docs, logic: обновление документации и автодовосстановления обучения модели, актуализация index.md

This commit is contained in:
Sergey Penkovsky
2025-07-30 22:22:20 +03:00
parent 25c067af4a
commit 73e7a164f9
7 changed files with 654 additions and 14 deletions

View File

@@ -7,14 +7,17 @@ Callback-система для управления обучением GPT.
- LRSchedulerCallback - регулировка learning rate
"""
# /Users/sergey/Projects/ML/simple-llm/simple_llm/transformer/callback/__init__.py
from .callback import Callback
from .early_stopping_callback import EarlyStoppingCallback
from .lrs_scheduler_callback import LRSchedulerCallback
from .model_checkpoint_callback import ModelCheckpointCallback
from .resume_training_callback import ResumeTrainingCallback
__all__ = [
'Callback',
'EarlyStoppingCallback',
'LRSchedulerCallback',
'ModelCheckpointCallback'
'LRSchedulerCallback',
'ModelCheckpointCallback',
'ResumeTrainingCallback'
]

View File

@@ -12,6 +12,9 @@ class Callback:
- on_batch_end - после обработки батча
- on_epoch_end - в конце эпохи
"""
def on_train_begin(self, model):
pass
def on_epoch_begin(self, epoch, model):
"""Вызывается перед началом эпохи.

View File

@@ -14,8 +14,22 @@ class LRSchedulerCallback(Callback):
def __init__(self, lr, decay=0.95):
self.base_lr = lr
self.decay = decay
self.last_epoch = -1 # Добавляем отслеживание эпохи
def get_state(self):
return {
'base_lr': self.base_lr,
'decay': self.decay,
'last_epoch': self.last_epoch
}
def set_state(self, state):
self.base_lr = state['base_lr']
self.decay = state['decay']
self.last_epoch = state['last_epoch']
def on_epoch_begin(self, epoch, model):
self.last_epoch = epoch # Сохраняем текущую эпоху
new_lr = self.base_lr * (self.decay ** epoch)
for param_group in model.optimizer.param_groups:
param_group['lr'] = new_lr

View File

@@ -1,6 +1,7 @@
from .callback import Callback
import torch
import os
from typing import Optional
class ModelCheckpointCallback(Callback):
"""Сохраняет чекпоинты модели во время обучения.
@@ -11,24 +12,64 @@ class ModelCheckpointCallback(Callback):
Args:
save_dir (str): Директория для сохранения
save_best_only (bool): Сохранять только лучшие модели
save_best_only (bool): Если True, сохраняет только при улучшении loss
save_freq (int): Сохранять каждые N эпох (default=1)
monitor (str): Какой loss мониторить ('val' или 'train')
"""
def __init__(self, save_dir, save_best_only=True):
def __init__(self,
save_dir: str,
save_best_only: bool = True,
save_freq: int = 1,
monitor: str = 'val'):
self.save_dir = save_dir
self.save_best_only = save_best_only
self.save_freq = save_freq
self.monitor = monitor
self.best_loss = float('inf')
def on_epoch_end(self, epoch, model, train_loss, val_loss):
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
current_loss = val_loss if val_loss else train_loss
# Создаем директорию если её нет
os.makedirs(save_dir, exist_ok=True)
if not self.save_best_only or current_loss < self.best_loss:
def on_epoch_end(self, epoch, model, train_loss, val_loss):
# Решаем какой loss использовать для сравнения
current_loss = val_loss if (self.monitor == 'val' and val_loss is not None) else train_loss
# Сохраняем по расписанию или при улучшении
should_save = (
(epoch + 1) % self.save_freq == 0 or # по расписанию
(self.save_best_only and current_loss < self.best_loss) # или если это лучшая модель
)
if should_save:
self.best_loss = current_loss
path = os.path.join(self.save_dir, f"checkpoint_epoch_{epoch}.pt")
checkpoint_path = os.path.join(
self.save_dir,
f"checkpoint_epoch_{epoch}.pt"
)
# Собираем состояния всех callback'ов
callback_states = {}
if hasattr(model, '_callbacks'):
for cb in model._callbacks:
if hasattr(cb, 'get_state'):
callback_states[cb.__class__.__name__] = cb.get_state()
torch.save({
'epoch': epoch,
'model_state': model.state_dict(),
'loss': current_loss
}, path)
'model_state_dict': model.state_dict(),
'optimizer_state_dict': model.optimizer.state_dict(),
'train_loss': train_loss,
'val_loss': val_loss,
'best_loss': self.best_loss,
'callback_states': callback_states,
'config': {
'vocab_size': model._vocab_size,
'max_seq_len': model._max_seq_len,
'emb_size': model._emb_size,
'num_heads': model._num_heads,
'head_size': model._head_size,
'num_layers': model._num_layers
}
}, checkpoint_path)
print(f"Модель сохранена в {checkpoint_path} (loss: {current_loss:.4f})")

