Files
simple-llm/simple_llm_demo.ipynb

324 lines
11 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Демонстрация simple_llm\n",
"## Полное руководство по установке и использованию"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Установка и настройка\n",
"\n",
"### Клонирование репозитория:\n",
"```bash\n",
"git clone https://github.com/ваш_username/simple-llm.git\n",
"cd simple-llm\n",
"```\n",
"\n",
"### Установка зависимостей:\n",
"```bash\n",
"pip install -e .\n",
"pip install torch tqdm\n",
"```\n",
"\n",
"### Проверка структуры данных:\n",
"```bash\n",
"mkdir -p data/corpus/sample data/model data/tokenizer\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Инициализация и проверка окружения"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"\n",
"# Проверка версии PyTorch\n",
"print(f\"PyTorch version: {torch.__version__}\")\n",
"\n",
"# Добавление пути к библиотеке\n",
"project_path = os.path.abspath('../simple-llm')\n",
"sys.path.append(project_path)\n",
"print(f\"Путь к проекту: {project_path}\")\n",
"\n",
"# Проверка модулей\n",
"try:\n",
" from simple_llm.tokenizer.bpe import BPETokenizer\n",
" from simple_llm.data.get_data import load_text_corpus\n",
" from simple_llm.transformer.gpt import GPT\n",
" print(\"✓ Все модули успешно импортированы\")\n",
"except ImportError as e:\n",
" print(f\"✗ Ошибка: {e}\")\n",
" print(\"Решение: выполните 'pip install -e .' из корня проекта\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Работа с токенизатором"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Инициализация токенизатора\n",
"tokenizer = BPETokenizer()\n",
"\n",
"# Загрузка и обработка текста\n",
"corpus_path = 'data/corpus/sample/'\n",
"if os.path.exists(corpus_path):\n",
" text = load_text_corpus(corpus_path)\n",
" print(f\"Загружено текста: {len(text.split())} слов\")\n",
" \n",
" # Обучение токенизатора\n",
" tokenizer.train(text, vocab_size=1000)\n",
" print(f\"Токенизатор обучен, размер словаря: {tokenizer.vocab_size}\")\n",
" \n",
" # Тест токенизации\n",
" test_phrase = \"Пример работы токенизатора\"\n",
" tokens = tokenizer.encode(test_phrase)\n",
" print(f\"Текст: {test_phrase}\")\n",
" print(f\"Токены: {tokens}\")\n",
" print(f\"Обратное преобразование: {tokenizer.decode(tokens)}\")\n",
"else:\n",
" print(f\"Директория {corpus_path} не содержит данных для обучения\")\n",
" print(\"Добавьте текстовые файлы в формате .txt в эту директорию\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Подготовка данных для обучения"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if 'text' in locals():\n",
" # Токенизация всего корпуса\n",
" all_tokens = tokenizer.encode(text)\n",
" \n",
" # Создание обучающих последовательностей\n",
" seq_length = 64\n",
" examples = []\n",
" for i in range(0, len(all_tokens) - seq_length - 1, seq_length):\n",
" input_seq = all_tokens[i:i+seq_length]\n",
" target_seq = all_tokens[i+1:i+seq_length+1]\n",
" examples.append((input_seq, target_seq))\n",
" \n",
" print(f\"Создано обучающих примеров: {len(examples)}\")\n",
" print(f\"Размер последовательности: {seq_length} токенов\")\n",
" print(f\"Пример входных данных: {examples[0][0][:10]}...\")\n",
" print(f\"Пример целевых данных: {examples[0][1][:10]}...\")\n",
"else:\n",
" print(\"Невозможно подготовить данные: текст не загружен\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Обучение модели GPT"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if 'examples' in locals() and len(examples) > 0:\n",
" # Конфигурация модели\n",
" config = {\n",
" 'vocab_size': tokenizer.vocab_size,\n",
" 'embed_dim': 128,\n",
" 'num_heads': 4,\n",
" 'num_layers': 3,\n",
" 'max_len': seq_length\n",
" }\n",
" \n",
