dtype)\n", " self._layer2 = self._layer2.to(dtype=input_dtype)\n", " \n", " x = self._layer1(x)\n", " x = self._gelu(x)\n", " x = self._layer2(x)\n", " return self._dropout(x)\n", " \n", "class Decoder(nn.Module):\n", " def __init__(self, \n", " num_heads: int,\n", " emb_size: int,\n", " head_size: int,\n", " max_seq_len: int,\n", " dropout: float = 0.1\n", " ):\n", " super().__init__()\n", " self._heads = MultiHeadAttention(\n", " num_heads=num_heads, \n", " emb_size=emb_size, \n", " head_size=head_size, \n", " max_seq_len=max_seq_len, \n", " dropout=dropout\n", " )\n", " self._ff = FeedForward(emb_size=emb_size, dropout=dropout)\n", " self._norm1 = nn.LayerNorm(emb_size)\n", " self._norm2 = nn.LayerNorm(emb_size)\n", "\n", " def forward(self, x: torch.Tensor, mask: torch.Tensor = None, use_cache: bool = True, cache: list = None) -> torch.Tensor:\n", " norm1_out = self._norm1(x)\n", " attention, kv_caches = self._heads(norm1_out, mask, use_cache=use_cache, cache=cache)\n", " out = attention + x\n", " \n", " norm2_out = self._norm2(out)\n", " ffn_out = self._ff(norm2_out)\n", "\n", " if use_cache is True:\n", " return (ffn_out + out, kv_caches)\n", " else:\n", " return (ffn_out + out, None)\n", "\n", "\n", "\n", "from torch import nn\n", "import torch\n", "import torch.nn.functional as F\n", "\n", "class GPT2(nn.Module):\n", " def __init__(self,\n", " vocab_size: int,\n", " max_seq_len: int,\n", " emb_size: int,\n", " num_heads: int,\n", " head_size: int,\n", " num_layers: int,\n", " dropout: float = 0.1,\n", " device: str = 'cpu'\n", " ):\n", " super().__init__()\n", " self._vocab_size = vocab_size\n", " self._max_seq_len = max_seq_len\n", " self._emb_size = emb_size\n", " self._num_heads = num_heads\n", " self._head_size = head_size\n", " self._num_layers = num_layers\n", " self._dropout = dropout\n", " self._device = device\n", " \n", " self.validation_loss = None\n", "\n", " # Инициализация слоев\n", " self._token_embeddings = TokenEmbeddings(\n", " vocab_size=vocab_size, \n", " emb_size=emb_size\n", " )\n", " self._position_embeddings = PositionalEmbeddings(\n", " max_seq_len=max_seq_len, \n", " emb_size=emb_size\n", " )\n", " self._dropout = nn.Dropout(dropout)\n", " self._decoders = nn.ModuleList([Decoder(\n", " num_heads=num_heads,\n", " emb_size=emb_size,\n", " head_size=head_size,\n", " max_seq_len=max_seq_len,\n", " dropout=dropout \n", " ) for _ in range(num_layers)])\n", " self._norm = nn.LayerNorm(emb_size)\n", " self._linear = nn.Linear(emb_size, vocab_size)\n", "\n", " def forward(self, x: torch.Tensor, use_cache: bool = True, cache: list = None) -> tuple:\n", " # Проверка длины последовательности (только при отсутствии кэша)\n", " if cache is None and x.size(1) > self._max_seq_len:\n", " raise ValueError(f\"Длина последовательности {x.size(1)} превышает максимальную {self.max_seq_len}\")\n", " \n", " \n", " # Вычисление start_pos из кэша (если кэш передан)\n", " if cache is not None:\n", " # При кэше обрабатываем только один токен (последний)\n", " seq_len = 1\n", " # Вычисляем start_pos из самого нижнего уровня кэша\n", " if cache