Files
llm-arch-research/experiments/llm_only/configs/mixtral_train.json
Sergey Penkovsky b1737bbce2 feat(mixtral): initial implementation of Mixtral MoE model, configs, and tests
- Add Mixtral architecture implementation with MoE support (llm/src/llm/models/mixtral/mixtral.py)
- Introduce generic Mixture-of-Experts (MoE) block (llm/src/llm/core/moe.py)
- Create dedicated configuration files for Mixtral training and generation experiments
- Register and test Mixtral support in experiment runner (run_llm_experiment.py)
- Add unit tests for Mixtral API including forward, caching, and generation modes
- Include Jupyter notebook mixstral.ipynb for architectural exploration and research
- Ensure correct handling of torch bool masks in sampling (top-k, top-p) during generation

BREAKING CHANGE: Adds new model code and test coverage, modifying experiment runner logic to register Mixtral.
2025-10-20 08:12:11 +03:00

28 lines
828 B
JSON

{
"bpe_tokenizer": "checkpoints/bpe_tokenizer.json",
"bpe_vocab_size": 1000,
"bpe_special_tokens": ["<pad>", "<unk>", "<bos>", "<eos>"],
"test_prompts": ["Open source AI", "What is Llama?"],
"model_config": {
"vocab_size": null,
"embed_dim": 256,
"num_q_heads": 4,
"num_kv_heads": 2,
"head_size": 64,
"num_layers": 4,
"max_position_embeddings": 512,
"num_experts": 8,
"top_k_experts": 2,
"window_size": 16,
"dropout": 0.1
},
"model_weights": "checkpoints/mixtral-bpe/model.pt",
"model_config_path": "checkpoints/mixtral-bpe/config.json",
"training": {
"learning_rate": 0.0003,
"batch_size": 2,
"num_epochs": 3,
"warmup_steps": 50
},
"log_path": "checkpoints/mixtral_only_training_logs.json"
}