Files
simple-llm/tests/test_feed_forward.py

57 lines
2.0 KiB
Python
Raw Normal View History

import torch
import pytest
from simple_llm.transformer.feed_forward import FeedForward
class TestFeedForward:
@pytest.fixture
def ff_layer(self):
return FeedForward(emb_size=512)
def test_initialization(self, ff_layer):
assert isinstance(ff_layer.net, torch.nn.Sequential)
assert len(ff_layer.net) == 4
assert isinstance(ff_layer.net[0], torch.nn.Linear)
assert isinstance(ff_layer.net[1], torch.nn.ReLU)
assert isinstance(ff_layer.net[2], torch.nn.Linear)
assert isinstance(ff_layer.net[3], torch.nn.Dropout)
assert ff_layer.net[0].in_features == 512
assert ff_layer.net[0].out_features == 2048
assert ff_layer.net[2].in_features == 2048
assert ff_layer.net[2].out_features == 512
def test_forward_pass_shape(self, ff_layer):
batch_size = 4
seq_len = 10
x = torch.randn(batch_size, seq_len, 512)
output = ff_layer(x)
assert output.shape == (batch_size, seq_len, 512)
def test_dropout_training(self):
ff_layer = FeedForward(512, dropout=0.5)
ff_layer.train()
x = torch.randn(2, 5, 512)
output = ff_layer(x)
# Проверяем, что dropout действительно работает в режиме обучения
layers = ff_layer.net
no_dropout = layers[2](layers[1](layers[0](x)))
assert not torch.allclose(output, no_dropout)
def test_dropout_eval(self):
ff_layer = FeedForward(512, dropout=0.5)
ff_layer.eval()
x = torch.randn(2, 5, 512)
output = ff_layer(x)
# В eval режиме dropout не должен работать
layers = ff_layer.net
expected = layers[2](layers[1](layers[0](x)))
assert torch.allclose(output, expected)
def test_dtype_preservation(self, ff_layer):
x = torch.randn(2, 5, 512, dtype=torch.float64)
output = ff_layer(x)
assert output.dtype == torch.float64