and cache[0] and cache[0][0]:\n", " key_cache, _ = cache[0][0] # Первый декодер, первая голова\n", " start_pos = key_cache.size(1) # cache_len\n", " else:\n", " start_pos = 0\n", " else:\n", " # Без кэша работаем как раньше\n", " start_pos = 0\n", " seq_len = x.size(1)\n", "\n", " # Эмбеддинги токенов и позиций\n", " tok_out = self._token_embeddings(x) # [batch, seq_len, emb_size]\n", " pos_out = self._position_embeddings(seq_len, start_pos=start_pos) # [seq_len, emb_size]\n", " \n", " # Комбинирование\n", " out = self._dropout(tok_out + pos_out.unsqueeze(0)) # [batch, seq_len, emb_size]\n", " \n", " # Стек декодеров с передачей кэша\n", " new_cache = []\n", " for i, decoder in enumerate(self._decoders):\n", " decoder_cache = cache[i] if cache is not None else None\n", " decoder_result = decoder(out, use_cache=use_cache, cache=decoder_cache)\n", "\n", " # Извлекаем результат из кортежа\n", " if use_cache:\n", " out, decoder_new_cache = decoder_result\n", " new_cache.append(decoder_new_cache)\n", " else:\n", " out = decoder_result[0]\n", "\n", " out = self._norm(out)\n", " logits = self._linear(out)\n", " \n", " # Возвращаем результат с учетом use_cache\n", " if use_cache:\n", " return (logits, new_cache)\n", " else:\n", " return (logits, None)\n", "\n", " def generate(self,\n", " x: torch.Tensor, \n", " max_new_tokens: int, \n", " do_sample: bool,\n", " temperature: float = 1.0,\n", " top_k: int = None,\n", " top_p: float = None,\n", " use_cache: bool = True\n", " ) -> torch.Tensor:\n", " cache = None\n", "\n", " for _ in range(max_new_tokens):\n", " if use_cache and cache is not None:\n", " # Используем кэш - передаем только последний токен\n", " x_input = x[:, -1:] # [batch_size, 1]\n", " else:\n", " # Первая итерация или кэш отключен - передаем всю последовательность\n", " x_input = x\n", " \n", " # Прямой проход с кэшем\n", " logits, new_cache = self.forward(x_input, use_cache=use_cache, cache=cache)\n", " \n", " # Обновляем кэш для следующей итерации\n", " if use_cache:\n", " cache = new_cache\n", "\n", " last_logits = logits[:, -1, :] # [batch_size, vocab_size]\n", "\n", " # Масштабируем логиты температурой\n", " if temperature > 0:\n", " logits_scaled = last_logits / temperature\n", " else:\n", " logits_scaled = last_logits\n", "\n", " if do_sample == True and top_k != None:\n", " _, topk_indices = torch.topk(logits_scaled, top_k, dim=-1)\n", "\n", " # # Заменим все НЕ top-k логиты на -inf\n", " masked_logits = logits_scaled.clone()\n", " vocab_size = logits_scaled.size(-1)\n", "\n", " # создаём маску: 1, если токен НЕ в topk_indices\n", " mask = torch.ones_like(logits_scaled, dtype=torch.uint8)\n", " mask.scatter_(1, topk_indices, 0) # 0 там, где top-k индексы\n", " masked_logits[mask.byte()] = float('-inf')\n", "\n", " logits_scaled = masked_logits\n", "\n", " if do_sample == True and top_p != None:\n", " # 1. Применим softmax, чтобы получить вероятности:\n", " probs = F.softmax(logits_scaled, dim=-1) # [B, vocab_size]\n", " # 2. Отсортируем токены по убыванию вероятностей:\n", " sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)\n", " # 