Files
simple-llm/simple_llm/tokenizer/bpe.py

233 lines
10 KiB
Python
Raw Normal View History

import dill
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
from tqdm import tqdm
class BPE:
"""Реализация алгоритма Byte Pair Encoding (BPE) для токенизации текста.
BPE - это алгоритм сжатия данных, адаптированный для токенизации текста в NLP.
Работает путем итеративного объединения наиболее частых пар символов/токенов.
Пример использования:
>>> tokenizer = BPE(vocab_size=100)
>>> tokenizer.fit("текст для обучения")
>>> encoded = tokenizer.encode("пример текста")
>>> decoded = tokenizer.decode(encoded)
Args:
vocab_size (int): Максимальный размер словаря токенов
"""
def __init__(self, vocab_size: int):
self.vocab_size = vocab_size
self.id2token = {}
self.token2id = {}
def fit(self, text: str):
"""Обучает токенизатор на заданном тексте.
Процесс обучения:
1. Начинает с базовых символов текста
2. Итеративно находит и объединяет самые частые пары символов
3. Продолжает пока не достигнет заданного размера словаря
Args:
text (str): Текст для обучения токенизатора
Пример:
>>> tokenizer = BPE(vocab_size=100)
>>> tokenizer.fit("Это текст для обучения токенизатора")
"""
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
# Инициализируем прогресс-бар
pbar = tqdm(total=self.vocab_size, desc="Building vocabulary")
# 1. Получаем уникальные токены (символы)
unique_tokens = sorted(set(text))
tokens = unique_tokens.copy()
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
pbar.update(len(tokens)) # Обновляем прогресс начальными токенами
# 2. Разбиваем текст на токены-символы
sequence = list(text)
# 3. Объединяем токены до достижения нужного размера словаря
while len(tokens) < self.vocab_size:
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
pbar.update(1) # Обновляем прогресс на каждой итерации
print(f"\nТекущий размер словаря: {len(tokens)}/{self.vocab_size}")
#print(f'len={len(tokens)} < {self.vocab_size}')
# Считаем частоты пар
pair_freq = {}
for i in range(len(sequence) - 1):
pair = (sequence[i], sequence[i + 1])
if pair not in pair_freq:
pair_freq[pair] = 0
pair_freq[pair] += 1
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
print(f"Найдено {len(pair_freq)} уникальных пар")
#print(f'pair_freq = {pair_freq}')
if not pair_freq:
break # нет пар — выходим
#for x in pair_freq.items():
# self.debug(x, sequence)
# Находим самую частую пару (в случае равенства — та, что встретилась первой)
most_frequent_pair = max(pair_freq.items(), key=lambda x: (x[1], -self._pair_first_index(sequence, x[0])))[0]
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
print(f"Самая частая пара: {most_frequent_pair} (встречается {pair_freq[most_frequent_pair]} раз)")
# Создаем новый токен
new_token = most_frequent_pair[0] + most_frequent_pair[1]
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
print(f"Добавлен новый токен: '{new_token}'")
tokens.append(new_token)
i = 0
new_sequence = []
while i < len(sequence):
if i < len(sequence) - 1 and (sequence[i], sequence[i + 1]) == most_frequent_pair:
new_sequence.append(new_token)
i += 2 # пропускаем два символа — заменённую пару
else:
new_sequence.append(sequence[i])
i += 1
sequence = new_sequence
#break
# 4. Создаем словари
self.vocab = tokens.copy()
self.token2id = dict(zip(tokens, range(self.vocab_size)))
self.id2token = dict(zip(range(self.vocab_size), tokens))
Рефакторинг и улучшение компонентов Основные изменения в коде: 1. Токенизатор (bpe.py): - Добавлен прогресс-бар через tqdm в метод fit() - Улучшено логирование процесса обучения - Добавлена обработка edge-cases для vocab_size 2. Генерация текста (generate_text.py): - Полный рефакторинг скрипта - Добавлены проверки модели перед загрузкой - Поддержка уменьшенных моделей (seq_len=32) - Подробное логирование процесса генерации 3. Обучение GPT (train_gpt_model.py): - Автоподбор параметров под размер данных - Уменьшенные параметры модели по умолчанию - Контроль памяти и устройств (CPU/MPS) 4. Токенизация корпуса (tokenize_corpus.py): - Добавлены проверки входных данных - Подробное логирование процесса - Обработка ошибок загрузки файлов Исправления: - Синхронизация размеров слоёв в GPT - Корректная работа с малыми наборами данных - Исправление загрузки моделей на MPS Обновление README.md - Добавлены обязательные зависимости: dill и tqdm - Добавлен раздел 'Цель проекта' с описанием задач - Добавлен раздел 'Участие в разработке' для контрибьюторов - Добавлен раздел 'Лицензия' с условиями MIT Рефакторинг основных скриптов и обновление данных Основные изменения: 1. Скрипты в bin/: - Оптимизация generate_text.py (генерация текста) - Улучшение tokenize_corpus.py (обработка корпуса) - Рефакторинг train_gpt_model.py (обучение модели) - Обновление train_tokenizer.py (алгоритм BPE) 2. Данные: - Удалены устаревшие артефакты: * simple_llm_gpt.pth (модель) * bpe_tokenizer.json (токенизатор) * corpus_tokens.pkl (токены) - Подготовка к генерации новых данных
2025-07-24 12:58:59 +03:00
pbar.close() # Закрываем прогресс-бар
def _pair_first_index(self, sequence, pair):
for i in range(len(sequence) - 1):
if (sequence[i], sequence[i + 1]) == pair:
return i
return float('inf') # если пара не найдена (в теории не должно случиться)
def encode(self, text: str):
"""Кодирует текст в последовательность ID токенов.
