mirror of
https://github.com/pese-git/simple-llm.git
synced 2026-01-23 21:14:17 +00:00
57 lines
2.0 KiB
Python
57 lines
2.0 KiB
Python
|
|
import torch
|
|||
|
|
import pytest
|
|||
|
|
from simple_llm.transformer.feed_forward import FeedForward
|
|||
|
|
|
|||
|
|
class TestFeedForward:
|
|||
|
|
@pytest.fixture
|
|||
|
|
def ff_layer(self):
|
|||
|
|
return FeedForward(emb_size=512)
|
|||
|
|
|
|||
|
|
def test_initialization(self, ff_layer):
|
|||
|
|
assert isinstance(ff_layer.net, torch.nn.Sequential)
|
|||
|
|
assert len(ff_layer.net) == 4
|
|||
|
|
assert isinstance(ff_layer.net[0], torch.nn.Linear)
|
|||
|
|
assert isinstance(ff_layer.net[1], torch.nn.ReLU)
|
|||
|
|
assert isinstance(ff_layer.net[2], torch.nn.Linear)
|
|||
|
|
assert isinstance(ff_layer.net[3], torch.nn.Dropout)
|
|||
|
|
|
|||
|
|
assert ff_layer.net[0].in_features == 512
|
|||
|
|
assert ff_layer.net[0].out_features == 2048
|
|||
|
|
assert ff_layer.net[2].in_features == 2048
|
|||
|
|
assert ff_layer.net[2].out_features == 512
|
|||
|
|
|
|||
|
|
def test_forward_pass_shape(self, ff_layer):
|
|||
|
|
batch_size = 4
|
|||
|
|
seq_len = 10
|
|||
|
|
x = torch.randn(batch_size, seq_len, 512)
|
|||
|
|
output = ff_layer(x)
|
|||
|
|
|
|||
|
|
assert output.shape == (batch_size, seq_len, 512)
|
|||
|
|
|
|||
|
|
def test_dropout_training(self):
|
|||
|
|
ff_layer = FeedForward(512, dropout=0.5)
|
|||
|
|
ff_layer.train()
|
|||
|
|
x = torch.randn(2, 5, 512)
|
|||
|
|
output = ff_layer(x)
|
|||
|
|
|
|||
|
|
# Проверяем, что dropout действительно работает в режиме обучения
|
|||
|
|
layers = ff_layer.net
|
|||
|
|
no_dropout = layers[2](layers[1](layers[0](x)))
|
|||
|
|
assert not torch.allclose(output, no_dropout)
|
|||
|
|
|
|||
|
|
def test_dropout_eval(self):
|
|||
|
|
ff_layer = FeedForward(512, dropout=0.5)
|
|||
|
|
ff_layer.eval()
|
|||
|
|
x = torch.randn(2, 5, 512)
|
|||
|
|
output = ff_layer(x)
|
|||
|
|
|
|||
|
|
# В eval режиме dropout не должен работать
|
|||
|
|
layers = ff_layer.net
|
|||
|
|
expected = layers[2](layers[1](layers[0](x)))
|
|||
|
|
assert torch.allclose(output, expected)
|
|||
|
|
|
|||
|
|
def test_dtype_preservation(self, ff_layer):
|
|||
|
|
x = torch.randn(2, 5, 512, dtype=torch.float64)
|
|||
|
|
output = ff_layer(x)
|
|||
|
|
assert output.dtype == torch.float64
|