3. Посчитаем кумулятивную сумму вероятностей:\n", " cum_probs = torch.cumsum(sorted_probs, dim=-1) # [B, vocab_size]\n", " # 4. Определим маску: оставить токены, пока сумма < top_p\n", " sorted_mask = (cum_probs <= top_p).byte() # [B, vocab_size]\n", " # Гарантируем, что хотя бы первый токен останется\n", " sorted_mask[:, 0] = 1\n", " # 5. Преобразуем маску обратно в оригинальный порядок:\n", " # Создаём полную маску из 0\n", " mask = torch.zeros_like(probs, dtype=torch.uint8)\n", " # Устанавливаем 1 в местах нужных токенов\n", " mask.scatter_(dim=1, index=sorted_indices, src=sorted_mask)\n", " # 6. Зануляем логиты токенов вне топ-p:\n", " logits_scaled[~mask] = float('-inf')\n", "\n", " # 4. Применяем Softmax\n", " probs = F.softmax(logits_scaled, dim=-1) # [batch_size, vocab_size]\n", "\n", "\n", " if do_sample == True:\n", " # 5. Если do_sample равен True, то отбираем токен случайно с помощью torch.multinomial\n", " next_token = torch.multinomial(probs, num_samples=1) # [batch_size, 1]\n", " else:\n", " # 5. Если do_sample равен False, то выбираем токен с максимальной вероятностью\n", " next_token = torch.argmax(probs, dim=-1, keepdim=True) # [batch_size, 1]\n", " \n", " # 6. Добавляем его к последовательности\n", " x = torch.cat([x, next_token], dim=1) # [batch_size, seq_len+1]\n", " return x\n", "\n", " def save(self, path):\n", " torch.save({\n", " 'model_state_dict': self.state_dict(),\n", " 'vocab_size': self._vocab_size,\n", " 'max_seq_len': self._max_seq_len,\n", " 'emb_size': self._emb_size,\n", " 'num_heads': self._num_heads,\n", " 'head_size': self._head_size,\n", " 'num_layers': self._num_layers\n", " }, path)\n", "\n", " @classmethod\n", " def load(cls, path, device):\n", " checkpoint = torch.load(path, map_location=device)\n", " model = cls(\n", " vocab_size=checkpoint['vocab_size'],\n", " max_seq_len=checkpoint['max_seq_len'],\n", " emb_size=checkpoint['emb_size'],\n", " num_heads=checkpoint['num_heads'],\n", " head_size=checkpoint['head_size'],\n", " num_layers=checkpoint['num_layers']\n", " )\n", " model.load_state_dict(checkpoint['model_state_dict'])\n", " model.to(device)\n", " return model\n", "\n", " @property\n", " def max_seq_len(self) -> int:\n", " return self._max_seq_len" ] }, { "cell_type": "markdown", "id": "888d1a1c", "metadata": {}, "source": [ "## 2. Обучение GPT-2\n", "\n", "GPT-2 обучается в два этапа:\n", "\n", "- 1️⃣ **Предобучение (Unsupervised Pretraining)** \n", "- 2️⃣ **Дообучение (Supervised Fine-Tuning)**\n" ] }, { "cell_type": "markdown", "id": "b47966ba", "metadata": {}, "source": [ "\n", "\n", "### 5.1 Предобучение\n", "\n", "На первом этапе модель обучается без разметки: она получает большой корпус текстов и учится **предсказывать следующий токен** по предыдущим.\n", "\n", "Функция потерь:\n", "$$\n", "L = - \\sum_{t=1}^{T} \\log P(x_t | x_1, x_2, ..., x_{t-1})\n", "$$\n", "\n", "Таким образом, модель учится строить вероятностную модель языка, \"угадывая\" продолжение текста.