Files
simple-llm/tests/test_feed_forward.py

52 lines
1.9 KiB
Python
Raw Normal View History

import torch
import pytest
from simple_llm.transformer.feed_forward import FeedForward
class TestFeedForward:
@pytest.fixture
def ff_layer(self):
return FeedForward(emb_size=512)
def test_initialization(self, ff_layer):
assert isinstance(ff_layer._layer1, torch.nn.Linear)
assert isinstance(ff_layer._layer2, torch.nn.Linear)
assert isinstance(ff_layer._relu, torch.nn.ReLU)
assert isinstance(ff_layer._dropout, torch.nn.Dropout)
assert ff_layer._layer1.in_features == 512
assert ff_layer._layer1.out_features == 2048
assert ff_layer._layer2.in_features == 2048
assert ff_layer._layer2.out_features == 512
def test_forward_pass_shape(self, ff_layer):
batch_size = 4
seq_len = 10
x = torch.randn(batch_size, seq_len, 512)
output = ff_layer(x)
assert output.shape == (batch_size, seq_len, 512)
def test_dropout_training(self):
ff_layer = FeedForward(512, dropout=0.5)
ff_layer.train()
x = torch.randn(2, 5, 512)
output = ff_layer(x)
# Проверяем, что dropout действительно работает в режиме обучения
assert not torch.allclose(output, ff_layer._layer2(ff_layer._relu(ff_layer._layer1(x))))
def test_dropout_eval(self):
ff_layer = FeedForward(512, dropout=0.5)
ff_layer.eval()
x = torch.randn(2, 5, 512)
output = ff_layer(x)
# В eval режиме dropout не должен работать
expected = ff_layer._layer2(ff_layer._relu(ff_layer._layer1(x)))
assert torch.allclose(output, expected)
def test_dtype_preservation(self, ff_layer):
x = torch.randn(2, 5, 512, dtype=torch.float64)
output = ff_layer(x)
assert output.dtype == torch.float64