View File

@@ -0,0 +1,53 @@
# /Users/sergey/Projects/ML/simple-llm/simple_llm/transformer/callback/resume_training_callback.py
import os
import torch
from typing import Optional
from .callback import Callback
class ResumeTrainingCallback(Callback):
"""Callback для восстановления обучения с последнего чекпоинта"""
def __init__(self, checkpoint_dir: str, resume: bool = True):
"""
Args:
checkpoint_dir: Путь к директории с чекпоинтами
resume: Флаг восстановления обучения (default=True)
"""
self.checkpoint_dir = checkpoint_dir
self.resume = resume
self.last_epoch = -1
def on_train_begin(self, model):
if not self.resume:
return
checkpoint_path = self._find_latest_checkpoint()
if checkpoint_path:
print(f"\n⚡ Восстанавливаем обучение из {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=model._device)
# Убедимся, что загружаем на правильное устройство
model.load_state_dict(checkpoint['model_state_dict'])
if 'optimizer_state_dict' in checkpoint:
model.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if 'scheduler_state_dict' in checkpoint and checkpoint['scheduler_state_dict'] is not None:
if hasattr(model, 'scheduler'):
model.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
self.last_epoch = checkpoint.get('epoch', -1)
print(f"➔ Продолжаем с эпохи {self.last_epoch + 1}")
print(f"➔ Последний loss: {checkpoint.get('train_loss', 'N/A'):.4f}\n")
def _find_latest_checkpoint(self) -> Optional[str]:
if not os.path.exists(self.checkpoint_dir):
return None
checkpoints = [f for f in os.listdir(self.checkpoint_dir)
if f.startswith('checkpoint_') and f.endswith('.pt')]
if not checkpoints:
return None
# Сортируем по времени создания
checkpoints.sort(key=lambda x: os.path.getmtime(os.path.join(self.checkpoint_dir, x)))
return os.path.join(self.checkpoint_dir, checkpoints[-1])