\n" ] }, { "cell_type": "markdown", "id": "12e4624e", "metadata": {}, "source": [ "Во время **предобучения** GPT-1 учится **предсказывать следующий токен** (language modeling task). \n", "Формально: \n", "$$ \n", "P(x_t ,|, x_1, x_2, \\dots, x_{t-1}) \n", "$$ \n", "То есть, если на вход подаётся предложение `\"I love deep\"`, модель должна предсказать `\"learning\"`.\n" ] }, { "cell_type": "markdown", "id": "87dcc10e", "metadata": {}, "source": [ "### ✅ 5.1.1 Подготовка данных\n", "\n", "Создадим **датасет** на основе BPE-токенизатора:" ] }, { "cell_type": "code", "execution_count": 10, "id": "632eec77", "metadata": {}, "outputs": [], "source": [ "import torch\n", "from torch.utils.data import Dataset, DataLoader\n", "\n", "class GPTDataset(Dataset):\n", " def __init__(self, text: str, bpe: BPE, block_size: int):\n", " self.bpe = bpe\n", " self.block_size = block_size\n", " self.data = bpe.encode(text)\n", " \n", " def __len__(self):\n", " return len(self.data) - self.block_size\n", "\n", " def __getitem__(self, idx):\n", " x = torch.tensor(self.data[idx:idx+self.block_size], dtype=torch.long)\n", " y = torch.tensor(self.data[idx+1:idx+self.block_size+1], dtype=torch.long)\n", " return x, y" ] }, { "cell_type": "markdown", "id": "bb5d83d8", "metadata": {}, "source": [ "- `x` — входная последовательность токенов\n", " \n", "- `y` — та же последовательность, но сдвинутая на один токен вперёд (цель)" ] }, { "cell_type": "markdown", "id": "24de37be", "metadata": {}, "source": [ "### ✅ 5.1.2 Цикл обучения\n", "\n", "Для обучения создадим функцию:" ] }, { "cell_type": "code", "execution_count": 15, "id": "8003ea24", "metadata": {}, "outputs": [], "source": [ "import torch.nn.functional as F\n", "from torch import optim\n", "\n", "def train_gpt(model, dataset, epochs=5, batch_size=32, lr=3e-4, device='cpu'):\n", " dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n", " optimizer = optim.AdamW(model.parameters(), lr=lr)\n", "\n", " model.to(device)\n", " model.train()\n", "\n", " for epoch in range(epochs):\n", " total_loss = 0\n", " for x, y in dataloader:\n", " x, y = x.to(device), y.to(device)\n", "\n", " # Прямой проход\n", " logits, _ = model(x, use_cache=False) # [B, T, vocab_size]\n", "\n", " # Перестроим выход под CrossEntropy\n", " loss = F.cross_entropy(logits.view(-1, logits.size(-1)), y.view(-1))\n", "\n", " # Обратное распространение\n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()\n", "\n", " total_loss += loss.item()\n", "\n", " avg_loss = total_loss / len(dataloader)\n", " print(f\"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}\")\n", "\n", " return model" ] }, { "cell_type": "markdown", "id": "3c351b56", "metadata": {}, "source": [ "### ✅ 5.1.3 Пример запуска\n", "\n", "\n", "**🧠 Конфигурация GPT-2 Mini (официальная OpenAI)**\n", "\n", "\n", "| Параметр | Значение | Описание |\n", "| --------------- | -------- | --------------------------------------------- |\n", "| **vocab_size** | `50257` | Размер словаря (BPE токенизатор OpenAI) |\n", "| **max_seq_len** | `512` | Максимальная длина входной последовательности |\n", "| **emb_size** | `256` | Размер эмбеддингов (векторное пространство) |\n", "| **num_heads** | `4` | Количество голов