Files
simple-llm/example/train_gpt_model.py

51 lines
1.7 KiB
Python
Raw Normal View History

"""
Обучение GPT-модели на токенизированном корпусе
"""
import pickle
from torch.utils.data import DataLoader
from simple_llm.data.get_data import GetData
from simple_llm.transformer.gpt import GPT
if __name__ == "__main__":
import torch
# Определяем устройство
#if torch.cuda.is_available():
# device = 'cuda'
#elif getattr(torch.backends, 'mps', None) and torch.backends.mps.is_available():
# device = 'mps' # Apple Silicon
#else:
# device = 'cpu'
device = 'cpu'
print(f"Используется устройство: {device}")
with open('data/tokens/corpus_tokens.pkl', 'rb') as f:
tokenized = pickle.load(f)
all_tokens = [token for line in tokenized for token in line]
seq_len = 64
dataset = GetData(data=all_tokens, seq_len=seq_len, device=device)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Загрузите токенизатор для определения размера словаря
from simple_llm.tokenizer.bpe import BPE
tokenizer = BPE.load('data/tokenizer/bpe_tokenizer.json')
model = GPT(
vocab_size=tokenizer.vocab_size,
max_seq_len=seq_len,
emb_size=256,
num_heads=4,
head_size=64,
num_layers=4,
device='cpu'
)
model.fit(
train_loader=loader,
valid_loader=None,
num_epoch=10,
learning_rate=1e-4
)
print('Train loss:', model.train_loss)
torch.save(model.state_dict(), 'data/model/simple_llm_gpt.pth')
print("Модель обучена и сохранена в data/model/simple_llm_gpt.pth")