mirror of
https://github.com/pese-git/llm-arch-research.git
synced 2026-01-23 21:10:54 +00:00
- Expanded module-level and function/class docstrings in optimizer.py, scheduler.py, and trainer.py - Described mathematical foundations, theoretical motivations, and provided detailed usage examples for students - All docstrings in Russian, clear scientific style test(training): add comprehensive tests for optimizer, scheduler, and trainer modules - Added new test files for get_optimizer, get_linear_schedule_with_warmup, and Trainer - Tests cover parameter handling, edge cases, and expected learning dynamics (lr schedules and loss behavior) - Trainer now logs average epoch losses to self.loss_history for testability and analysis refactor(training/trainer): log epoch loss to loss_history for downstream analysis and tests BREAKING CHANGE: Trainer.loss_history is a new attribute consolidating average losses per epoch, enabling robust learning dynamics assertions in tests
63 lines
2.6 KiB
Python
63 lines
2.6 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
from llm.training.scheduler import get_linear_schedule_with_warmup
|
||
from llm.training.optimizer import get_optimizer
|
||
|
||
class DummyModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.linear = nn.Linear(2, 2)
|
||
|
||
def test_scheduler_warmup_and_decay():
|
||
model = DummyModel()
|
||
base_lr = 0.1
|
||
warmup_steps = 5
|
||
total_steps = 20
|
||
optimizer = get_optimizer(model, lr=base_lr, optimizer_type="sgd")
|
||
scheduler = get_linear_schedule_with_warmup(
|
||
optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
|
||
|
||
lrs = [optimizer.param_groups[0]['lr']] # lr до первого .step()
|
||
for _ in range(total_steps):
|
||
optimizer.step()
|
||
scheduler.step()
|
||
lrs.append(optimizer.param_groups[0]['lr'])
|
||
|
||
# Проверяем warmup: lr должен расти линейно в первых warmup_steps (начиная с шага 1)
|
||
for i in range(warmup_steps + 1):
|
||
expected = base_lr * min(i, warmup_steps) / max(1, warmup_steps)
|
||
assert abs(lrs[i] - expected) < 1e-6, f"Warmup step {i}: lr={lrs[i]}, expected={expected}"
|
||
# Проверяем decay: после warmup lr затухает
|
||
for i in range(warmup_steps + 1, total_steps + 1):
|
||
expected = base_lr * max(0.0, (total_steps - (i - 0)) / max(1, total_steps - warmup_steps))
|
||
assert abs(lrs[i] - expected) < 1e-6, f"Decay step {i}: lr={lrs[i]}, expected={expected}"
|
||
assert lrs[-1] == 0.0
|
||
|
||
def test_scheduler_no_warmup():
|
||
model = DummyModel()
|
||
base_lr = 0.1
|
||
warmup_steps = 0
|
||
total_steps = 10
|
||
optimizer = get_optimizer(model, lr=base_lr, optimizer_type="adam")
|
||
scheduler = get_linear_schedule_with_warmup(
|
||
optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
|
||
lrs = [optimizer.param_groups[0]['lr']]
|
||
for _ in range(total_steps):
|
||
optimizer.step()
|
||
scheduler.step()
|
||
lrs.append(optimizer.param_groups[0]['lr'])
|
||
|
||
for i in range(total_steps + 1):
|
||
expected = base_lr * max(0.0, (total_steps - i) / max(1, total_steps - warmup_steps))
|
||
assert abs(lrs[i] - expected) < 1e-6, f"Step {i}: lr={lrs[i]}, expected={expected}"
|
||
assert lrs[-1] == 0.0
|
||
|
||
def test_scheduler_full_decay_to_zero():
|
||
model = DummyModel()
|
||
optimizer = get_optimizer(model, lr=1.0, optimizer_type="adamw")
|
||
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=2, num_training_steps=2)
|
||
scheduler.step()
|
||
scheduler.step()
|
||
for param_group in optimizer.param_groups:
|
||
assert param_group['lr'] == 0.0
|