в multi-head attention |\n", "| **head_size** | `64` | Размерность одной головы внимания (768 / 12) |\n", "| **num_layers** | `4` | Количество блоков (декодеров) |\n", "| **dropout** | `0.1` | Вероятность дропаута |\n" ] }, { "cell_type": "code", "execution_count": 30, "id": "dd700a5c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dataset length: 20\n", "Epoch 1/100, Loss: 4.0049\n", "Epoch 2/100, Loss: 2.2952\n", "Epoch 3/100, Loss: 1.2738\n", "Epoch 4/100, Loss: 0.6864\n", "Epoch 5/100, Loss: 0.4070\n", "Epoch 6/100, Loss: 0.3075\n", "Epoch 7/100, Loss: 0.2422\n", "Epoch 8/100, Loss: 0.1881\n", "Epoch 9/100, Loss: 0.1484\n", "Epoch 10/100, Loss: 0.1258\n", "Epoch 11/100, Loss: 0.1153\n", "Epoch 12/100, Loss: 0.1039\n", "Epoch 13/100, Loss: 0.0852\n", "Epoch 14/100, Loss: 0.0897\n", "Epoch 15/100, Loss: 0.0799\n", "Epoch 16/100, Loss: 0.0741\n", "Epoch 17/100, Loss: 0.0809\n", "Epoch 18/100, Loss: 0.0680\n", "Epoch 19/100, Loss: 0.0717\n", "Epoch 20/100, Loss: 0.0648\n", "Epoch 21/100, Loss: 0.0684\n", "Epoch 22/100, Loss: 0.0654\n", "Epoch 23/100, Loss: 0.0631\n", "Epoch 24/100, Loss: 0.0686\n", "Epoch 25/100, Loss: 0.0633\n", "Epoch 26/100, Loss: 0.0624\n", "Epoch 27/100, Loss: 0.0618\n", "Epoch 28/100, Loss: 0.0686\n", "Epoch 29/100, Loss: 0.0613\n", "Epoch 30/100, Loss: 0.0564\n", "Epoch 31/100, Loss: 0.0587\n", "Epoch 32/100, Loss: 0.0696\n", "Epoch 33/100, Loss: 0.0574\n", "Epoch 34/100, Loss: 0.0594\n", "Epoch 35/100, Loss: 0.0556\n", "Epoch 36/100, Loss: 0.0630\n", "Epoch 37/100, Loss: 0.0527\n", "Epoch 38/100, Loss: 0.0644\n", "Epoch 39/100, Loss: 0.0570\n", "Epoch 40/100, Loss: 0.0513\n", "Epoch 41/100, Loss: 0.0614\n", "Epoch 42/100, Loss: 0.0591\n", "Epoch 43/100, Loss: 0.0454\n", "Epoch 44/100, Loss: 0.0499\n", "Epoch 45/100, Loss: 0.0506\n", "Epoch 46/100, Loss: 0.0627\n", "Epoch 47/100, Loss: 0.0522\n", "Epoch 48/100, Loss: 0.0545\n", "Epoch 49/100, Loss: 0.0504\n", "Epoch 50/100, Loss: 0.0512\n", "Epoch 51/100, Loss: 0.0525\n", "Epoch 52/100, Loss: 0.0528\n", "Epoch 53/100, Loss: 0.0507\n", "Epoch 54/100, Loss: 0.0596\n", "Epoch 55/100, Loss: 0.0507\n", "Epoch 56/100, Loss: 0.0581\n", "Epoch 57/100, Loss: 0.0516\n", "Epoch 58/100, Loss: 0.0556\n", "Epoch 59/100, Loss: 0.0545\n", "Epoch 60/100, Loss: 0.0512\n", "Epoch 61/100, Loss: 0.0455\n", "Epoch 62/100, Loss: 0.0492\n", "Epoch 63/100, Loss: 0.0467\n", "Epoch 64/100, Loss: 0.0478\n", "Epoch 65/100, Loss: 0.0471\n", "Epoch 66/100, Loss: 0.0539\n", "Epoch 67/100, Loss: 0.0529\n", "Epoch 68/100, Loss: 0.0573\n", "Epoch 69/100, Loss: 0.0515\n", "Epoch 70/100, Loss: 0.0451\n", "Epoch 71/100, Loss: 0.0483\n", "Epoch 72/100, Loss: 0.0536\n", "Epoch 73/100, Loss: 0.0526\n", "Epoch 74/100, Loss: 0.0479\n", "Epoch 75/100, Loss: 0.0480\n", "Epoch 76/100, Loss: 0.0447\n", "Epoch 77/100, Loss: 0.0441\n", "Epoch 78/100, Loss: 0.0502\n", "Epoch 79/100, Loss: 0.0486\n", "Epoch 80/100, Loss: 0.0515\n", "Epoch 81/100, Loss: 0.0478\n", "Epoch 82/100, Loss: 0.0460\n", "Epoch 83/100, Loss: 0.0518\n", "Epoch 84/100, Loss: 0.0492\n", "Epoch 85/100, Loss: 0.0459\n", "Epoch 86/100, Loss: 0.0501\n", "Epoch 