Files
llm-arch-research/experiments/llm_only/configs/gemma_train.json
Sergey Penkovsky cfb4b6dfb1 feat(gemma): initial implementation of Gemma model and configs
- Add core Gemma model (architecture, attention, GeGLU, RoPE, RMSNorm, etc)
- Add configs for training and generation: gemma_train.json, gemma_generate.json
- Add Gemma notebook for exploratory analysis and demonstration
- Add __init__.py for Gemma submodule
- Update run_llm_experiment.py to support Gemma experiment configs

test(gemma): add comprehensive unit tests for Gemma

- Test forward pass (with/without cache)
- Test autoregressive generation (greedy, top-k, top-p)
- Test shape correctness and max sequence length errors
- Test multi-layer stack and token embeddings

docs: add documentation notebook for Gemma usage and analysis

Closes: #issue (if applicable)
2025-10-21 01:02:15 +03:00

28 lines
822 B
JSON

{
"bpe_tokenizer": "checkpoints/bpe_tokenizer.json",
"bpe_vocab_size": 1000,
"bpe_special_tokens": ["<pad>", "<unk>", "<bos>", "<eos>"],
"test_prompts": ["Open source AI", "What is Llama?"],
"model_config": {
"vocab_size": null,
"embed_dim": 256,
"num_q_heads": 4,
"num_kv_heads": 2,
"head_size": 64,
"num_layers": 4,
"max_position_embeddings": 512,
"num_experts": 8,
"top_k_experts": 2,
"window_size": 16,
"dropout": 0.1
},
"model_weights": "checkpoints/gemma-bpe/model.pt",
"model_config_path": "checkpoints/gemma-bpe/config.json",
"training": {
"learning_rate": 0.0003,
"batch_size": 2,
"num_epochs": 3,
"warmup_steps": 50
},
"log_path": "checkpoints/gemma_only_training_logs.json"
}