mirror of
https://github.com/pese-git/simple-llm.git
synced 2026-01-23 21:14:17 +00:00
docs, logic: обновление документации и автодовосстановления обучения модели, актуализация index.md
This commit is contained in:
@@ -7,14 +7,17 @@ Callback-система для управления обучением GPT.
|
||||
- LRSchedulerCallback - регулировка learning rate
|
||||
"""
|
||||
|
||||
# /Users/sergey/Projects/ML/simple-llm/simple_llm/transformer/callback/__init__.py
|
||||
from .callback import Callback
|
||||
from .early_stopping_callback import EarlyStoppingCallback
|
||||
from .lrs_scheduler_callback import LRSchedulerCallback
|
||||
from .model_checkpoint_callback import ModelCheckpointCallback
|
||||
from .resume_training_callback import ResumeTrainingCallback
|
||||
|
||||
__all__ = [
|
||||
'Callback',
|
||||
'EarlyStoppingCallback',
|
||||
'LRSchedulerCallback',
|
||||
'ModelCheckpointCallback'
|
||||
'LRSchedulerCallback',
|
||||
'ModelCheckpointCallback',
|
||||
'ResumeTrainingCallback'
|
||||
]
|
||||
@@ -12,6 +12,9 @@ class Callback:
|
||||
- on_batch_end - после обработки батча
|
||||
- on_epoch_end - в конце эпохи
|
||||
"""
|
||||
|
||||
def on_train_begin(self, model):
|
||||
pass
|
||||
|
||||
def on_epoch_begin(self, epoch, model):
|
||||
"""Вызывается перед началом эпохи.
|
||||
|
||||
@@ -14,8 +14,22 @@ class LRSchedulerCallback(Callback):
|
||||
def __init__(self, lr, decay=0.95):
|
||||
self.base_lr = lr
|
||||
self.decay = decay
|
||||
self.last_epoch = -1 # Добавляем отслеживание эпохи
|
||||
|
||||
def get_state(self):
|
||||
return {
|
||||
'base_lr': self.base_lr,
|
||||
'decay': self.decay,
|
||||
'last_epoch': self.last_epoch
|
||||
}
|
||||
|
||||
def set_state(self, state):
|
||||
self.base_lr = state['base_lr']
|
||||
self.decay = state['decay']
|
||||
self.last_epoch = state['last_epoch']
|
||||
|
||||
def on_epoch_begin(self, epoch, model):
|
||||
self.last_epoch = epoch # Сохраняем текущую эпоху
|
||||
new_lr = self.base_lr * (self.decay ** epoch)
|
||||
for param_group in model.optimizer.param_groups:
|
||||
param_group['lr'] = new_lr
|
||||
@@ -1,6 +1,7 @@
|
||||
from .callback import Callback
|
||||
import torch
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
class ModelCheckpointCallback(Callback):
|
||||
"""Сохраняет чекпоинты модели во время обучения.
|
||||
@@ -11,24 +12,64 @@ class ModelCheckpointCallback(Callback):
|
||||
|
||||
Args:
|
||||
save_dir (str): Директория для сохранения
|
||||
save_best_only (bool): Сохранять только лучшие модели
|
||||
save_best_only (bool): Если True, сохраняет только при улучшении loss
|
||||
save_freq (int): Сохранять каждые N эпох (default=1)
|
||||
monitor (str): Какой loss мониторить ('val' или 'train')
|
||||
"""
|
||||
def __init__(self, save_dir, save_best_only=True):
|
||||
def __init__(self,
|
||||
save_dir: str,
|
||||
save_best_only: bool = True,
|
||||
save_freq: int = 1,
|
||||
monitor: str = 'val'):
|
||||
self.save_dir = save_dir
|
||||
self.save_best_only = save_best_only
|
||||
self.save_freq = save_freq
|
||||
self.monitor = monitor
|
||||
self.best_loss = float('inf')
|
||||
|
||||
def on_epoch_end(self, epoch, model, train_loss, val_loss):
|
||||
if not os.path.exists(self.save_dir):
|
||||
os.makedirs(self.save_dir)
|
||||
|
||||
current_loss = val_loss if val_loss else train_loss
|
||||
# Создаем директорию если её нет
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
if not self.save_best_only or current_loss < self.best_loss:
|
||||
def on_epoch_end(self, epoch, model, train_loss, val_loss):
|
||||
# Решаем какой loss использовать для сравнения
|
||||
current_loss = val_loss if (self.monitor == 'val' and val_loss is not None) else train_loss
|
||||
|
||||
# Сохраняем по расписанию или при улучшении
|
||||
should_save = (
|
||||