87/100, Loss: 0.0502\n", "Epoch 88/100, Loss: 0.0519\n", "Epoch 89/100, Loss: 0.0442\n", "Epoch 90/100, Loss: 0.0473\n", "Epoch 91/100, Loss: 0.0429\n", "Epoch 92/100, Loss: 0.0469\n", "Epoch 93/100, Loss: 0.0471\n", "Epoch 94/100, Loss: 0.0458\n", "Epoch 95/100, Loss: 0.0484\n", "Epoch 96/100, Loss: 0.0417\n", "Epoch 97/100, Loss: 0.0491\n", "Epoch 98/100, Loss: 0.0528\n", "Epoch 99/100, Loss: 0.0476\n", "Epoch 100/100, Loss: 0.0433\n" ] }, { "data": { "text/plain": [ "GPT2(\n", " (_token_embeddings): TokenEmbeddings(\n", " (_embedding): Embedding(100, 256)\n", " )\n", " (_position_embeddings): PositionalEmbeddings(\n", " (embedding): Embedding(512, 256)\n", " )\n", " (_dropout): Dropout(p=0.1, inplace=False)\n", " (_decoders): ModuleList(\n", " (0-3): 4 x Decoder(\n", " (_heads): MultiHeadAttention(\n", " (_heads): ModuleList(\n", " (0-3): 4 x HeadAttention(\n", " (_k): Linear(in_features=256, out_features=64, bias=True)\n", " (_q): Linear(in_features=256, out_features=64, bias=True)\n", " (_v): Linear(in_features=256, out_features=64, bias=True)\n", " )\n", " )\n", " (_layer): Linear(in_features=256, out_features=256, bias=True)\n", " (_dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (_ff): FeedForward(\n", " (_layer1): Linear(in_features=256, out_features=1024, bias=True)\n", " (_gelu): GELU()\n", " (_layer2): Linear(in_features=1024, out_features=256, bias=True)\n", " (_dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (_norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n", " (_norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n", " )\n", " )\n", " (_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n", " (_linear): Linear(in_features=256, out_features=100, bias=True)\n", ")" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 1. Исходный текст\n", "text = \"Deep learning is amazing. Transformers changed the world. Attention is all you need. GPT models revolutionized NLP.\"\n", "\n", "# 2. Обучаем токенизатор\n", "bpe = BPE(vocab_size=100)\n", "bpe.fit(text)\n", "\n", "# 3. Создаем датасет\n", "dataset = GPTDataset(text, bpe, block_size=8)\n", "print(f\"Dataset length: {len(dataset)}\")\n", "\n", "# 4. Инициализируем модель\n", "gpt = GPT2(\n", " vocab_size=len(bpe.vocab), # размер словаря BPE\n", " max_seq_len=512, # GPT-2 использует контекст в 512 токена\n", " emb_size=256, # размер эмбеддингов\n", " num_heads=4, # количество голов внимания\n", " head_size=64, # размер каждой головы (256 / 4)\n", " num_layers=4, # количество блоков Transformer\n", " dropout=0.1 # стандартный dropout GPT-2\n", ")\n", "\n", "# 5. Обучаем\n", "train_gpt(gpt, dataset, epochs=100, batch_size=4)" ] }, { "cell_type": "markdown", "id": "c3714dfc", "metadata": {}, "source": [ "\n", "---\n", "\n", "### 5.2 Дообучение\n", "\n", "После предобучения GPT-1 уже знает структуру и грамматику языка. \n", "На втором этапе она дообучается на конкретных задачах (например, классификация, QA) с помощью размеченных данных.\n", "\n", "Технически это почти то же обучение, только:\n", "\n", "- Загружаем модель с уже обученными весами.