Использует жадный алгоритм для поиска наиболее длинных совпадений:
1. Начинает с первого символа
2. Ищет самый длинный токен из словаря, совпадающий с началом текста
3. Добавляет ID найденного токена в результат
4. Сдвигается на длину найденного токена и повторяет
Args:
text (str): Текст для кодирования
Returns:
list: Список ID токенов (неизвестные символы кодируются как -1)
Пример:
>>> encoded = tokenizer.encode("Пример текста")
>>> print(encoded)
[12, 34, 56, 78]
"""
# 1. Разбиваем текст на токены-символы
sequence = list(text)
# 2. Инициализация пустого списка токенов
tokens = []
# 3. Установить i = 0
i = 0
while i < len(text):
# 3.1 Найти все токены в словаре, начинающиеся с text[i]
start_char = text[i]
result = [token for token in self.vocab if token.startswith(start_char)]
# 3.2 Выбрать самый длинный подходящий токен
find_token = self._find_max_matching_token(text[i:], result)
if find_token is None:
# Обработка неизвестного символа
tokens.append(text[i]) # Добавляем сам символ как токен
i += 1
else:
# 3.3 Добавить токен в результат
tokens.append(find_token)
# 3.4 Увеличить i на длину токена
i += len(find_token)
# 4. Заменить токены на их ID
return self._tokens_to_ids(tokens)
def _find_max_matching_token(self, text: str, tokens: list):
"""Находит самый длинный токен из списка, с которого начинается текст"""
matching = [token for token in tokens if text.startswith(token)]
return max(matching, key=len) if matching else None
def _tokens_to_ids(self, tokens):
"""Конвертирует список токенов в их ID с обработкой неизвестных токенов"""
ids = []
for token in tokens:
if token in self.token2id:
ids.append(self.token2id[token])
else:
ids.append(-1) # Специальное значение
return ids
def decode(self, ids: list) -> str:
"""Декодирует последовательность ID обратно в текст.
Args:
ids (list): Список ID токенов
Returns:
str: Декодированный текст
Пример:
>>> decoded = tokenizer.decode([12, 34, 56, 78])
>>> print(decoded)
"Пример текста"
"""
return ''.join(self._ids_to_tokens(ids))
def _ids_to_tokens(self, ids: list) -> list:
"""Внутренний метод преобразования ID в токены.
Args:
ids (list): Список ID токенов
Returns:
list: Список соответствующих токенов (неизвестные ID = '')
"""
"""Конвертирует список Ids в их tokens"""
tokens = []
for id in ids:
if id in self.id2token:
tokens.append(self.id2token[id])
else:
tokens.append('') # Специальное значение
return tokens
def save(self, filename):
with open(filename, 'wb') as f:
dill.dump(self, f)
print(f"Объект сохранён в {filename}")
@classmethod
def load(cls, filename):
"""Загружает токенизатор из файла.
Args:
filename (str): Путь к файлу с сохраненным токенизатором
Returns:
BPE: Загруженный экземпляр токенизатора
Пример:
>>> tokenizer = BPE.load("bpe_tokenizer.pkl")
"""
"""Load trained tokenizer from file.
Args:
filename (str): Path to saved tokenizer
Returns:
BPE: Loaded tokenizer instance
"""
with open(filename, 'rb') as f:
obj = dill.load(f)
print(f"Объект загружен из {filename}")
return obj