324
simple_llm_demo.ipynb Normal file
View File

@@ -0,0 +1,324 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Демонстрация simple_llm\n",
"## Полное руководство по установке и использованию"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Установка и настройка\n",
"\n",
"### Клонирование репозитория:\n",
"```bash\n",
"git clone https://github.com/ваш_username/simple-llm.git\n",
"cd simple-llm\n",
"```\n",
"\n",
"### Установка зависимостей:\n",
"```bash\n",
"pip install -e .\n",
"pip install torch tqdm\n",
"```\n",
"\n",
"### Проверка структуры данных:\n",
"```bash\n",
"mkdir -p data/corpus/sample data/model data/tokenizer\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Инициализация и проверка окружения"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"\n",
"# Проверка версии PyTorch\n",
"print(f\"PyTorch version: {torch.__version__}\")\n",
"\n",
"# Добавление пути к библиотеке\n",
"project_path = os.path.abspath('../simple-llm')\n",
"sys.path.append(project_path)\n",
"print(f\"Путь к проекту: {project_path}\")\n",
"\n",
"# Проверка модулей\n",
"try:\n",
" from simple_llm.tokenizer.bpe import BPETokenizer\n",
" from simple_llm.data.get_data import load_text_corpus\n",
" from simple_llm.transformer.gpt import GPT\n",
" print(\"✓ Все модули успешно импортированы\")\n",
"except ImportError as e:\n",
" print(f\"✗ Ошибка: {e}\")\n",
" print(\"Решение: выполните 'pip install -e .' из корня проекта\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Работа с токенизатором"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Инициализация токенизатора\n",
"tokenizer = BPETokenizer()\n",
"\n",
"# Загрузка и обработка текста\n",
"corpus_path = 'data/corpus/sample/'\n",
"if os.path.exists(corpus_path):\n",
" text = load_text_corpus(corpus_path)\n",
" print(f\"Загружено текста: {len(text.split())} слов\")\n",
" \n",
" # Обучение токенизатора\n",
" tokenizer.train(text, vocab_size=1000)\n",
" print(f\"Токенизатор обучен, размер словаря: {tokenizer.vocab_size}\")\n",
" \n",
" # Тест токенизации\n",
" test_phrase = \"Пример работы токенизатора\"\n",
" tokens = tokenizer.encode(test_phrase)\n",
" print(f\"Текст: {test_phrase}\")\n",
" print(f\"Токены: {tokens}\")\n",
" print(f\"Обратное преобразование: {tokenizer.decode(tokens)}\")\n",
"else:\n",
" print(f\"Директория {corpus_path} не содержит данных для обучения\")\n",
" print(\"Добавьте текстовые файлы в формате .txt в эту директорию\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Подготовка данных для обучения"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if 'text' in locals():\n",
" # Токенизация всего корпуса\n",
" all_tokens = tokenizer.encode(text)\n",
" \n",
" # Создание обучающих последовательностей\n",
" seq_length = 64\n",
" examples = []\n",
" for i in range(0, len(all_tokens) - seq_length - 1, seq_length):\n",
" input_seq = all_tokens[i:i+seq_length]\n",
" target_seq = all_tokens[i+1:i+seq_length+1]\n",
" examples.append((input_seq, target_seq))\n",
" \n",
" print(f\"Создано обучающих примеров: {len(examples)}\")\n",
" print(f\"Размер последовательности: {seq_length} токенов\")\n",
" print(f\"Пример входных данных: {examples[0][0][:10]}...\")\n",
" print(f\"Пример целевых данных: {examples[0][1][:10]}...\")\n",
"else:\n",
" print(\"Невозможно подготовить данные: текст не загружен\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Обучение модели GPT"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if 'examples' in locals() and len(examples) > 0:\n",
" # Конфигурация модели\n",
" config = {\n",
" 'vocab_size': tokenizer.vocab_size,\n",
" 'embed_dim': 128,\n",
" 'num_heads': 4,\n",
" 'num_layers': 3,\n",
" 'max_len': seq_length\n",
" }\n",
" \n",
" # Инициализация модели\n",
" model = GPT(config)\n",
" optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
" criterion = torch.nn.CrossEntropyLoss()\n",
" \n",
" # Процесс обучения\n",
" num_epochs = 5\n",
" batch_size = 8\n",
" \n",
" for epoch in range(num_epochs):\n",
" total_loss = 0\n",
" model.train()\n",
" \n",
" for i in range(0, len(examples), batch_size):\n",
" batch = examples[i:i+batch_size]\n",
" inputs = torch.tensor([ex[0] for ex in batch])\n",