\n", "- Используем новые данные.\n", "- Можно уменьшить скорость обучения.\n", "- Иногда замораживают часть слоёв (например, эмбеддинги).\n" ] }, { "cell_type": "code", "execution_count": 31, "id": "4afd7733", "metadata": {}, "outputs": [], "source": [ "def fine_tune_gpt(model, dataset, epochs=3, batch_size=16, lr=1e-5, device='cpu', freeze_embeddings=True):\n", " if freeze_embeddings:\n", " for param in model._token_embeddings.parameters():\n", " param.requires_grad = False\n", " for param in model._position_embeddings.parameters():\n", " param.requires_grad = False\n", "\n", " dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n", " optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=lr)\n", "\n", " model.to(device)\n", " model.train()\n", "\n", " for epoch in range(epochs):\n", " total_loss = 0\n", " for x, y in dataloader:\n", " x, y = x.to(device), y.to(device)\n", " logits, _ = model(x, use_cache=False)\n", " loss = F.cross_entropy(logits.view(-1, logits.size(-1)), y.view(-1))\n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()\n", " total_loss += loss.item()\n", " print(f\"Fine-tune Epoch {epoch+1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}\")" ] }, { "cell_type": "markdown", "id": "d1698def", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 32, "id": "71bb6b24", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fine-tune Epoch 1/10, Loss: 4.6839\n", "Fine-tune Epoch 2/10, Loss: 2.7124\n", "Fine-tune Epoch 3/10, Loss: 2.0318\n", "Fine-tune Epoch 4/10, Loss: 1.6738\n", "Fine-tune Epoch 5/10, Loss: 1.4043\n", "Fine-tune Epoch 6/10, Loss: 1.1781\n", "Fine-tune Epoch 7/10, Loss: 1.0102\n", "Fine-tune Epoch 8/10, Loss: 0.8826\n", "Fine-tune Epoch 9/10, Loss: 0.7884\n", "Fine-tune Epoch 10/10, Loss: 0.7057\n" ] } ], "source": [ "# Например, мы хотим дообучить модель на стиле коротких технических фраз\n", "fine_tune_text = \"\"\"\n", "Transformers revolutionize NLP.\n", "Deep learning enables self-attention.\n", "GPT generates text autoregressively.\n", "\"\"\"\n", "\n", "dataset = GPTDataset(fine_tune_text, bpe, block_size=8)\n", "\n", "\n", "# Запуск дообучения\n", "fine_tune_gpt(gpt, dataset, epochs=10, batch_size=4, lr=1e-4)" ] }, { "cell_type": "markdown", "id": "d5ff63e9", "metadata": {}, "source": [ "## 📝 6. Генерация текста после обучения" ] }, { "cell_type": "code", "execution_count": 33, "id": "ccb9621a", "metadata": {}, "outputs": [], "source": [ "def generate_text(model, bpe, prompt: str, max_new_tokens=20, device='cpu'):\n", " model.eval()\n", " ids = torch.tensor([bpe.encode(prompt)], dtype=torch.long).to(device)\n", " out = model.generate(ids, max_new_tokens=max_new_tokens, do_sample=True)\n", " text = bpe.decode(out[0].tolist())\n", " return text" ] }, { "cell_type": "code", "execution_count": 34, "id": "f1b82472", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Deep learning enaten. tns st GP. N\n" ] } ], "source": [ "print(generate_text(gpt, bpe, \"Deep learning\", max_new_tokens=20))" ] }, { "cell_type": "code", "execution_count": null, "id": "eb376510", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 5 }