Files
simple-llm/simple_llm/embedding/positional_embeddings.py

90 lines
4.3 KiB
Python
Raw Permalink Normal View History

import torch
from torch import nn, Tensor
class PositionalEmbeddings(nn.Module):
"""
Класс для создания позиционных эмбеддингов через nn.Embedding.
Позиционные эмбеддинги используются в нейросетях для передачи информации
о позиции элементов в последовательности (например, в Transformer).
Особенности:
- Создаёт обучаемые позиционные эмбеддинги фиксированной длины
- Поддерживает обработку последовательностей переменной длины
- Автоматически размещает вычисления на том же устройстве, что и параметры
Args:
max_seq_len (int): Максимальная длина последовательности
emb_size (int): Размерность векторного представления позиций
Пример использования:
>>> pos_encoder = PositionalEmbeddings(max_seq_len=100, emb_size=256)
>>> # Получить эмбеддинги для последовательности из 10 элементов
>>> embeddings = pos_encoder(10) # Tensor shape: [10, 256]
>>> # Использование в модели
>>> class MyModel(nn.Module):
... def __init__(self):
... super().__init__()
... self.pos_emb = PositionalEmbeddings(100, 256)
... def forward(self, x):
... pos = self.pos_emb(x.size(1))
... return x + pos # Добавляем позиционную информацию
"""
def __init__(self, max_seq_len: int, emb_size: int):
super().__init__()
self.max_seq_len = max_seq_len
self.emb_size = emb_size
self.embedding = nn.Embedding(
num_embeddings=max_seq_len,
embedding_dim=emb_size
)
def forward(self, seq_len: int) -> Tensor:
"""
Возвращает позиционные эмбеддинги для заданной длины последовательности.
Args:
seq_len (int): Длина последовательности (1 <= seq_len <= max_seq_len)
Returns:
Tensor: Тензор позиционных эмбеддингов формы [seq_len, emb_size]
Raises:
IndexError: Если seq_len выходит за допустимые границы
Пример:
>>> pos_encoder = PositionalEmbeddings(100, 64)
>>> emb = pos_encoder(10) # Тензор 10x64
"""
if seq_len < 1 or seq_len > self.max_seq_len:
raise IndexError(f"Длина {seq_len} должна быть от 1 до {self.max_seq_len}")
positions = torch.arange(seq_len, device=self.embedding.weight.device)
return self.embedding(positions)
if __name__ == "__main__":
# Демонстрация работы
print("Пример использования PositionalEmbeddings:")
pos_emb = PositionalEmbeddings(max_seq_len=50, emb_size=128)
# Пример 1: Базовое использование
print("\n1. Базовый пример:")
emb = pos_emb(10)
print(f"Форма выходного тензора: {emb.shape}")
print(f"Среднее значение: {emb.mean().item():.4f}")
# Пример 2: Интеграция с моделью
print("\n2. Пример интеграции с моделью:")
class DemoModel(nn.Module):
def __init__(self):
super().__init__()
self.pos_emb = PositionalEmbeddings(50, 128)
def forward(self, x):
pos = self.pos_emb(x.size(1))
return x + pos # Добавляем позиционную информацию
model = DemoModel()
input_tensor = torch.randn(2, 10, 128) # [batch, seq, features]
output = model(input_tensor)
print(f"Вход: {input_tensor.shape}, Выход: {output.shape}")