" # Инициализация модели\n",
" model = GPT(config)\n",
" optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
" criterion = torch.nn.CrossEntropyLoss()\n",
" \n",
" # Процесс обучения\n",
" num_epochs = 5\n",
" batch_size = 8\n",
" \n",
" for epoch in range(num_epochs):\n",
" total_loss = 0\n",
" model.train()\n",
" \n",
" for i in range(0, len(examples), batch_size):\n",
" batch = examples[i:i+batch_size]\n",
" inputs = torch.tensor([ex[0] for ex in batch])\n",
" targets = torch.tensor([ex[1] for ex in batch])\n",
" \n",
" optimizer.zero_grad()\n",
" outputs = model(inputs)\n",
" loss = criterion(outputs.view(-1, config['vocab_size']), targets.view(-1))\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" total_loss += loss.item()\n",
" \n",
" avg_loss = total_loss / (len(examples) / batch_size)\n",
" print(f\"Эпоха {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}\")\n",
" \n",
" print(\"Обучение завершено!\")\n",
"else:\n",
" print(\"Невозможно начать обучение: нет подготовленных данных\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Генерация текста"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def generate_text(model, tokenizer, prompt, max_len=50, temperature=0.7):\n",
" model.eval()\n",
" tokens = tokenizer.encode(prompt)\n",
" \n",
" for _ in range(max_len):\n",
" input_ids = torch.tensor([tokens[-config['max_len']:]])\n",
" with torch.no_grad():\n",
" logits = model(input_ids)[0, -1, :] / temperature\n",
" probs = torch.softmax(logits, dim=-1)\n",
" next_token = torch.multinomial(probs, num_samples=1).item()\n",
" tokens.append(next_token)\n",
" \n",
" return tokenizer.decode(tokens)\n",
"\n",
"if 'model' in locals():\n",
" prompts = [\n",
" \"Сегодня прекрасный день,\",\n",
" \"Искусственный интеллект\",\n",
" \"В далеком будущем\"\n",
" ]\n",
" \n",
" for prompt in prompts:\n",
" generated = generate_text(model, tokenizer, prompt)\n",
" print(f\"Промпт: '{prompt}'\")\n",
" print(f\"Результат: {generated}\\n\")\n",
"else:\n",
" print(\"Модель не обучена, генерация невозможна\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Сохранение и загрузка моделей"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def save_model(model, tokenizer, model_name):\n",
" model_path = f\"data/model/{model_name}.pth\"\n",
" tokenizer_path = f\"data/tokenizer/{model_name}_tokenizer.json\"\n",
" \n",
" torch.save(model.state_dict(), model_path)\n",
" tokenizer.save(tokenizer_path)\n",
" print(f\"Модель сохранена в {model_path}\")\n",
" print(f\"Токенизатор сохранен в {tokenizer_path}\")\n",
"\n",
"def load_model(model_name, config):\n",
" model_path = f\"data/model/{model_name}.pth\"\n",
" tokenizer_path = f\"data/tokenizer/{model_name}_tokenizer.json\"\n",
" \n",
" model = GPT(config)\n",
" model.load_state_dict(torch.load(model_path))\n",
" \n",
" tokenizer = BPETokenizer()\n",
" tokenizer.load(tokenizer_path)\n",
" \n",
" print(f\"Модель загружена из {model_path}\")\n",
" return model, tokenizer\n",
"\n",
"# Пример использования:\n",
"# save_model(model, tokenizer, \"my_first_model\")\n",
"# loaded_model, loaded_tokenizer = load_model(\"my_first_model\", config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Советы по улучшению\n",
"\n",
"1. Для лучших результатов:\n",
" - Увеличьте размер корпуса\n",
" - Добавьте больше эпох обучения\n",
" - Настройте параметры модели\n",
"\n",
"2. Экспериментируйте с:\n",
" - Температурой генерации (0.1-1.0)\n",
" - Разными промптами\n",
" - Архитектурой модели\n",
"\n",
"3. Дополнительные возможности:\n",
" - Визуализация attention-карт\n",
" - Реализация beam search\n",
" - Fine-tuning на специфичных данных"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}