(epoch + 1) % self.save_freq == 0 or # по расписанию
|
||||
(self.save_best_only and current_loss < self.best_loss) # или если это лучшая модель
|
||||
)
|
||||
|
||||
if should_save:
|
||||
self.best_loss = current_loss
|
||||
path = os.path.join(self.save_dir, f"checkpoint_epoch_{epoch}.pt")
|
||||
checkpoint_path = os.path.join(
|
||||
self.save_dir,
|
||||
f"checkpoint_epoch_{epoch}.pt"
|
||||
)
|
||||
|
||||
# Собираем состояния всех callback'ов
|
||||
callback_states = {}
|
||||
if hasattr(model, '_callbacks'):
|
||||
for cb in model._callbacks:
|
||||
if hasattr(cb, 'get_state'):
|
||||
callback_states[cb.__class__.__name__] = cb.get_state()
|
||||
|
||||
torch.save({
|
||||
'epoch': epoch,
|
||||
'model_state': model.state_dict(),
|
||||
'loss': current_loss
|
||||
}, path)
|
||||
'model_state_dict': model.state_dict(),
|
||||
'optimizer_state_dict': model.optimizer.state_dict(),
|
||||
'train_loss': train_loss,
|
||||
'val_loss': val_loss,
|
||||
'best_loss': self.best_loss,
|
||||
'callback_states': callback_states,
|
||||
'config': {
|
||||
'vocab_size': model._vocab_size,
|
||||
'max_seq_len': model._max_seq_len,
|
||||
'emb_size': model._emb_size,
|
||||
'num_heads': model._num_heads,
|
||||
'head_size': model._head_size,
|
||||
'num_layers': model._num_layers
|
||||
}
|
||||
}, checkpoint_path)
|
||||
|
||||
print(f"Модель сохранена в {checkpoint_path} (loss: {current_loss:.4f})")
|
||||
|
||||
53
simple_llm/transformer/callback/resume_training_callback.py
Normal file
53
simple_llm/transformer/callback/resume_training_callback.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# /Users/sergey/Projects/ML/simple-llm/simple_llm/transformer/callback/resume_training_callback.py
|
||||
import os
|
||||
import torch
|
||||
from typing import Optional
|
||||
from .callback import Callback
|
||||
|
||||
class ResumeTrainingCallback(Callback):
|
||||
"""Callback для восстановления обучения с последнего чекпоинта"""
|
||||
|
||||
def __init__(self, checkpoint_dir: str, resume: bool = True):
|
||||
"""
|
||||
Args:
|
||||
checkpoint_dir: Путь к директории с чекпоинтами
|
||||
resume: Флаг восстановления обучения (default=True)
|
||||
"""
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.resume = resume
|
||||
self.last_epoch = -1
|
||||
|
||||
def on_train_begin(self, model):
|
||||
if not self.resume:
|
||||
return
|
||||
|
||||
checkpoint_path = self._find_latest_checkpoint()
|
||||
if checkpoint_path:
|
||||
print(f"\n⚡ Восстанавливаем обучение из {checkpoint_path}")
|
||||
checkpoint = torch.load(checkpoint_path, map_location=model._device)
|
||||
|
||||
# Убедимся, что загружаем на правильное устройство
|
||||
model.load_state_dict(checkpoint['model_state_dict'])
|
||||
if 'optimizer_state_dict' in checkpoint:
|
||||
model.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
||||
if 'scheduler_state_dict' in checkpoint and checkpoint['scheduler_state_dict'] is not None:
|
||||
if hasattr(model, 'scheduler'):
|
||||
model.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
||||
self.last_epoch = checkpoint.get('epoch', -1)
|
||||
|
||||
print(f"➔ Продолжаем с эпохи {self.last_epoch + 1}")
|
||||
print(f"➔ Последний loss: {checkpoint.get('train_loss', 'N/A'):.4f}\n")
|
||||
|
||||
def _find_latest_checkpoint(self) -> Optional[str]:
|
||||
if not os.path.exists(self.checkpoint_dir):
|
||||
return None
|
||||
|
||||
checkpoints = [f for f in os.listdir(self.checkpoint_dir)
|
||||
if f.startswith('checkpoint_') and f.endswith('.pt')]
|
||||
|
||||
if not checkpoints:
|
||||
return None
|
||||
|
||||
# Сортируем по времени создания
|
||||
checkpoints.sort(key=lambda x: os.path.getmtime(os.path.join(self.checkpoint_dir, x)))
|
||||
return os.path.join(self.checkpoint_dir, checkpoints[-1])
|
||||
Reference in New Issue
Block a user