" targets = torch.tensor([ex[1] for ex in batch])\n",
" \n",
" optimizer.zero_grad()\n",
" outputs = model(inputs)\n",
" loss = criterion(outputs.view(-1, config['vocab_size']), targets.view(-1))\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" total_loss += loss.item()\n",
" \n",
" avg_loss = total_loss / (len(examples) / batch_size)\n",
" print(f\"Эпоха {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}\")\n",
" \n",
" print(\"Обучение завершено!\")\n",
"else:\n",
" print(\"Невозможно начать обучение: нет подготовленных данных\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Генерация текста"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def generate_text(model, tokenizer, prompt, max_len=50, temperature=0.7):\n",
" model.eval()\n",
" tokens = tokenizer.encode(prompt)\n",
" \n",
" for _ in range(max_len):\n",
" input_ids = torch.tensor([tokens[-config['max_len']:]])\n",
" with torch.no_grad():\n",
" logits = model(input_ids)[0, -1, :] / temperature\n",
" probs = torch.softmax(logits, dim=-1)\n",
" next_token = torch.multinomial(probs, num_samples=1).item()\n",
" tokens.append(next_token)\n",
" \n",
" return tokenizer.decode(tokens)\n",
"\n",
"if 'model' in locals():\n",
" prompts = [\n",
" \"Сегодня прекрасный день,\",\n",
" \"Искусственный интеллект\",\n",
" \"В далеком будущем\"\n",
" ]\n",
" \n",
" for prompt in prompts:\n",
" generated = generate_text(model, tokenizer, prompt)\n",
" print(f\"Промпт: '{prompt}'\")\n",
" print(f\"Результат: {generated}\\n\")\n",
"else:\n",
" print(\"Модель не обучена, генерация невозможна\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Сохранение и загрузка моделей"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def save_model(model, tokenizer, model_name):\n",
" model_path = f\"data/model/{model_name}.pth\"\n",
" tokenizer_path = f\"data/tokenizer/{model_name}_tokenizer.json\"\n",
" \n",
" torch.save(model.state_dict(), model_path)\n",
" tokenizer.save(tokenizer_path)\n",
" print(f\"Модель сохранена в {model_path}\")\n",
" print(f\"Токенизатор сохранен в {tokenizer_path}\")\n",
"\n",
"def load_model(model_name, config):\n",
" model_path = f\"data/model/{model_name}.pth\"\n",
" tokenizer_path = f\"data/tokenizer/{model_name}_tokenizer.json\"\n",
" \n",
" model = GPT(config)\n",
" model.load_state_dict(torch.load(model_path))\n",
" \n",
" tokenizer = BPETokenizer()\n",
" tokenizer.load(tokenizer_path)\n",
" \n",
" print(f\"Модель загружена из {model_path}\")\n",
" return model, tokenizer\n",
"\n",
"# Пример использования:\n",
"# save_model(model, tokenizer, \"my_first_model\")\n",
"# loaded_model, loaded_tokenizer = load_model(\"my_first_model\", config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Советы по улучшению\n",
"\n",
"1. Для лучших результатов:\n",
" - Увеличьте размер корпуса\n",
" - Добавьте больше эпох обучения\n",
" - Настройте параметры модели\n",
"\n",
"2. Экспериментируйте с:\n",
" - Температурой генерации (0.1-1.0)\n",
" - Разными промптами\n",
" - Архитектурой модели\n",
"\n",
"3. Дополнительные возможности:\n",
" - Визуализация attention-карт\n",
" - Реализация beam search\n",
" - Fine-tuning на специфичных данных"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,202 @@
import os
import tempfile
import torch
import pytest
from simple_llm.transformer.gpt import GPT
from simple_llm.transformer.callback import ModelCheckpointCallback, ResumeTrainingCallback
from torch.utils.data import DataLoader, TensorDataset
from simple_llm.transformer.callback import (
LRSchedulerCallback,
)
@pytest.fixture
def sample_data():
# Создаем тестовые данные
inputs = torch.randint(0, 100, (100, 10)) # 100 samples, seq_len=10
targets = torch.randint(0, 100, (100, 10))
return DataLoader(TensorDataset(inputs, targets), batch_size=10)
@pytest.fixture
def sample_model():
return GPT(
vocab_size=100,
max_seq_len=10,
emb_size=32,
num_heads=4,
head_size=8,
num_layers=2
)
def test_model_checkpoint_saving(sample_model, sample_data):
"""Тестирует корректность сохранения чекпоинтов"""
with tempfile.TemporaryDirectory() as tmpdir:
checkpoint_cb = ModelCheckpointCallback(tmpdir, save_best_only=False)
sample_model.fit(sample_data, num_epoch=1, callbacks=[checkpoint_cb])
files = os.listdir(tmpdir)
assert len(files) == 1
assert files[0].startswith('checkpoint_epoch_')
checkpoint = torch.load(os.path.join(tmpdir, files[0]))
assert 'model_state_dict' in checkpoint
assert 'optimizer_state_dict' in checkpoint
assert 'epoch' in checkpoint
assert 'train_loss' in checkpoint
def test_resume_training(sample_model, sample_data):
"""Тестирует восстановление обучения из чекпоинта"""
with tempfile.TemporaryDirectory() as tmpdir:
checkpoint_cb = ModelCheckpointCallback(tmpdir, save_best_only=False)
sample_model.fit(sample_data, num_epoch=1, callbacks=[checkpoint_cb])
new_model = GPT(
vocab_size=100,
max_seq_len=10,
emb_size=32,
num_heads=4,
head_size=8,
num_layers=2
)
resume_cb = ResumeTrainingCallback(tmpdir)
new_model.fit(
sample_data,
num_epoch=2,
callbacks=[resume_cb, checkpoint_cb],
resume_training=True
)
assert resume_cb.last_epoch == 0
files = os.listdir(tmpdir)
assert len(files) == 2
def test_resume_with_missing_checkpoint(sample_model, sample_data):
"""Тестирует поведение при отсутствии чекпоинтов"""
with tempfile.TemporaryDirectory() as tmpdir:
assert len(os.listdir(tmpdir)) == 0
resume_cb = ResumeTrainingCallback(tmpdir)
sample_model.fit(
sample_data,
num_epoch=1,
callbacks=[resume_cb],
resume_training=True
)
assert resume_cb.last_epoch == -1
def test_resume_with_corrupted_checkpoint(sample_model, sample_data):
"""Тестирует обработку битых чекпоинтов"""
with tempfile.TemporaryDirectory() as tmpdir:
bad_checkpoint = os.path.join(tmpdir, "checkpoint_epoch_0.pt")
with open(bad_checkpoint, 'w') as f:
f.write("corrupted data")
resume_cb = ResumeTrainingCallback(tmpdir)
with pytest.raises(Exception):
sample_model.fit(
sample_data,
num_epoch=1,
callbacks=[resume_cb],
resume_training=True
)
def test_optimizer_state_restoration(sample_model, sample_data):
"""Тестирует восстановление состояния оптимизатора"""
with tempfile.TemporaryDirectory() as tmpdir:
checkpoint_cb = ModelCheckpointCallback(tmpdir)
sample_model.fit(sample_data, num_epoch=1, callbacks=[checkpoint_cb])
original_optimizer_state = sample_model.optimizer.state_dict()
new_model = GPT(
vocab_size=100,
max_seq_len=10,
emb_size=32,
num_heads=4,
head_size=8,
num_layers=2
)
resume_cb = ResumeTrainingCallback(tmpdir)
new_model.fit(
sample_data,
num_epoch=2,
callbacks=[resume_cb, checkpoint_cb],
resume_training=True
)
assert 'state' in new_model.optimizer.state_dict()
assert 'param_groups' in new_model.optimizer.state_dict()
# Проверяем только параметры, кроме lr (так как он меняется scheduler'ом)
for key in original_optimizer_state['param_groups'][0]:
if key not in ['params', 'lr']:
assert (
original_optimizer_state['param_groups'][0][key] ==
new_model.optimizer.state_dict()['param_groups'][0][key]
)
def test_multiple_resumes(sample_model, sample_data):
"""Тестирует многократное восстановление обучения"""
with tempfile.TemporaryDirectory() as tmpdir:
checkpoint_cb = ModelCheckpointCallback(tmpdir)
sample_model.fit(sample_data, num_epoch=1, callbacks=[checkpoint_cb])
resume_cb = ResumeTrainingCallback(tmpdir)
sample_model.fit(
sample_data,
num_epoch=2,
callbacks=[resume_cb, checkpoint_cb],
resume_training=True
)
resume_cb = ResumeTrainingCallback(tmpdir)
sample_model.fit(
sample_data,
num_epoch=3,
callbacks=[resume_cb, checkpoint_cb],
resume_training=True
)
files = os.listdir(tmpdir)
assert len(files) == 3
def test_scheduler_state_restoration(sample_model, sample_data):
"""Тестирует восстановление состояния LR"""
with tempfile.TemporaryDirectory() as tmpdir:
checkpoint_cb = ModelCheckpointCallback(tmpdir)
lr_scheduler_cb = LRSchedulerCallback(lr=0.001)
sample_model.fit(
sample_data,
num_epoch=1,
callbacks=[checkpoint_cb, lr_scheduler_cb],
learning_rate=0.001
)
# Сохраняем текущий lr с учетом decay
expected_lr = 0.001 * (0.95 ** 1) # decay^epoch
new_model = GPT(
vocab_size=100,
max_seq_len=10,
emb_size=32,
num_heads=4,
head_size=8,
num_layers=2
)
resume_cb = ResumeTrainingCallback(tmpdir)
new_model.fit(
sample_data,
num_epoch=2,
callbacks=[resume_cb, checkpoint_cb, lr_scheduler_cb],
resume_training=True,
learning_rate=0.001
)
# Проверяем что LR восстановлен с учетом decay
assert new_model.optimizer.param_groups[0]['lr'] == pytest.approx(expected_lr)